

Laboratoire de Physique des 2 Infinis

Exploring FCC EMB geometry with Matlab

Ronic Chiche*, Daniel Fournier, Nicolas Morange December 17th, 2020

Introduction

Some particle detection optimization:

- Trade-off between detection precision and number of channels
- Geometrical constraints
- Particles traces reconstruction
 - => Exploring general FCC geometry
 - => Generic scientific tool : Matlab

Once the general geometry is fixed, one can go deeper in a more detailed electrodes geometry (how to extract signal from pads).

- Extract signal and cross-talk impedances involved in the signal noise ratio of the detection.
- Known formulas to evaluate these impedances are only valid in restricted conductors geometries:

=> Solve EM equations for real geometries

=> Dedicated tools: COMSOL, FastField Solvers, Cadence Sigrity,... (FEM or BEM)

3D and radial view of the barrel

3D and longitudinal view of the barrel

For each electrode:

- Height divided in m segments related to angle alpha and radius r
- Longitudinally in p slices along angle theta or pseudorapidity

For FCC-hh: electrodes are divided in slices along the pseudorapidity η : $\Delta \eta = 0.01$

$$\eta_{p} = \left(p + \frac{1}{2}\right) \Delta \eta$$
$$\theta_{p} = 2 \arctan\left(\exp\left(-\eta_{p}\right)\right)$$

For FCC-ee: electrodes are divided in slices along the angle θ : $\Delta \theta = 0,5625^{\circ}$

 $\theta_p = 90^\circ + p \ \Delta \theta$

Definition of a cell for one electrode:

$$r_m^{2} = \left(L_m + r_i \cos(\alpha) \right)^{2} + \left(r_i \sin(\alpha) \right)^{2}$$

$$\theta_p$$

$$\Rightarrow z_{m,p} = r_m / \tan(\theta_p)$$

Details of a slice

Choice of constant length segments

Choice of constant radial depth segments 5

Example of 3D view of the detector

View of the FCC-hh EMB with Matlab (only 100 electrodes are drown inside the barrel)

Segments of the electrodes are colored in red and blue alternatively for odd and even segments respectively.

$$\phi_k = \phi_0 + k \, \frac{2\pi}{N_e}$$

$$r_m^2 = \left(L_m + r_i \cos(\alpha)\right)^2 + \left(r_i \sin(\alpha)\right)^2$$

For FCC-hh: Ne=1408 electrodes

6

Virtual convergence point of the cells

Can be usefull to check the proper geometry of the cells during detector installation

Some details on cells properties related to their lengths

Electrodes crossings along a particle trace for FCC-hh

Matlab front view of a part of barrel with 1408 electrodes for the whole barrel

$$\exp(i\phi_k)(r_i + L\exp(i\alpha)) = r_o\exp(i\phi_{k+\Delta k})$$

Zoom on the front view of the barrel made of 59 electrodes necessary to cover the particle trace

Electrodes crossings along a particle trace for FCC-ee

Particle trace

Particle trace

2.6 12 segments 2,9 3 2.5 3,1 3,2 3,4 2.4 y (m) 3,5 3,7 2.3 $N_{e} = 1536$ 3,9 $\alpha = 50^{\circ}$ 4,1 $\Rightarrow \Delta k \simeq 41.5$ 4,3 $r_{i} = 216 \, cm$ 2.2 4,5 $r_{0} = 256 \, cm$ 2.1 -0.1 -0.4 -0.2 -0.5 -0.3 0.1 0.2 0.3 0.4 0 x (m)

Matlab front view of a part of barrel with 1536 electrodes for the whole barrel $\exp(i\phi_k)(r_i + L\exp(i\alpha)) = r_o \exp(i\phi_{k+\Delta k})$

Zoom on the front view of the barrel made of 42 electrodes necessary to cover the particle trace

Electrodes crossings along a particle trace for FCC-ee

How to get aligned cells with azimuthal angle ?

To be seen under the same angle $\delta\varphi$, the cell δL_n has to be longer than δL_1 because :

• It is further apart

 $r_n > r_1$

• Its angle α_n with axial direction is smaller than α_1 $\alpha_n = \alpha_1 - (n-1)\delta\phi < \alpha_1$

Relation between cell's crossings and length

 $\exp(i\phi_k)(r_i + L\exp(i\alpha)) = r_o \exp(i\phi_{k+\Delta k}) \Longrightarrow r_i + L\exp(i\alpha) = r_o \exp(i\phi_{k+\Delta k} - i\phi_k)$ $\phi_{k} = k \frac{2\pi}{N_{e}} \Rightarrow \exp\left(i\Delta k \frac{2\pi}{N_{e}}\right) = \frac{r_{i} + L\exp(i\alpha)}{r_{o}} \Rightarrow \begin{cases} \Delta k = \frac{N_{e}}{2\pi} \arctan\left(\frac{L\sin(\alpha)}{r_{i} + L\cos(\alpha)}\right) \\ L = \frac{r_{i}}{\sin(\alpha)\cot\left(\Delta k \frac{2\pi}{N_{e}}\right) - \cos(\alpha)} \end{cases}$ ro $\mathbf{\Phi}_{\mathbf{k}+\Delta\mathbf{k}}$ With Δk_m being the cumulated crossings for the m first cells: $L_{m} = \sum_{n=1}^{m} \delta L_{n} = \frac{r_{i}}{\sin(\alpha) \cot(\alpha)} \cos\left(\Delta k_{m} \frac{2\pi}{N_{i}}\right) - \cos(\alpha)$ φ_k N_e=1536 L_m (cm) α=50° r_i=216cm Radial view of the EMB 20 40 50 13 Δk_m

Constant crossings with present FCC-ee geometry

Fractional cells crossing for the presampler

Possible new electrodes segmentation for FCC-ee

Integer nb of electrodes along particles paths for all segments ¹⁶

Electrodes grouping strategy

- N electrodes are crossed by an axial line For FCC-ee: N=42 with presampler
- 2 electrodes dedicated to the short presampler \Rightarrow N=40
- M segments along a strip (leaving out the presampler)
- \Rightarrow the axial line can cross the same number of electrodes in each sampling, only if N/M is an integer
- With M = 10 segments per electrode
 => N/M = 4 crossings per sampling
- With M = 8 segments per electrode
 => N/M = 5 crossings per sampling

Sampling group of 4 cells in the same segment

Example of grouping by 4

Convenient for software and pattern recognition:

- Group cells in azimuth by 4 (physically or numerically)
- Use i to label groups of 4 electrodes along phi.
- Defining index i which runs from 1 to 1536/4
- Use j to label group of segments along the electrode.
- Defining index j which runs from 1 to 10 from outside to inside (leaving out the presampler)
- Use k to label cells along z (not shown)

If [i,j,k] defines a cell in space:

Then all [i+p, j+p, k] are all falling in the same solid angle, and their energy contents can be readily added in a cluster.

Typical size of the largest cell is $LxH \sim 4,2 \times 4,8 \text{ cm}$ Typical size of the presampler is $LxH \sim 3,5 \times 1,5 \text{ cm}$

Total of 1536/4*12=4608 cells for 2pi along phi

Total of 12 cells, including 1 presampler and 2 subdivisions along z for the 2nd segment of the electrode

Possible new electrodes segmentation for FCC-ee

Next step: Cells capacitance extraction

Compare different tools (FasterCap, COMSOL, Sigrity)

Example of a FCC-ee slice with 12 cells

Compare Maxwell capacitance matrix with and without routing

Test different grouping and routing strategies

Test different layers parameters h_{xx}, w_x, t

 $H_{electrode}$ = 1200 μm $H_{absorber}$ = 2000 μm Argon gap @ r_i ~ 1,24 mm Argon gap @ r_o ~ 2,39 mm

Thank you

Old slides

Good way to define a gap (good approximation)

Distance between electrode and absorber

 $\Delta \phi = \frac{2\pi}{2N_e} = \frac{\pi}{N_e}$ $\begin{cases} \vec{r_a} : r_i + \frac{a}{2} \exp\left(i\alpha + i\frac{\pi}{2}\right) + r_a \exp\left(i\alpha\right) \\ \vec{r_e} : \exp\left(i\Delta\phi\right) \left(r_i + \frac{e}{2} \exp\left(i\alpha - i\frac{\pi}{2}\right) + r_e \exp\left(i\alpha\right)\right) \\ D = \min\left(\left\|\vec{r_a} - \vec{r_e}\right\|\right) \end{cases}$

For each r_e , one solution D => $r_{a0}(r_e)$ $r_{a0} < (r_o - r_i) => r_e < r_{e max}$

e = 1,2 mm a = 2 mm

$$r_e = 0$$
 => D = 1,24 mm
 $r_e = L = 56,5 cm$ => D = 2,40 mm

Radial view of the EMB

