

Jet Fragmentation and Central Exclusive Production at LHCb

Kara Mattioli University of Michigan

On behalf of the LHCb Collaboration

Standard Model at LHC 2021 26 April 2021

QCD at LHCb

The forward region accessible to LHCb offers an opportunity to study QCD processes in an extended region of phase space

Wide range of QCD physics probed at LHCb:

- Jet production: W/Z-tagged, heavy flavor
- Jet fragmentation
- Quarkonia and open heavy flavor production
- Central Exclusive Production (CEP)
- Exotic QCD bound states

QCD at LHCb

The forward region accessible to LHCb offers an opportunity to study QCD processes in a less constrained region of phase space

Wide range of QCD physics probed at LHCb:

- Jet production: W/Z-tagged, heavy flavor
- Jet fragmentation
- Quarkonia and open heavy flavor production
- Central Exclusive Production (CEP)
- Hadron spectroscopy, exotic QCD bound states

Kara Mattioli, University of Michigan Standard Model at LHC 2021

This talk!

The Large Hadron Collider beauty (LHCb) Detector

Forward spectrometer designed to study the production and decays of heavy flavor hadrons

Int. J. Mod. Phys. A 30, 1530022 (2015)

Kara Mattioli, University of Michigan

Standard Model at LHC 2021

The Large Hadron Collider beauty (LHCb) Detector

Full hadronic and electromagnetic calorimetry, tracking, particle identification, and muon ID in $2 < \eta < 5$

Int. J. Mod. Phys. A 30, 1530022 (2015)

Kara Mattioli, University of Michigan

Standard Model at LHC 2021

HeRSCheL: High-Rapidity Shower Counters for LHCb

- Five planes each consisting of four scintillator plates ullet
- Extends pseudorapidity coverage for proton remnant detection to $-10 < \eta < -5$ and $5 < \eta < 10$

Jet Fragmentation

Kara Mattioli, University of Michigan Standard Model at LHC 2021

Jet fragmentation

- Jets are ideal systems in which to study ullethadronization, as they contain the hadrons produced during the high-energy hadronization of a quark or gluon
- Hadron distributions in jets can probe several aspects of hadronization:

Hadronization dynamics - momentum and spatial distributions of hadrons

Flavor dependence of hadronization - hadron distributions in light-quark-dominated (forward Z-tagged jets), gluon-dominated (midrapidity inclusive jets), and heavy flavor jets

Colour neutralization mechanisms

Quarkonium formation mechanisms

Initial state: fragmenting parton

Final states: produced hadrons

Results: Longitudinal Momentum Fraction z

- Distributions are approximately constant as a function of jet p_T at high z
- Higher p_T jets probe lower z values

Results: Transverse Momentum j_T

- Transition from nonperturbative shape at small j_T to a perturbative tail at large j_T indicates sensitivity to both small and large transverse momentum scales
- Needed to constrain transverse momentum dependent (TMD) jet fragmentation functions

Results: Radial distribution r

- Strong dependence on jet p_T at very small r, with more hadrons produced close to the jet axis in high-p_T jets
- Reduced jet p_T dependence at larger values of r could indicate that nonperturbative contributions away from the jet axis do not depend strongly on jet p_T

Results: J/ ψ production in jets

- Prompt J/ ψ production in data disagrees with predictions from fixed-order non-relativistic QCD
- J/ ψ production from beauty hadron decays is well described by Pythia 8

 $z(J/\psi) = \frac{p_{\rm T}(J/\psi)}{p_{\rm T}({\rm jet})}$

Central Exclusive Production

Central Exclusive Production (CEP)

Diffractive process *pp* -> *pXp* in which X is produced in the exchange of colourless objects (photons, pomerons) and the protons remain intact:

CEP production of J/ ψ and ψ (2S) occurs through photon-pomeron fusion:

Cross section at leading order in QCD is proportional to the gluon PDF - can constrain down to $x \approx 2 \times 10^{-6}$ at LHCb

CEP of J/ ψ and ψ (2S) in pp collisions

CEP event selection:

- Two reconstructed muons in $2 < \eta < 4.5$
- Dimuon invariant mass within 65 MeV of the known J/ ψ or ψ (2S) mass
- $p_T^2(\mu^+\mu^-) < 0.8 \text{ GeV}^2$
- Additional event activity veto with HeRSCheL

Effect of HeRSCheL

Kara Mattioli, University of Michigan

Standard Model at LHC 2021

 Background reduced with additional HeRSCheL vetoes of far-forward proton remnants:

 HeRSCheL allows for datadriven determination of the shape of the proton dissociation background

Results: CEP of J/ ψ and ψ (2S) in pp collisions at $\sqrt{s} = 13$ TeV

 Theory comparisons show the importance of NLO perturbative QCD calculations

Results: Photoproduction cross section

• Can calculate photoproduction cross section $\gamma p \rightarrow J/\psi p$ from CEP cross section $pp \rightarrow pJ/\psi p$

• J/ ψ results deviate from the pure power-law extrapolation of H1 data

Summary

- Jet fragmentation measurements can be used to probe several different aspects of hadronization
- Charged hadron distributions in Z-tagged jets at LHCb probe hadronization in predominantly light-quark-initiated jets
- The HeRSCheL detector significantly reduces the background for CEP measurements at LHCb
- CEP measurements of J/ ψ and ψ (2S) mesons at LHCb can constrain the gluon PDF down to x \approx 2 x 10⁻⁶
- More jet fragmentation and CEP measurements to come from LHCb!

Thank you for your attention!

Light-quark-jet tagging with Z bosons

- Quark-gluon LO process dominates at LHC energies, selecting quark-initiated Z-tagged jets
- Most forward Z-tagged jets are quark-initiated, with the majority being light-quark-initiated due to the large-x quark needed for forward production

Comparison to gluon-dominated jets: z

- Gluon-initiated jets have a more steeply falling z distribution than light-quark-initiated jets
- Light-quark-initiated jets have slightly more hadrons produced at higher z values

Comparison to gluon-dominated jets: j_T

Light-quark-initiated jets and gluon-initiated jets have similar j_T distributions

Comparison to gluon-dominated jets: r

Light-quark-initiated jets are more collimated than gluon-initiated jets

Theoretical comparisons: z

Kang, Lee, Terry, Xing PLB 798, 134978 (2019)

- Perturbative QCD calculations agree well with measured z distributions for intermediate z values
- 2D j_{T} vs. z distribution measurements in progress will allow for jet TMD FF extraction

HeRSCheL performance

• $\chi^{\rm 2}_{\rm HRC}$ is a discriminating variable related to event activity in HeRSCheL

Results: $\psi(2S)$ Photoproduction cross section

• ψ (2S) results are consistent with the pure power law extrapolation of H1 data

CEP of J/ ψ in PbPb collisions at $\sqrt{s_{NN}} = 5$ TeV

• CEP of J/ ψ in PbPb collisions probes the nuclear gluon PDF, can probe down to x \approx 10⁻⁵ at LHCb

Preliminary results: CEP of J/ ψ in *PbPb* collisions at $\sqrt{s_{NN}} = 5$ TeV

 Preliminary results compared to several phenomenological predictions