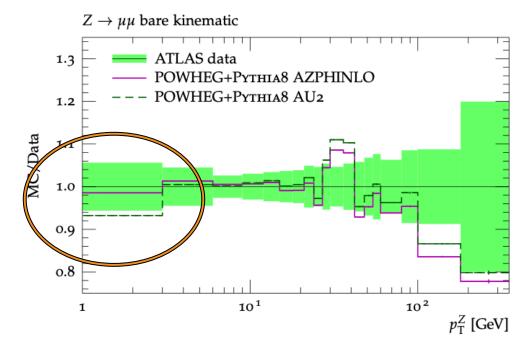
Intrinsic k_T tuning

Studies with Pythia8

Mikel Mendizabal, Hannes Jung LHC EW , January 11th, 2021

Heading Agenda


- Introduction
- Tuning procedure
- Energy dependent intrinsic k_T
- Summary & outlook

Introduction

- In the LHC together with EW bosons QCD radiation is produced
- The radiation can limit the accuracy of the measurements of the bosons
- Two type of radiations:
 - 1. Initial state radiation (ISR)
 - 2. Final state radiation (FSR)
- The Z transverse momentum is the perfect observable to tune the ISR
- Moreover, the $p_T < 20$ GeV region is sensitive to the tuning of the intrinsic K_T parameters

Introduction

- The intrinsic k_T represents the intrinsic transverse momentum of the initial state partons
- Goal: Tune the intrinsic k_T parameters at low mass DY processes to precisely describe the low Z p_T spectrum at any given DY mass

• Set-up: MC@NLO + Pythia8

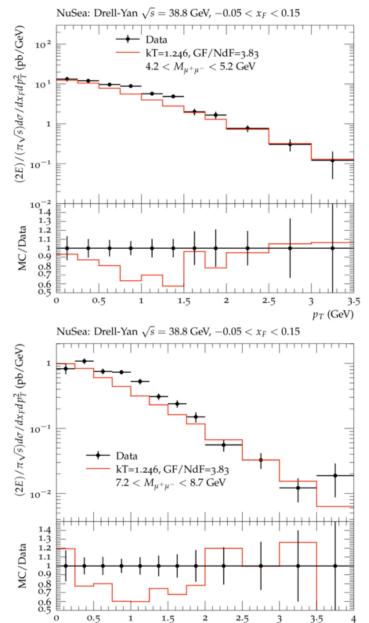
Tune with Pythia8

Pythia8 parameters for Intrinsic k_T

- BeamRemnants:primordialKThard
 - Intrinsic k_T of the initial parton
- SpaceShower:pT0Ref
 - Regularization of the divergence of the QCD emission probability for $p_T \rightarrow 0$ $\frac{p_T^2}{(p_{T_0}^2 + p_T^2)}$

•
$$p_{T_0} = p_{T0Ref} \left(\frac{ecmNow}{ecmRef}\right)^{ecmPow}$$
 and by default $ecmPow = 0 \rightarrow p_{T_0} = p_{T0Ref}$

SpaceShower:alphaSvalue


Tuning of the intrinsic k_T with NuSea measurements $\sqrt{s} = 38.8$ GeV

Step 1 – Intrinsic kT

• We start the tuning with the

BeamRemnats:primordialKTHard \in (0.01, 5.0)

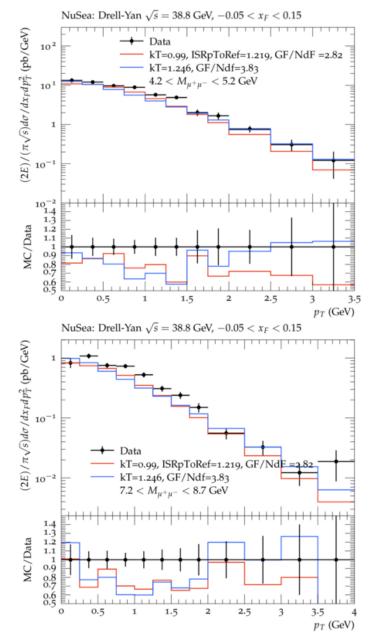
- For this first step both space and time showers are switch off
- The optimal value found is BeamRemnats:primordialKTHard = 1.246 with a $\chi^2/ndf = 3.83$

 p_T (GeV)

Tuning of the intrinsic k_T with NuSea measurements $\sqrt{s} = 38.8$ GeV

Step 2 – Intrinsic kT + space shower

• We switch on the space shower (ISR) with a fixed value of


SpaceShower:alphaSvalue = 0.118

• We add one more parameter to the tune

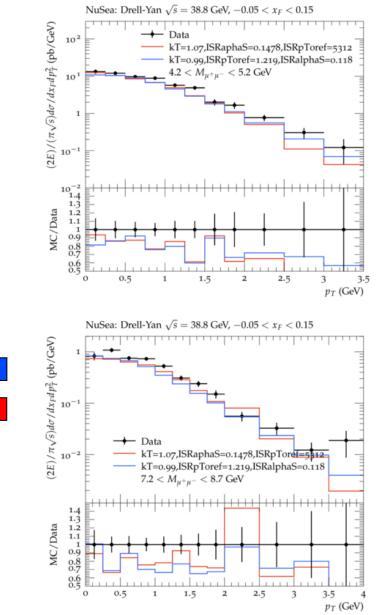
SpaceShower:pT0Ref \in (0.5, 9.0)

• Results from the tune with a $\chi^2/ndf = 2.82$

Tune	BeamRemnants: primordialKTHard	SpaceShower: pT0Ref	SpaceShower: alphaSvalue	
Step 1	1.246	-	-	
Step 2	0.9	1.219	0.118(fixed)	

Tuning of the intrinsic k_T with NuSea measurements

Step 3 – Intrinsic kT + space shower


• This time we include another parameter to the tune

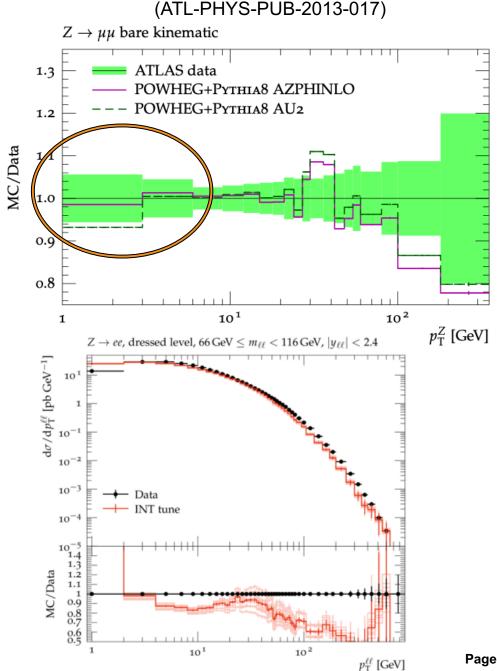
SpaceShower:alphaSvalue \in (0.09, 0.25)

• Results from the tune with a $\chi^2/ndf = 2.91$

Tune	BeamRemnants: primordialKTHard	SpaceShower: pT0Ref	SpaceShower: alphaSvalue	
Step 1	1.246	-	-	
Step 2	0.9	1.234	0.118(fixed)	
Step 3	1.07	5.312	0.1478	

- A fixed value of $\alpha_s = 0.118$ performs better
- A fixed value of $\alpha_s = 0.118$ is used in AZPHINLO tune (ATL-PHYS-PUB-2013-017)

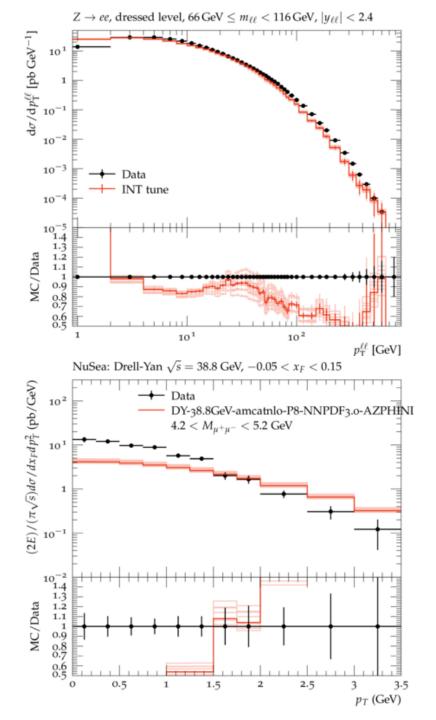
Summary of results


Tune	BeamRemnants: primordialKTHard	SpaceShower: pT0Ref	SpaceShower: alphaSvalue	χ^2/ndf
Step 1	1.246	-	-	3.83
Step 2	0.9	1.234	0.118(fixed)	2.82
Step 3	1.07	5.312	0.1478	2.91

- From Step 1 \rightarrow Step 2: primordialKTHard + space shower (α_s fixed)
 - The space shower takes the space left from the primordial kT
- From Step 2 \rightarrow Step 3: primordialKTHard + space shower
 - The primordial kT increases
 - pT0Ref takes a larger value most of the contribution coming from intrinsic kT
 - $\alpha_s = 0.1478$
- Step 2 which contains a fixed value $\alpha_s = 0.118$, best agreement with data

Moving the tune to 8 TeV

- Reminder: Our goal is to tune the lower pT region of the • lepton pair for a any COM energy
 - We tune the intrinsic kT using low mass DY for higher precision


- Let's put our tune (Step 2) to test with 8 TeV ATLAS • measurements:
 - Our tune is not able to properly describe the lowest pT region

Energy dependent intrinsic k_T

Energy dependent intrinsic k_T

- For different DY masses the same intrinsic k_T is not valid:
 - For AZPHINLO tune at 8 TeV k_T = 1.74 GeV
 - For our tune (INT) at 38.8 GeV k_T = 0.9 GeV
- Apply the two tunes to different centre of mass energies:
 - Upper panel INT tune at 8 TeV → First bin "diverges"
 - Lower panel AZPHINLO tune at 38.8 GeV → First bin converges to zero
- An energy dependence can be observed for the $k_{\rm T}$ in Pythia8

Energy dependent intrinsic k_T

Introducing energy dependence to intrinsic k_T

- Reminder: SpaceShower:pT0Ref introduces an energy dependency in p_{T0}
 - Regularization of the divergence of the QCD emission probability for $p_T \rightarrow 0$: $\frac{p_T^2}{(p_{T_0}^2 + p_T^2)}$

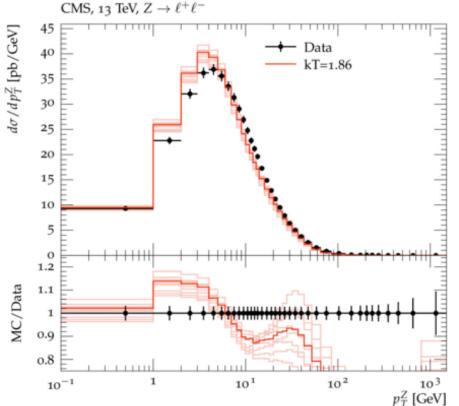
•
$$p_{T_0} = p_{T0Ref} \left(\frac{ecmNow}{ecmRef}\right)^{ecmPow}$$
 and by default $ecmPow = 0 \rightarrow p_{T_0} = p_{T0Ref}$

• Idea: Introduce the energy dependency in k_T in a similar way:

$$k_T = k_{TRef} \left(\frac{ecmNow}{ecmRef}\right)^{ecmPow}$$

AZPHINLO tune as a reference $\rightarrow k_{TRef} = 1.74 \text{ GeV}$, ecmRef = 8000 GeVINT tune to derive ecmPow $\rightarrow \rightarrow k_T = 0.9 \text{ GeV}$, ecmNow = 38.8 GeV

Intrinsic k_T for 13 TeV


• We use AZPHINLO tune as a starting point:

Tune	BeamRemnants: primordialKTHard	SpaceShower: pT0Ref	SpaceShower: alphaSvalue	MultipartonInteractions: pT0Ref	17
AZPHINLO	1.74	1.91	0.118(fixed)	1.57	op/Go

• We evolve the BeamRemnants:primordialKTHard to 13TeV:

$$k_T = k_{TRef} \left(\frac{ecmNow}{ecmRef}\right)^{ecmPow} = 1.8477$$

• Good description of the first bin within uncerntainties

Summary and outlook

- We performed a tune for low mass DY processes using NuSea measurements
- We found a good agreement with a $\chi^2/ndf = 2.91$

Tune	BeamRemnants:	SpaceShower:	SpaceShower:
	primordialKTHard	pT0Ref	alphaSvalue
Step 2	0.9	1.219	0.118(fixed)

• From our results we see that this approach does not work for a proper description of the low pT spectrum of the lepton pair at different COM energies

Summary & outlook

• We introduced an energy dependece in the intrinsic k_T

 $k_T = k_{TRef} \left(\frac{ecmNow}{ecmRef}\right)^{ecmPow}$

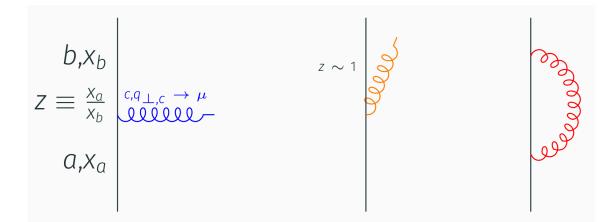
• We observe a good description of the lowest p_T region of the Z boson at different centre of mass energies

- Outlook: check if this approach is consistent at different centre of mass energies:
 - R209 at 200GeV
 -

Thank you

Outlook

A tune with different COM energies


- For an overall tune of the intrinsic k_T parameters
- Lhe files already generated with MC@nlo for 38.8 GeV, 8 TeV and 13 TeV
- All the inputs (parametrisation, yoda & aida files) are in place for the tuning using the following rivet analyses
 - NUSEA_2003_I613362
 - ATLAS_2015_I1408516
 - CMS_2019_I1753680
- However, the scripts and steps from the Professor twiki page are for a tune with different COM energies is outdated

https://twiki.cern.ch/twiki/bin/viewauth/CMS/Professor

Why is there a large sensitivity to intrinsic kT?

https://indico.ph.ed.ac.uk/event/63/contributions/1002/attachments/751/929/Mikel_Mendizabal.pdf

- Extended discussion around the instrinsic kT in REF 2020 workshop :
 - Studies in Herwig by S. Gieseke, M. H. Seymour, A. Siódmok (arXiv:0712.1199) back in 2008
 - Pythia and Herwig have a non predictable value of the intrinsic kT
 - Cascade 3 shows a good description both at high and low DY masses (arXiv:2001.06488)
- Can the treatment of non-perturvative effects be the reason of this non-predictiity?

When $z \sim 1$ the splitting is non resolvable $\rightarrow z_m$ Pythia/Herwig z_m < Cascade z_m

This smaller value of z_m makes the contributions of non-perturvative effects larger, e.g.: intrinsic kT

EVOLUTION → Real resolvable splittings + Non resolvable splittings + Virtual correction