

Alessia Murrone on behalf of the ATLAS and CMS collaborations

INFN Milano SM@LHC 2021, 26/04/2021

Outline

Couplings and cross sections measurements

- Combined measurements (CMS, ATLAS)
- $H \rightarrow \gamma \gamma$ (CMS, ATLAS)
- $V(H \rightarrow WW^*)$ (CMS)
- $H \rightarrow WW^*$ (ATLAS)
- $V(H \rightarrow b\overline{b})$ (ATLAS)
- $H \rightarrow \tau \tau$ (CMS, ATLAS)

Mass measurements

• $H \rightarrow ZZ^*$, $H \rightarrow \gamma\gamma$ (CMS, ATLAS)

CP measurements

- ggH (CMS, ATLAS)
- HVV in VBF production (CMS, ATLAS)
- $H \rightarrow \tau \tau$ (CMS)
- Not covered by this talk:
 - $H \rightarrow ZZ^* \rightarrow 4l$ (backup)
 - $H \rightarrow b\overline{b}$ (backup)
 - CP structure of $t\bar{t}H \rightarrow$ see talk by T. Strebler (backup)
 - $t\bar{t}H \rightarrow$ see talk by T. Strebler
 - EFT interpretations → see talk by T. Calvet (<u>backup</u>)
 - Double Higgs production \rightarrow see talk by F. Monti
 - Rare decays $(H \rightarrow \mu\mu, H \rightarrow Z\gamma, H \rightarrow c\bar{c}) \rightarrow$ see talk by S. Donato
 - STXS vs fully fiducial measurements \rightarrow see talk by N. Berger
 - Differential cross sections measurements \rightarrow see talk by F. Alves

Introduction

- Since the Higgs discovery in 2012 we have performed more and more precise measurements
- Focus on measuring the Higgs properties looking for confirmation of the SM or any possible sign of new physics
- LHC Run 2 finished in 2018 collecting 140 fb⁻¹ per experiment at $\sqrt{s} = 13$ TeV \rightarrow excellent performance of LHC!

Higgs production and decays

Main production processes at the LHC (cross sections at $\sqrt{s} = 13$ TeV for $m_H = 125$ GeV)

- Large BR for $H \rightarrow b\overline{b}$, $H \rightarrow WW^*$ and $H \rightarrow \tau \tau$, however more challenging channels: poor mass resolution, background contamination and jets tagging for $H \rightarrow b\overline{b}$
- Small BR for $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$, however cleaner channels with high mass resolution

Higgs couplings and cross section measurements

Status

Observation during Run 2 Evidence during Run 2

- **Observation** of all main **production processes** (ggF, VBF, WH, ZH and $t\bar{t}H$)
- **Observation** of most of the **bosonic** and all main **fermionic decay modes** $(H \rightarrow ZZ^*, H \rightarrow \gamma\gamma, H \rightarrow WW^*, H \rightarrow b\overline{b}, H \rightarrow \tau\tau)$
- Evidence for $H \rightarrow \mu\mu$ by CMS experiment
- All measurements in agreement with the SM predictions

- Results from ATLAS and CMS combined measurement using $H \rightarrow ZZ^*$, $H \rightarrow \gamma\gamma$, $H \rightarrow WW^*$, $H \rightarrow b\overline{b}$, $H \rightarrow \tau\tau$ (ATLAS-CONF-2020-027, Eur. Phys. J. C 79 (2019) 421)
- $\mu_{if} = \frac{\sigma_i \times B_f}{\sigma_i^{SM} \times B_f^{SM}} \qquad \mu = 1.06 \pm 0.04 \text{ (stat.)} \pm 0.03(\exp.\text{ syst.})^{+0.05}_{-0.04}(\text{sig. th.}) \pm 0.02(\text{bkg th.})$
- Global signal strength from ATLAS combined measurement
- Experimental systematic and theory uncertainties comparable to statistical ones

k-framework

- Coupling strength modifiers introduced to study possible deviations of Higgs couplings from SM
- Use common coupling modifiers for bosons and fermions $\rightarrow k_V, k_F$

Simplified Template Cross Sections (STXS)

Stage 1.2

- From signal strength/total cross sections to simplified template cross sections measurements
- Cross sections measured separately for different production modes in **mutually exclusive kinematic regions** \rightarrow identified using variables like p_T^H , N_{jets} , m_{jj} , p_T^V
- Less model-dependent measurements and minimization of theory uncertainties impact
- No dependency on the Higgs decay channel → makes the combination easier
- Maximization of experimental sensitivity
- Isolate possible BSM effects
- Used different granularity depending on channel sensitivity

ATLAS-CONF-2020-026

- Cross section measured in 27 kinematic regions
- Extensive use of Machine Learning techniques in both analyses
 - Multiclass BDT is used for separating events in different STXS bins, then a binary BDT is trained to improve separation of signal from background events (CMS also uses Deep Neural Networks)
- Dominated by statistical uncertainties but results in agreement with the SM expectations

CMS-PAS-HIG-19-017

$V(H \rightarrow WW^*)(CMS)$

From inclusive measurement

- Targeting VH production
- Different categories according to the final state (from 2 to 4 leptons and 0 or \geq 1 jets)
- Maximum likelihood fit to the reconstructed mass of the Higgs or to the BDT ouptut according to the category
- Measurement in 4 STXS bins
- Results compatible with SM predictions

 $(\sigma_{\rm VBF} \times B_{H \to WW})_{\rm obs} = 0.79^{+0.19}_{-0.16} \, {\rm pb}$ $H \rightarrow WW^*(\text{ATLAS}) (\sigma_{\text{VBF}} \times B_{H \rightarrow WW})_{\text{SM}} = 0.81 \pm 0.02 \text{ pb}$

ATLAS-CONF-2021-014

Uncertaint

 $H_{\rm VBP}$

 Z/γ^*

Other VV

Other H tt/Wt

WW

Mis-Id

- ggF and VBF production cross sections measured
- Required two different flavour and opposite charge leptons in the final state
- Discriminant variable \rightarrow transverse mass of the dilepton system m_T in ggF categories and ٠ **Deep Neural Network output** in VBF category
- **STXS** measurements in 11 kinematic bins ٠
- Systematic uncertainties larger than statistical ones in inclusive measurements and in some ٠ STXS bins, signal theory uncertainties among the most relevant ones
- **Results in agreement with the SM** expectations ۲

200

250

m_⊤ [GeV]

Bkg. 1000

800 600 Total

400 200

50

100

150

$H \rightarrow \tau \tau$

- First **STXS measurements** in $H \rightarrow \tau \tau$ using full hadronic ($\tau_{had} \tau_{had}$) and semileptonic ($\tau_{lep} \tau_{had}$) final states
- Cross section measured only in ggH and qqH bins $\rightarrow H \rightarrow \tau \tau$ most sensitive to ggF with high $p_{\rm T}^{\rm H}$ and VBF
- $\mathbf{Z} \rightarrow \tau \tau$ main irreducible background evaluated with data-driven method, embedding technique
- 2D maximum likelihood fit to reconstructed $m_{ au au}$ and other variable like $p_{\rm T}^{\rm H}$ for ggH and m_{jj} for qqH
- Agreement with SM predictions

CMS-PAS-HIG-19-010

Phys. Rev. D 99 (2019) 072001

	Process	Particle-level selection	$\sigma ~[{ m pb}]$	$\sigma^{\rm SM}$ [pb]
STXS	ggF	$N_{\rm jets} \ge 1, 60 < p_{\rm T}^H < 120 {\rm GeV}, y_H < 2.5$	$1.79 \pm 0.53 (\text{stat.}) \pm 0.74 (\text{syst.})$	0.40 ± 0.05
	ggF	$N_{\rm jets} \ge 1, p_T^H > 120 { m GeV}, y_H < 2.5$	$0.12 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$ $0.25 \pm 0.08 \text{ (stat.)} \pm 0.08 \text{ (syst.)}$	0.14 ± 0.03 0.22 ± 0.01
	V DF	$ g_H < 2.5$	$0.25 \pm 0.08 (\text{stat.}) \pm 0.08 (\text{syst.})$	0.22 ± 0.01

- Results with 36 fb⁻¹ which leads to first ATLAS $H \rightarrow \tau \tau$ observation
- First attempt of STXS measurements with 3 bins
- Agreement with SM predictions

ATLAS

Higgs mass

Mass measurements

ATLAS+CMS Run 1 combination: $m_H = 125.09 \pm 0.24 \text{ GeV}$

measurements at $\sqrt{s} = 7$ and 8 TeV

Phys. Lett. B 805 (2020) 135425

result so far!

Higgs CP

- Test **CP** structure of **Higgs coupling to gluons** using $H \rightarrow ZZ^* \rightarrow 4l$ events
- Use discriminant variable based on **matrix elements** both for separating signal from background events, and CP-even from CP-odd events
- f_{a3}^{ggH} parameter extract from likelihood fit ($a_3 \rightarrow$ CP-odd coupling, $a_2 \rightarrow$ CP-even coupling)

$$f_{a3}^{ggH} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sign}\left(\frac{a_3^{gg}}{a_2^{gg}}\right)$$

$$egin{aligned} c_{gg} &= -rac{1}{2\pilpha_s}a_2^{ ext{gg}} ext{ ,} \ & ilde{c}_{gg} &= -rac{1}{2\pilpha_s}a_3^{ ext{gg}} ext{ .} \end{aligned}$$

- Limited by statistics
- $f_{a3}^{ggH} = -0.53^{+0.51}_{-0.47}$ at 68% C.L., compatible with CP-even SM prediction

- CP structure of **ggH vertex** also measured in ATLAS
- $H \to WW^*$ events
- Exploit both rate and shape informations (signed $\Delta \Phi_{ii}$ between the two leading jets)
- $k_{Agg} / k_{Hgg} = 0.0 \pm 0.4 (\text{stat.}) \pm 0.3 (\text{syst.})$ at 68% C.L. ATLAS-CONF-2020-055

26/04/2021 Alessia Murrone – INFN Milano – SM@LHC

20

18

16

14

12

10

8

6

4

-2∆In

- Test CP violation in VBF production (HVV vertex) using $H \rightarrow \tau \tau$ events
- Parametrisation:

 $|M^{2}| = \left| M_{SM}^{2} \right| + \widetilde{d} \cdot 2 \operatorname{Re}(M_{SM}^{*}M_{CP-odd}) + \left. \widetilde{d}^{2} \right| M_{CP-odd}^{2} |M_{CP-odd}^{2}|$

• Use discriminant variable sensitive to CP-odd contribution → **Optimal Observable**

 $O_1 \coloneqq \frac{2 \operatorname{Re}(M_{SM}^* M_{CP-odd})}{|M_{SM}^2|}$

- BDT for separating VBF Higgs events from background and then maximum likelihood fit to Optimal Observable
- No sign of CP violation $ightarrow \widetilde{d} < -0.090$ and $\widetilde{d} > 0.035$ excluded at 68% C.L.

- Similar analysis in CMS targeting VBF production
- Different parametrisation
- Discriminant variables based on matrix element calculations
- Results consistent with SM
 - $f_{a3} \cos(\phi_{a3}) < -0.27$ and $f_{a3} \cos(\phi_{a3}) > 0.27$ at 68% C.L. in combination with $H \rightarrow 4l$ decay
- *f*_{a3} ratios of cross sections sensitive to CPodd anomalous coupling
 Phys. Rev. D 100 (2019) 112002

CMS-PAS-HIG-20-006

- First direct study of **CP structure of** $H \rightarrow \tau \tau$ **vertex**
 - Analysis exploiting $au_l au_h$ and $au_h au_h$ decay modes
 - Parametrisations of the CP-odd and CP-even couplings using the $\phi_{ au au}$ mixing angle

$$\tan(\phi_{\tau\tau}) = \frac{\tilde{k}_{\tau}}{k_{\tau}} \qquad \begin{array}{c} k_t \to \text{CP-even coupling} \\ \tilde{k}_t \to \text{CP-odd coupling} \end{array}$$

- Discriminating variable ightarrow angle between the au decay planes, ϕ_{CP}
 - Impact parameter method for au decaying into μ^{\pm} or single π
 - Neutral pion method for the other production modes $(a^{\pm} \rightarrow \pi^{\pm}\pi^{0} a^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0} a^{\pm} \rightarrow \pi^{\pm}\pi^{\mp}\pi^{\pm})$

- BDT use to enhance sensitivity
- CP even distinguished from CP odd hypothesis at 3.2 σ
- Mixing angle compatible with 0

Conclusions and outlook

- Most of the ATLAS and CMS Higgs analyses with Run 2 full dataset are public or being finalized
- Many measurements results, a lot of progress regarding analyses techniques
- Higgs physics is entering the precision era
 - Precise measurements of Higgs couplings and other properties
 - Search for deviations from the SM predictions as a sign of BSM physics
- All the results so far are consistent with the Standard Model

- Looking forward to Run 3 and High-Luminosity LHC with expected integrated luminosity of 300 fb⁻¹ and 3000 fb⁻¹
 - Access to 2nd generation fermion couplings
 - Higgs self couplings → explore Higgs potential and look for any sign of new physics

Stay tuned for more results!

BACKUP

- **Higgs candidate** reconstructed as a **single large radius jet** containing at least two b-tagged track-jets (MVA likeihood-based algorithm in the case of ATLAS and Deep Neural Network algorithm in the case of CMS)
- Inclusive, fiducial and differential measurements
- Signal strengths and cross sections retrieved from a binned maximum likelihood fit to the mass of the jet using all SRs and CRs
- Excess in region with $p_T^H > 650$ GeV with a local significance of 2.6 σ seen by CMS
- Results in agreement with SM expectations

ATLAS-CONF-2020-053

EFT interpretations

- STXS measurements in exclusive kinematic regions interpreted with EFT approach
- Allow to look for possibile non-SM contributions to the tensor structure of the Higgs boson couplings

for d > 4.

 $\mathcal{L}_{\rm EFT} = \frac{1}{2}$

- Wilson coefficients expressed in the Warsaw basis and experimentally constrained
- ATLAS EFT combination using $H \rightarrow ZZ$, $H \rightarrow \gamma\gamma$, $H \rightarrow b\overline{b}$

From dimension-6 parameters in Warsaw basis to dimension-6 parameters in fit basis

ATL-PHYS-PUB-2021-010

EFT interpretations

- ATLAS $H \rightarrow WW^* \rightarrow 4l$ and diboson production analyses
- Combination of different inputs, $H \rightarrow WW^*$ production cross section and SM WW differential cross section, use to constrain EFT parameters

Impact of EFT parameters on $H \rightarrow WW^*$ signal strength modifier, normalisation of WW background in ggH and WW differential cross sections

STXS Combination

- $(\sigma_i \times B_{ZZ})B_f/B_{ZZ}$ extracted from the fit
- Level of compatibility with SM $\rightarrow p_{SM} = 95\%$

CP parametrisations

CMS parametrisation

• Scattering amplitude:

• f_{a3} parameter extracted from the fit (ratio of cross sections)

ATLAS parametrisation

Lagrangian in Higgs characterisation framework

$$\begin{split} \mathcal{L}_{eff} &= H \Biggl\{ c_{\alpha} \kappa_{\mathrm{SM}} \left[\frac{1}{2} \frac{2m_{V}^{2}}{v} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu} W^{\mu} \right] \\ &- \frac{1}{4} \frac{1}{\Lambda} s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{1}{2} \frac{1}{\Lambda} s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \Biggr\} \\ \mathcal{L}_{0}^{\mathrm{loop}} &= -\frac{1}{4} \left(\kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + \kappa_{Agg} g_{Hgg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right) H \,, \end{split}$$

- k_{AVV}/k_{HVV} or similar extracted from the fit
- Other parametrisation in VBF $H \rightarrow \tau \tau$ which has CP-odd contribution parametrised by \tilde{d}

$$\tilde{d} = \frac{1}{4} \frac{v}{\Lambda} \frac{k_{AVV}}{k_{SM}} \tan \alpha$$