Jet measurements at the LHC with ATLAS and CMS

Pierre-Antoine Delsart

On behalf of ATLAS and CMS collaborations

Laboratoire de Physique Subatomique et Cosmologie

April 2021

1

Introduction

- · Jets are ubiquitous in hadron collisions
- measurements are crucial to improve :

- understanding of various pertubative/non-perturbative aspects of QCD
- Analysis techniques relying on jets
- A typical example : Jet energy uncertainties due to q/g response differences is often dominating \rightarrow Improving modelling and discrimination is important
- This presentation : selection of 4 very recent jet studies
 - Jet substructure in CMS and ATLAS
 - Double parton scattering in CMS
 - PDF fit with W/Z+jets events in ATLAS

• Measured "generalized angularities" of jets

$$\lambda_{\beta}^{\kappa} = \sum_{i \in constituents} z_{i}^{\kappa} (\frac{\Delta R_{i}}{R})^{\beta}, \quad z_{i} = \frac{p_{Ti}}{p_{Tjet}}$$

- Different (β , κ) values emphasis different aspects of jet structure
- Measured in 2 event samples
 - Dijet : dominated by gluon-jets
 - Z+jets : dominated by quark-jets
 - Samples divided in $\boldsymbol{p}_{_{T}}$ bins
- Observations unfolded to particle level and compared to several generators
- Measured for several jet variants
 - Small R/large R, groomed/ungroomed, ...

LHA : "Les Houches Angularity"

- Data distributions before/after unfolding
 - Detector impact varies according to variable
 - dijet/Zjet ratio indicates q/g discrimination power
- Uncertainties

P-A Delsart

 \rightarrow dominant uncertainties : hadronisation & shower

April 2021

- Comparing main generators
 - MadGraph5+Pythia (nominal)
 - Herwig++

Other comparisons

– Jet variants, variables & p_{τ} bins

Show similar "envelopment" of data by MC predictions

- Synthetic results : showing mean values of observables vs $p_{\scriptscriptstyle T}$ bin
- Include generator variants
 - Pythia8 with CMS tunes
 CP2 & CP5
 - Herwig, angular ordered showering & CH3 tune
 - Sherpa LO or LO+extra jets

- Extensive set of measurements
- Several facts to be noted. Ex:
 - Alternate generators describe gluon-enriched samples better
 - All overestimate the q/g discrimination power
- Study provides handle which can help improve generators and hadronic shower understanding..

Thrust (λ_2^1)

LHA (λ_0^1)

Width (λ_{1}^{1})

 $(p_{T}^{D})^{2} (\lambda_{0}^{2})$

Multiplicity (λ_0^0)

- In QCD parton emissions are characterized by
 - $-\theta$: angle of emission
 - z : momentum fraction
- Plane $(\ln(1/\theta), \ln(1/z))$ is the "Lund jet plane"
 - Very useful to study jet substructure
- Experimental approximation through jet clustering history :
 - From a jet build with C/A jet algorithm, walk back the proto-jet merging history
 - 1 jet \rightarrow n points in Lund plane
 - Many jets → 2D distrib of emissions in Lund plane

let

P-A Delsart

April 2021

- ATLAS measured the Lund Jet plane in dijet events
 - anti- k_{T} , R=0.4, P_T > 675GeV
- Using only tracks from hard vertex associated to jets
 - Rebuilding C/A jets from tracks close to an identified jet
 - Track ↔ charged assignement possible, (while calo cluster ↔ particle too ambiguous)
 - Data unfolded to particle level
 - Compared to prediction using charged particles only
- Lund Jet Plan measurement

April 2021

- Slicing the plane to see regimes of the jet shower
- Comparing MC generators
 - Pythia8 & Pythia8+Powheg
 - Sherpa, varying hadronization : AHADIC & Lund String
 - Herwig, varying PS : Angular-ordered & "Dipole-PS"
- No generator match the data in the full plane. Sensitivity to different effects can be compared, for ex:
 - Hadronisation region better described by stringbased models
 - Angular-ordered PS perfroms well for hard/wide emissions

CMS-PAS-SMP-20-007

- Double Parton Scattering (DPS) contributes to multijets events
 - Important for a better understanding of QCD parton showers
- CMS studied DPS in inclusive 4-jets events
 - Low PU run at $\sqrt{s}=13$ TeV
- Measured several DPS-sensitive observables, ex:
 - $\Delta \Phi_{soft} = |\Phi_3 \Phi_4|$ (between 2 softest jet)
 - $\Delta Y = max(|\eta_i \eta_i|)$ (maximal η separation)
 - ΔS = angle(hardest jet pair, softest jet pair)
- Measured inclusive 4-jets x-sections for 2 samples
 - I : p_⊤(jets) > (35,30,25,20) GeV, II : p_⊤(jets) > (50,30,30,30) GeV
- Also extracted $\sigma_{_{eff}}$ from sample II where
 - $\sigma_{A(B)}$ are inclusive 1-jet x-sections with $p_T > 50(30)$ GeV

P-A Delsart

- Observables are unfolded and compared to many generators x tunes
 - SPS $2 \rightarrow 2$ processes
 - Pythia, Herwig, Herwig++ & various tunes
 - SPS $2 \rightarrow 3,4$ processes
 - MadGraph, PowhegBox, Katie & various tunes
 - DPS processes
 - Pythia, Katie & various tunes
- Each distribution normalized on bins with low DPS sensitivity
- Some shapes well described by all generators, other (ΔY) by none, others only by specific PS option or higher order generators

April 2021

- Observables are unfolded and compared to many generators x tunes
 - SPS $2 \rightarrow 2$ processes
 - Pythia, Herwig, Herwig++ & various tunes
 - SPS $2 \rightarrow 3,4$ processes
 - MadGraph, PowhegBox, Katie & various tunes
 - DPS processes
 - Pythia, Katie & various tunes
- Each distribution normalized on bins with low DPS sensitivity
- Some shapes well described by all generators, other (ΔY) by none, others only by specific PS option or higher order generators

- ΔS distributions both sensitive to DPS and reasonably described
- $f_{_{DPS}}$ (fract of DPS events), and $\sigma_{_{eff}}$ extracted from fit of MC-based ΔS templates
 - Values depend on generators
- Measured inclusive x-sections overestimated by all generators
 - Uncertainties dominated by JES (dedicated JES calib applied to these lowPU/low p_{T} jets)
 - Better estimations with NLO or high multiplicity generators

σ_{eff} measurements (*Preliminary*)

April 2021

STDM-2019-18

19

- Physics processes accessible at LHC can help with aspects of PDF descriptions
 - ATLAS previously used W and Z production at √s=7TeV and HERA data to produce a PDF fit : ATLASepWZ16, resulting in improved description of the s-quark content of the sea quark
- New PDF fit also include W/Z+jets processes (together with HERA and W/Z samples)
 - Samples for √s=8TeV
 - Fit $p_{T}(W)$ for W+jets events
 - Fit |y(jet)| in bins of $p_{\tau}(jets)$ for Z+jets events
 - Quark and gluon distributions fitted in the form :

$$\begin{aligned} xq_i(x) &= A_i x^{B_i} (1-x)^{C_i} P_i(x) \\ xg(x) &= A_g x^{B_g} (1-x)^{C_g} P_g(x) - A'_g x^{B'_g} (1-x)^{C'_g} \\ & \text{P-A DEISART} \end{aligned}$$

April 2021

- Fit results compared to re-fit of ATLASepWZ16 named ATLASepWZ20
 - No tension from additional W/Z+jets input data
- ATLASepWZ20jets improve significantly the W p_T spectrum prediction
 - Up to 20% at high $p_{\scriptscriptstyle T}$

Results differ with other PDF sets on 2 aspects

- Sea-quark density at high x
 - ATLASepWZ16 predicts neg value
 - W/Z+jets data constrains high x \rightarrow retrieve pos values
- Strange quark density
 - Ratio R_s previously expected to be constant over x $R_s = \frac{s + \bar{s}}{\bar{d} + \bar{u}}$

х

- Comparisons to other PDF sets
 - Significant differences at high x (as expected from previous slide)
 - R_s ratio closer to other PDF measurements than ATLASepWZ16

Other jet-related measurements

- In ATLAS
 - Transverse Energy-Energy Correlations and fit of α_s ATLAS-CONF-2020-025
 - soft-drop jet observables STDM-2017-33
 - hadronic event shapes in multijet STDM-2019-02
 - SM results page
- In CMS
 - double parton scattering using Z+jets CMS-PAS-SMP-20-009
 - Hard color-singlet exchange in dijet CMS-SMP-19-006
 - x-section of Z+jets and γ +jets, Z vs jet angle CMS-SMP-19-010
 - differential cross sections Z+c-jet CMS-SMP-19-011
 - SM results page
- See also the LHC EW working group page on JSS measurements

Conclusions

- Various jet measurements regularly performed at LHC
- No generator predicts well all of the various tested aspects of QCD
- But these many tests help to understand and show what works and where
 - Many analysis now publish HEPData and Rivet routine so they're usable by MC generator authors

These studies improve our understanding of QCD ... and thus benefit all LHC analysis