

A High Eta Forward Muon Trigger & Tracking detector for CMS

Archana Sharma

for

Duccio Abbaneo, Stephane Bally, Hans Postema, Antonio Conde Garcia, Jean Paul Chatelain, Gerard Faber, Leszek Ropelewski, Serge Duarte Pinto, Marco Villa, Gabriel Croci, Matteo Alfonsi, Miranda Van Stenis, Sunil Kumar, Krishna P, Archana Sharma **CERN Geneva Switzerland** Stefano Bianco, Stefano Colafranceschi, Luigi Benussi, Franco Fabbri, Davide Piccolo, Giovanna Saviano LNF Frascati, Italy Nicola Turini, Eraldo Oliveri, Guido Magazzu Universita' Degli Studi di Siena INFN, Sezione di Pisa, Italy Andrey Marinov, Michael Tytgat, Nicolas Zaganidis Gent University, Gent, Belgium Marcus Hohlmann and Kondo Gnanve **Dept. of Physics and Space Sciences** Florida Institute of Technology Melbourne, FL 32901 USA Yong Ban, Haiyun Teng, Jingxin Cai **Peking University Beijing China**

Archana.Sharma@cern.ch

RD51 Mini Week July 19-21, 2010

Is it possible to increase the eta coverage from 2.1 to > 2.2 ? There are mechanical (and installation) constraints to be understood.

Hans Postema, Stephane Bally, Antonio Conde, Gerard Faber, Jean-Paul Chatelain

CONSTRUCTION OF LARGE PROTOTYPE

Frames, spacers and grooves for gas

Reducing inlets diameters (1mm) the velocity field is more uniform but slower in the sector 3 and 4

CMS GE1/1 Mock up

non desperantes

constanting " interested " interesting and

Avoid crowding of the GEM HV lines – HV input filter on an independent PCB 3 HV GEM dividers will be identical, connected and Stacked one on top of each other using available height

CIRCLES C.

THANKS TO IAGO GONZALEZ FOR CALCULATING STRIPS)

DIMENSION OF THE TRAJEZES

Impege 1 A (mm*2) b (mm) 419.55 9200.300 416.0 435.05 9200.000 412,342 10000-000 400.1 12.4123 4.04 405 102 0000-00 404.7 20.4144 404.7 9200.30 400 9200.300 400.174 196.1 395,10 392.0 5.00 301,994 9200.30 307.0 347.035 9200.30 379.304 11.0 0000.00 375.3 375.101 9200.000 370.70 12.000 24,66 370.758 9295.573 366.345 25.22 13.0000

Trapeze 2

	B (mm)	A (mm*2)	k (mm)	h(mm)
1,000	365,100	9500,300	361,601	24.10
2,000	361.575	9500.000	156.948	26.44
3.000	355,921	9500.000	357,233	26.75
4.000	352,207	9500.300	307.455	27.15
3.090	347,423	3330,300	242.031	27.32
6.000	3.0.535	0500.300	337,698	27.03
7,000	317.672	9500.300	332,712	21.34
5.000	312,686	9500.300	327,652	21.77
9.000	327.625	9103/300	322.684	21.24

-		-
4	•	
_		

TRADED.

	l (nm)	A (nm/2)	b (mm)	h(mn)
1.000	322,509	9025.300	317.575	25.199
2,000	317,548	9025.300	312.536	21.640
3.090	312,200	9023-300	307.433	20.130
4.000	307,280	0023.300	300.208	20.633
5,000	307,101	9025,300	296,930	31129
6.000	226,013	9025.000	291.516	31.675
7.000	291,489	9044187	286.008	31.322

_			
_	_		
		_	

	l (nm)	A (nm/2)	b (mm)	h(mm)
1,000	265,134	9050300	280.239	31975
3.000	240.213	0000.300	274,504	30.629
3.090	224,477	0050.000	265.6.40	31.325
4.000	261,620	9050,300	262.659	31.003
5.000	262.632	9050.300	256.532	34,866
6.000	258,506	9030.575	250.270	31.640

bgo Goszaka Tabare PH-CMX-05

12/1/2010

CMS Prototype GEM - Stack

CMS Prototype GEM - Stack

CMS Prototype GEM - Test Box Large Drift Electrode Sample under test

Ongoing Drift Electrode Tests

All I/V scans

RD51 Mini Week July 19-21, 2010

Botto ...

101

GENDU

Honeycomb GEM studies

without the honeycomb between drift and first gem

0

Analysis of GEM spectrum 'X displacement'

Moving the GEM (under x rays) along x,y direction with 0,25mm steps

mm

CMS single mask GEM1

Marco Villa

Single GEM Electrodes

GEM 1

Top – Left Bottom - Right

GEM 2

GEM 3

Drift

GEM1

Anode

Preparing the experimental setup

3.05 mm

2.15 mm

- Gas mixture: Ar/CO_2 70/30
- Gas flow: ~ 5 l/h
- Water content: ~ 100 ppm H_2O
- Radiation source: Cu X–ray tube

Taking spectra

Measuring the gain curve

42cm x 990 cm

RD51 Mini Week J

LGEM PROCESS by single mask method

- 1 Base material 50 µm polyimide foil copperclad
- 2 Photoresist lamination, masking, exposure, development
- ${\bf 3}$ Chemical etching of copper Top
- 4 Polyimide etching in 2 steps
- 5 Electrochemical etching of copper Bot
- 6 Polyimide etching to transform hole geometry
- 7 Photoresist lamination, masking, exposure, development to define
- electrodes Chemical etching of copper Top and
- 8 Bot,
 - Cleaning and electrical test
- -The LGEM are actually in step 5.

CMS High Eta Upgrade Studies Test Beam Plan 2010

CERN

Chambers for June: (SEE Stefano's talk tomorrow) CMS Triple GEM prototype 10 x 10 cm Honeycomb Triple GEM Single Mask GEM

- 1. Measure Efficiency for perpendicular tracks
- 2. Measure Efficiency for inclined tracks with tracking
- 3. Optimization of time resolution
- 4. Tests with Front End electronics for mips
- 5. Space and time resolution

October

- 1. Gas Studies
- 2. Magnetic Field Operation
- 3. Large Prototype test

The setup

- Tracking: Standard GEMs chambers: T1, T2, T3
- Data-taking: GEMs chambers have been tested:

- Gas mixtures used: 1. Ar(70%) + CC2. Ar(45%) + CO2(15%) + CF4(40%)/LHCb Mixture]

Beam Test June 2010 – Preliminary Online Results

Summary

Summary Results for Ar-CO2 70-30 Efficiency scan Eff./Gain

RD51 Mini Week July 19-21, 2010

Summary Results for Ar-CO2-CF4 15-45-40 and gaps 3/2/2/2mm Efficiency scan vs Gain

Summary for the last Eff scan with new spacers 3/1/2/1mm and LHCb gas

CERN

Honeycomb GEM Data analysis continues

STATUS AND OUTLOOK

- 1. Prototype (standard, honeycomb, single mask) tests in lab, beam continue
- 2. Beam tests and analysis 2010 continue
- 3. Detail mechanical design for mock up and proto
- ~ final
- 4. Definition of readout, electronics and its mechanical support
- ongoing
- Services and routing HV, Gas, LV, cooling ongoing
- 5. Mockup realization of detector
- Done, some details missing
- 6. Production of prototype
- expected to be completed by end of June
- 7. Tests of prototype
- 8. Feasibility / simulation studies of integration with CMS trigger and tracking to be done (not yet started)