

Institute of High Energy Physics Chinese Academy of Sciences

Resonant and non-resonant HH channel

SM@LHC

26 April 2021

Fabio Monti

on behalf of the CMS and ATLAS Collaborations

Outline

• Motivation for the HH searches

• Latest results from CMS and ATLAS experiments

• Outlook for Run 3 and HL-LHC

Non-resonant HH search

- HH production is sensitive to the Higgs trilinear coupling λ
- VBF HH is sensitive to c_{2V} coupling

Sensitivity to effective field theory (EFT) couplings

 ggHH production described by 5 diagrams: Modification of total and differential XS

- > Constraints on single couplings, e.g. c_2
- Benchmarks in the 5D parameter space defined to explore the EFT sensitivity <u>JHEP09(2018)057</u>, <u>JHEP03(2020)091</u>

Resonant HH searches

X→HH

- Spin 0 resonances
 - Randall-Sundrum radion
 - 2 H doublets models (2HDM)
- Spin 2 resonances
 - Randall-Sundrum graviton
- + VBF production mechanism

- Spin 0 resonances
 - Next-to-minimal supersimmetry models (NMSSM)

Non-resonant HH searches with 2016 data (~36 fb⁻¹)

No deviations from SM observed

Obs.(exp.) upper limit on σ(HH) 22.2(12.8)×SM from CMS 6.9(10)×SM from ATLAS

Obs. k_{λ} exclusion -11 < k_{λ} < 17 @ 95% C.L. from CMS -5 < k_{λ} < 12 @ 95% C.L. from ATLAS

New results with Run 2 dataset (~140 fb⁻¹) in this presentation

Explored final states

- $H \rightarrow bb$: large BR & bkg rejection from heavy-flavour jet ID
- H final states with leptons, γ, or T_h: efficient bkg rejection

HH \rightarrow bbyy at ATLAS with 139 fb⁻¹ - overview

- Non-resonant + resonant (spin 0) HH search
- Clean but rare final state:
 - bkg from jets(+ $\gamma\gamma$) $\rightarrow \gamma$ and b-jet ID requirements
 - bkg from ttH(γγ) & ttγγ → veto events with e, µ, or ≥6 jets
- BDT classifiers to separate HH signal from main bkgs
- Four-body mass m^{*}_{bbyy} to improve BSM sensitivity
 - 2 m*_{bbyy} × 2 BDT score cat's for non-resonant
 - m^*_{bbyy} selection around resonance mass for X→HH
- Fit m_{yy} for signal extraction

HH→bbyy at ATLAS with 139 fb⁻¹ - results

No deviations from SM observed

JHEP03(2021)257

HH \rightarrow bbyy at CMS with 137 fb⁻¹ - overview

- Non-resonant HH search
- Selections similar to ATLAS bbyy
- MVA strategy to optimize signal-bkg separation
 - BDT to separate ggF or VBF HH from $\gamma(\gamma)$ +jets events —
 - DNN to separate HH from $t\bar{t}H(\gamma\gamma)$ events
- Optimize sensitivity to SM, anomalous k_{λ} , and c_{2V}
 - 3 BDT × 4 m^{*}_{bbyy} categories targeting ggHH
 - 2 m* categories targeting
 VBF HH
- Signal extraction from simultaneous fit of m_{yy} and m_{bb}

JHEP03(2021)257

HH \rightarrow bbyy at CMS with 137 fb⁻¹ - results

- No deviations from SM observed
- **Obs.**(exp.) upper limit on HH signal strength **7.7**(5.2)×SM

Expected sensitivity close to ATLAS bbyy

JHEP03(2021)257

HH→bbyy at CMS with 137 fb⁻¹ - EFT results

Limit on ggHH XS×BR for benchmarks of JHEP04(2016)126

- Obs. limits ranging from 0.3 to 1 fb Ο
- Kinematics variations between benchmarks \rightarrow different upp. limit

JHEP07(2020)108

VBF HH \rightarrow bbbb at ATLAS with 127 fb⁻¹ - overview

- Resonant + non-resonant VBF HH searches
- Signal featuring 4 b-jets + forward-backward jet pair
- Main background from QCD events
 - requirement on b-jet ID & m_{bb} masses & event kinematics
 - data-driven bkg estimation
- b-jet energy regression to improve ~25% m_{bb} mass resolution
- Signal extracted from fit to four-body mass m_{4b}

JHEP07(2020)108

VBF HH \rightarrow bbbb at ATLAS with 127 fb⁻¹ - results

• No deviations from SM observed

$H \rightarrow h_{s}h \rightarrow bb\tau\tau$ at CMS with 137 fb⁻¹ - overview

Online+offline selections targeting $T_h T_h$, eT_h , μT_h

Require ID of exactly 1 or 2 b-jets

- Signature predicted by NMSSM
- Main backgrounds from QCD, tt, and Z+jets

- Optimize signal vs bkgs separation with NN multiclassifier
 - Signal region dominated
 by events with genuine τ_h

CMS-PAS-HIG-20-014

$H \rightarrow h_{s}h \rightarrow bb\tau\tau$ at CMS with 137 fb⁻¹ - results

- No deviations from SM observed
 - Upper limits from 125 fb ($m_H = 240 \text{ GeV}$) to 2.7 fb ($m_H = 3 \text{ TeV}$)

JHEP11(2020)163

Boosted X \rightarrow HH \rightarrow bbt_ht_h at ATLAS with 139 fb⁻¹

- For large m_{χ} non-resolved $T_{h}T_{h}$ (and bb jets) pairs
- Innovative reco and ID of non-resolved T_hT_h pair Large-R jets with jet substructures

Reconstructed HH→bbtt candidate on ATLAS transverse plane

2000

1500

2500

3000

m_x [GeV]

Prospects for HH search

- 3× increase of luminosity at HL-LHC
 - Data equivalent to 3000-4000 fb⁻¹ in ~10 years of operation

 $\sigma(gg \rightarrow HH)$ @14 TeV ~ 37 fb \Rightarrow 10⁵ HH events at 3000 fb⁻¹

Projections to HL-LHC

> Possible discrepancies from SM can arise much earlier!

Summary

- HH physics offers wide physics program at LHC
 - HHVV, tri-H couplings + effective BSM couplings
 - Search for BSM resonances
- Presented some of the first Run 2 results
 - No deviations from SM predictions observed so far
 - New techniques, approaches wrt 2016 analyses
 - More results will be available soon stay tuned!
- Evidence of (SM) HH by the end of HL-LHC
 - Observation?
 - Discrepancies from SM can arise much earlier

Exciting times ahead!

BACKUP

EFT HH benchmarks (JHEP04(2016)126)

12 kinematically representative points in the 5D parameters

space

Benchmark	K,	к.	Co	C	Co
Deneminark	<i>n</i> _A	n _t	<u> </u>	<u> </u>	-2 <u>g</u>
0	7.5	1.0	-1.0	0.0	0.0
1	1.0	1.0	0.5	-0.8	0.6
2	1.0	1.0	-1.5	0.0	-0.8
3	-3.5	1.5	-3.0	0.0	0.0
4	1.0	1.0	0.0	0.8	-1.0
5	2.4	1.0	0.0	0.2	-0.2
6	5.0	1.0	0.0	0.2	-0.2
7	15.0	1.0	0.0	-1.0	1.0
8	1.0	1.0	1.0	-0.6	0.6
9	10.0	1.5	-1.0	0.0	0.0
10	2.4	1.0	0.0	1.0	-1.0
11	15.0	1.0	1.0	0.0	0.0

m_{HH} distribution for the 12 benchmarks

Extract limit on the 12 benchmarks to explore EFT sensitivity

Limits on spin 0 and 2 $X \rightarrow$ HH with 2016 dataset

m^*_{bbyy} advantages

- Reduce effect of jet and photon energy resolution
- ~falling shape for non-resonant bkg
- peak at m_x for resonant HH signal

Impact of resonance width on $X \rightarrow HH$ sensitivity

• ATLAS X \rightarrow HH \rightarrow bb search with 127 fb⁻¹

Limit on spin 0 resonance with mass m_{χ} and narrow width

Limit on spin 0 resonance with mass m_x and broad width

CMS-PAS-HIG-20-004

HH \rightarrow bbZZ(4 ℓ) at CMS with 137 fb⁻¹ of data

- Final state with $4\ell + 2$ b-jets
 - Clean signature over continuum bkg Ο
 - Small BR of ~10⁻⁴ \bigcirc
- BDT classifier to optimize signal separation from bkgs
 - kin. info of l's and jets + b-tag score Ο

sig extraction from **BDT** distribution fit

obs.(exp.) upp. lim. on SM HH XS 30(37)×SM

Events/4 GeV

obs.(exp.) k_{λ} excl. @95%C.L. $-9(-11) < k_{\lambda} < 14(16)$ After preselections bkg dominated by single-H

137 fb⁻¹ (13 TeV)

HH \rightarrow bb2 ℓ at ATLAS with 139 fb⁻¹ of data

- $H \rightarrow W^*W / Z^*Z / \tau \tau$ final states with 2 ℓ
 - lept. and b-jet ID
 selections on m_n and m_{bb}
 Main backgrounds from tt+X
 and Z/Y*+heavy-jets events
- DNN multiclassifier to optimize signal vs bks separation
- Counting experiment in high DNN score region

Trilinear self-coupling in single-H mechanisms

 λ-dependent NLO electroweak corrections to single-H XS

λ measurement from single-double H comb

- Treatment of experimental overlap between H and HH sig regions
- Data interpretation currently with k-framework + k_λ effects