

Higgs and Flavour

Admir Greljo

Outline

• Part I: Flavor physics of the Higgs Boson (2/3)

• Part II: Implications of flavor anomalies for the Higgs Boson (1/3)

Part I

ullet Consider $\mathscr{L}_{\mathrm{SM}}$ sans Yukawa

$$G_{\text{global}}^{\text{SM}}(Y^{u,d,e} = 0) = SU(3)^3 \times SU(3)^2 \times U(1)^5$$

Three identical copies of five gauge representations: q, U, D, l, E

ullet Consider $\mathscr{L}_{\mathrm{SM}}$ sans Yukawa

$$G_{\text{global}}^{\text{SM}}(Y^{u,d,e} = 0) = SU(3)^3 \times SU(3)^2 \times U(1)^5$$

Three identical copies of five gauge representations: q, U, D, l, E

Yukawa sector

$$-\mathcal{L}_{Yuk} = \bar{q}Y^{u}\tilde{H}U + \bar{q}Y^{d}HD + \bar{l}Y^{e}HE$$

Fermion masses and mixings

ullet Consider $\mathscr{L}_{\mathrm{SM}}$ sans Yukawa

$$G_{\text{global}}^{\text{SM}}(Y^{u,d,e} = 0) = SU(3)^3 \times SU(3)^2 \times U(1)^5$$

Three identical copies of five gauge representations: q, U, D, l, E

Yukawa sector

$$-\mathcal{L}_{Yuk} = \bar{q}Y^{u}\tilde{H}U + \bar{q}Y^{d}HD + \bar{l}Y^{e}HE$$

The breaking spurions

$$Y^{u} = (3,\bar{3},1,1,1)$$
 $Y^{d} = (3,1,\bar{3},1,1)$ $Y^{e} = (1,1,1,3,\bar{3})$

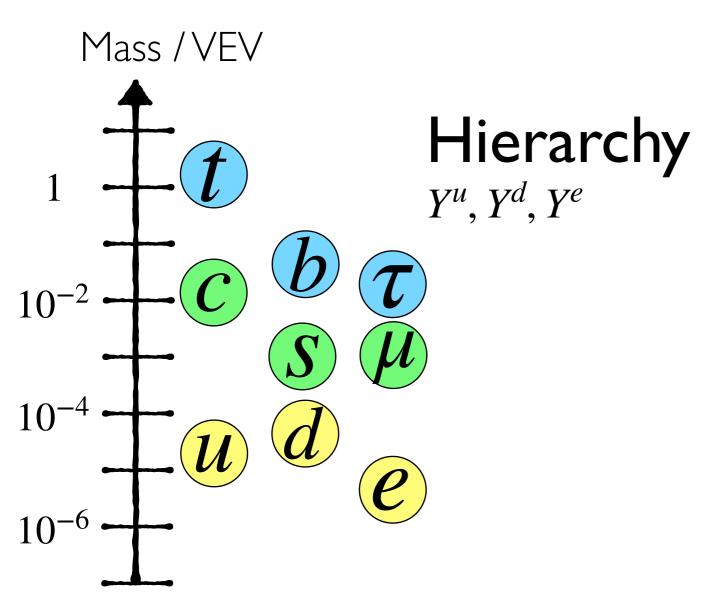
ullet Consider $\mathscr{L}_{\mathrm{SM}}$ sans Yukawa

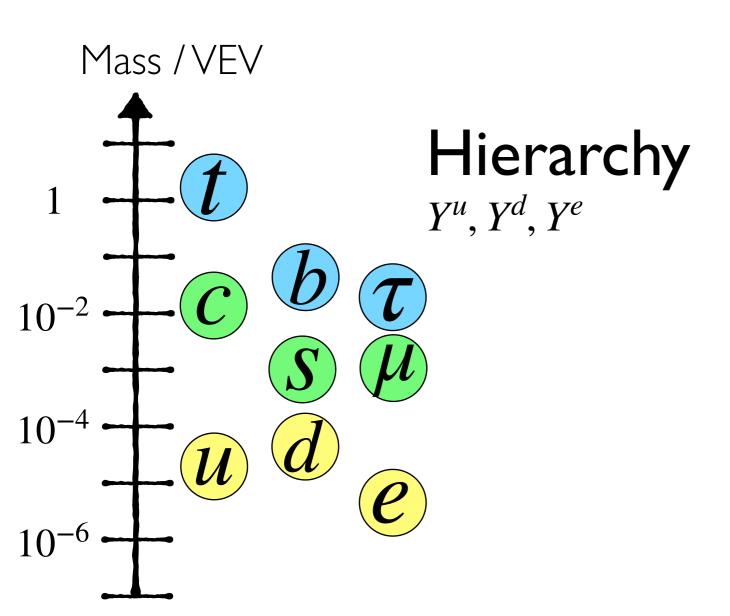
$$G_{\text{global}}^{\text{SM}}(Y^{u,d,e} = 0) = SU(3)^3 \times SU(3)^2 \times U(1)^5$$

Three identical copies of five gauge representations: q, U, D, l, E

Yukawa sector

$$-\mathcal{L}_{Yuk} = \bar{q}Y^{u}\tilde{H}U + \bar{q}Y^{d}HD + \bar{l}Y^{e}HE$$

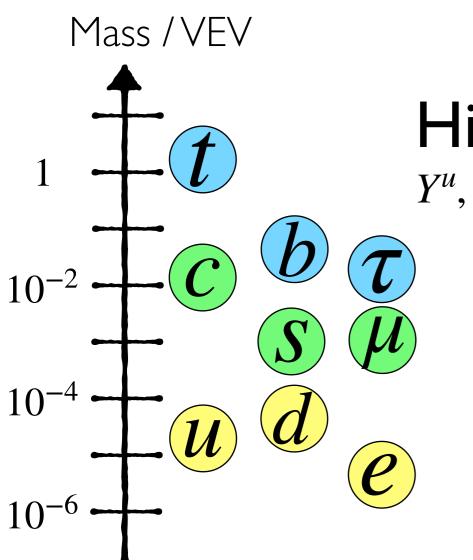

The breaking spurions


$$Y^u = (3,\bar{3},1,1,1)$$
 $Y^d = (3,1,\bar{3},1,1)$ $Y^e = (1,1,1,3,\bar{3})$

The birth of flavor physics

$$G_{\text{global}}^{\text{SM}}(Y^{u,d,e} \neq 0) = U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$$

[Success: No proton decay, no cLFV]



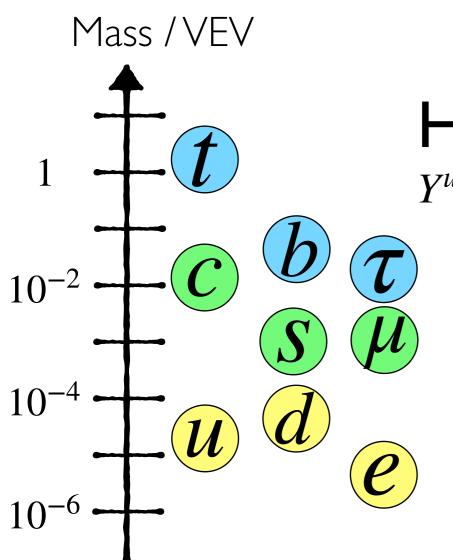
The CKM mixing

$$V_{CKM} \sim \begin{bmatrix} 1 & 0.2 & 0.2^3 \\ 0.2 & 1 & 0.2^2 \\ 0.2^3 & 0.2^2 & 1 \end{bmatrix}$$

Alignment Yu & Yd

Hierarchy

 Y^u, Y^d, Y^e


The CKM mixing

$$V_{CKM} \sim \begin{bmatrix} 1 & 0.2 & 0.2^3 \\ 0.2 & 1 & 0.2^2 \\ 0.2^3 & 0.2^2 & 1 \end{bmatrix}$$

Alignment

 $Y^u & Y^d$

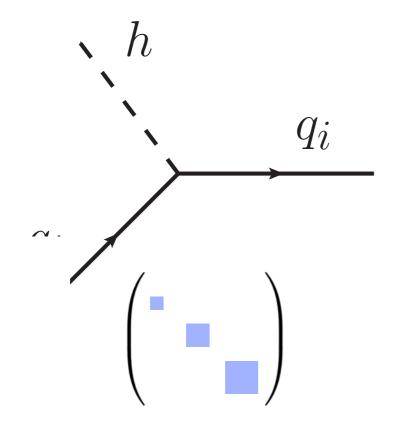
$$\det[Y^dY^{d\dagger}, Y^uY^{u\dagger}] \approx \mathcal{O}(10^{-22})$$

Hierarchy Y^u, Y^d, Y^e

The CKM mixing

$$V_{CKM} \sim \begin{bmatrix} 1 & 0.2 & 0.2^3 \\ 0.2 & 1 & 0.2^2 \\ 0.2^3 & 0.2^2 & 1 \end{bmatrix}$$

Alignment $Y^u & Y^d$


 $\det[Y^dY^{d\dagger}, Y^uY^{u\dagger}] \approx \mathcal{O}(10^{-22})$

In the SM

$$H_0 \to v + h$$

$$\mathcal{L}_{\text{Yuk}} = -\frac{h}{v} \left(m_e \,\overline{e_L} \, e_R + m_\mu \,\overline{\mu_L} \,\mu_R + m_\tau \,\overline{\tau_L} \,\tau_R \right. \\ \left. + m_u \,\overline{u_L} \,u_R + m_c \,\overline{c_L} \,c_R + m_t \,\overline{t_L} \,t_R + m_d \,\overline{d_L} \,d_R + m_s \,\overline{s_L} \,s_R + m_b \,\overline{b_L} \,b_R + \text{h.c.} \right)$$

Diagonal

Non-universal

Proportional to the fermion masses

Real in the mass basis

Beyond the SM

New sources of flavour and (or) EWS breaking would change these predictions!

Beyond the SM

New sources of flavour and (or) EWS breaking would change these predictions!

• 2HDM example

Add another Higgs doublet H_i where i = 1,2

$$-\mathcal{L}_{Yuk} = \bar{f} Y_i^f H_i F$$

$$M^f = Y_1^f v_1 + Y_2^f v_2$$

$$h = h_1 \cos \alpha + h_2 \sin \alpha$$

In general, the Higgs boson can have couplings that are neither proportional to the mass matrix nor diagonal, nor CP conserving.

Beyond the SM

New sources of flavour and (or) EWS breaking would change these predictions!

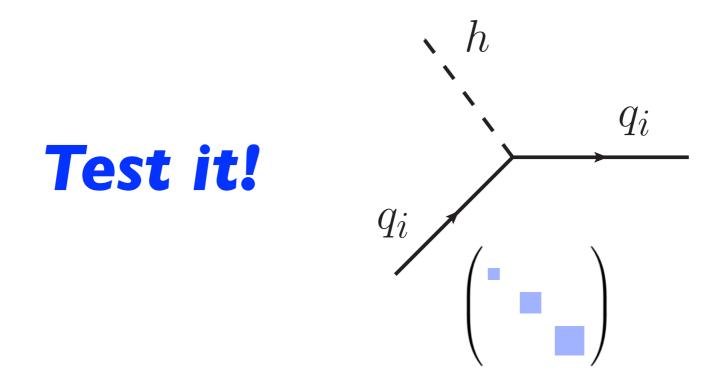
2HDM example

Add another Higgs doublet H_i where i = 1,2

$$-\mathcal{L}_{Yuk} = \bar{f} Y_i^f H_i F$$

$$M^f = Y_1^f v_1 + Y_2^f v_2$$

$$h = h_1 \cos \alpha + h_2 \sin \alpha$$


SM EFT example

Add a dim-6 SM EFT correction

$$-\mathcal{L}_{Yuk} = \bar{f} Y_1^f HF + \frac{1}{\Lambda^2} \bar{f} Y_2^f HF H^{\dagger} H$$

$$M^f \propto Y_1^f + Y_2^f \frac{v^2}{\Lambda^2} \qquad h: Y_1^f + 3 Y_2^f \frac{v^2}{\Lambda^2}$$

In general, the Higgs boson can have couplings that are neither proportional to the mass matrix nor diagonal, nor CP conserving.

- Diagonal couplings?
- Off-diagonal couplings?
- CP violation?

Diagonal couplings

$$\kappa_t = 1.43 \pm 0.23,$$

$$\kappa_s < 65$$
,

$$\kappa_{\tau} = 0.88 \pm 0.13,$$

$$\kappa_b = 0.60 \pm 0.18,$$

$$\kappa_d < 1.4 \cdot 10^3,$$

$$\kappa_{\mu} = 0.2^{+1.2}_{-0.2},$$

$$\kappa_c \lesssim 6.2$$
,

$$\kappa_u < 3.0 \cdot 10^3,$$

$$\kappa_e \lesssim 630.$$

Diagonal couplings

$$\kappa_t = 1.43 \pm 0.23,$$

$$\kappa_s < 65$$
,

$$\kappa_{\tau} = 0.88 \pm 0.13,$$

$$\kappa_b = 0.60 \pm 0.18,$$

$$\kappa_d < 1.4 \cdot 10^3,$$

$$\kappa_{\mu} = 0.2^{+1.2}_{-0.2},$$

- Only third family Yukawas are observed.

$$\kappa_c \lesssim 6.2$$
,

$$\kappa_u < 3.0 \cdot 10^3,$$

$$\kappa_e \lesssim 630.$$

Diagonal couplings

$$\kappa_t = 1.43 \pm 0.23,$$

$$\kappa_s < 65$$
,

$$\kappa_{\tau} = 0.88 \pm 0.13,$$

$$\kappa_b = 0.60 \pm 0.18,$$

$$\kappa_d < 1.4 \cdot 10^3,$$

$$\kappa_{\mu} = 0.2^{+1.2}_{-0.2},$$

$$\kappa_c \lesssim 6.2$$
,

$$\kappa_u < 3.0 \cdot 10^3,$$

$$\kappa_e \lesssim 630.$$

- Only third family Yukawas are observed.
- Light Yukawa is a pressing issue! Q: Is the same mechanism at work?

Diagonal couplings

$$\kappa_t = 1.43 \pm 0.23,$$

$$\kappa_s < 65$$
,

$$\kappa_{\tau} = 0.88 \pm 0.13,$$

$$\kappa_b = 0.60 \pm 0.18,$$

$$\kappa_d < 1.4 \cdot 10^3,$$

$$\kappa_{\mu} = 0.2^{+1.2}_{-0.2},$$

$$\kappa_c \lesssim 6.2$$
,

$$\kappa_u < 3.0 \cdot 10^3,$$

$$\kappa_e \lesssim 630.$$

1610.07922, Section IV.6.2.c, LHC Higgs Cross Section Working Group

- Only third family Yukawas are observed.
- Light Yukawa is a pressing issue! Q: Is the same mechanism at work?

Charm Yukawa

- Exclusive Higgs decays to mesons:
 1407.6695, 1406.1722, 1505.03870
- Vh associated production:
 1503.00290,1505.06689,1505.06689
- Higgs differential distributions: 1606.09253, 1606.09621

HL-LHC sensitivity
$$\mathcal{O}(y_c)$$

Diagonal couplings

$$\kappa_t = 1.43 \pm 0.23,$$

$$\kappa_s < 65$$
,

$$\kappa_{\tau} = 0.88 \pm 0.13,$$

$$\kappa_b = 0.60 \pm 0.18,$$

$$\kappa_d < 1.4 \cdot 10^3,$$

$$\kappa_{\mu} = 0.2^{+1.2}_{-0.2},$$

$$\kappa_c \lesssim 6.2$$
,

$$\kappa_u < 3.0 \cdot 10^3$$

$$\kappa_e \lesssim 630.$$

1610.07922, Section IV.6.2.c, LHC Higgs Cross Section Working Group

- Only third family Yukawas are observed.
- Light Yukawa is a pressing issue! Q: Is the same mechanism at work?

Charm Yukawa

- Exclusive Higgs decays to mesons: 1407.6695, 1406.1722, 1505.03870
- Vh associated production:
 1503.00290,1505.06689;1505.06689
- Higgs differential distributions: 1606.09253, 1606.09621

HL-LHC sensitivity $\mathcal{O}(y_c)$

Muon Yukawa

 1.2 ± 0.6 , ATLAS 2007.07830.

 1.2 ± 0.4 , CMS CMS-PAS-HIG-19-006.

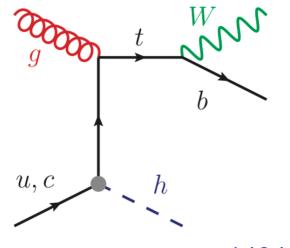
The observation at the end of Run 3?

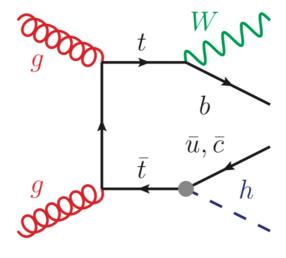
Off-diagonal couplings

Quarks

- Neutral meson mixing provide stringent constraints

Off-diagonal couplings


Quarks


- Neutral meson mixing provide stringent constraints

$$K - \bar{K}$$
 $Br(h \rightarrow s\bar{d} + d\bar{s}) < 4.2 \times 10^{-7}$
 $D - \bar{D}$ $Br(h \rightarrow c\bar{u} + u\bar{c}) < 3.7 \times 10^{-6}$
 $B - \bar{B}$ $Br(h \rightarrow b\bar{d} + d\bar{b}) < 1.7 \times 10^{-5}$
 $B_s - \bar{B}_s$ $Br(h \rightarrow b\bar{s} + s\bar{b}) < 1.3 \times 10^{-3}$

1610.07922, Section IV.6.2.c, LHC Higgs Cross Section Working Group

- Top decays and tH production

$$Br(t \to ch) < 0.11 \%$$
ATLAS, 1812.11568

$$Br(t \to ch) < 0.47 \%$$

1404.1278

Off-diagonal couplings

Leptons

 $\mu \to e \gamma$ implies stringent constraints on $h \to \mu e$

Off-diagonal couplings

Leptons

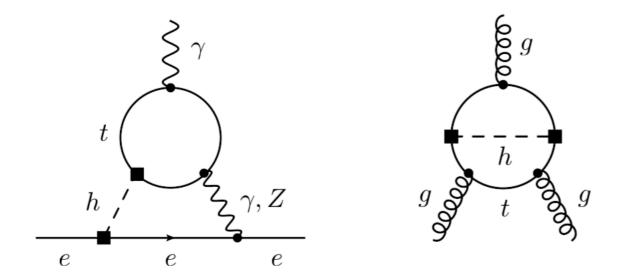
 $\mu \to e \gamma$ implies stringent constraints on $h \to \mu e$

ullet For $h o au \mu$ and h o au e the best constraints are from Higgs decays

$$Br(h \to \tau \mu) < 0.25 \%$$

$$Br(h \to \tau e) < 0.61 \%$$

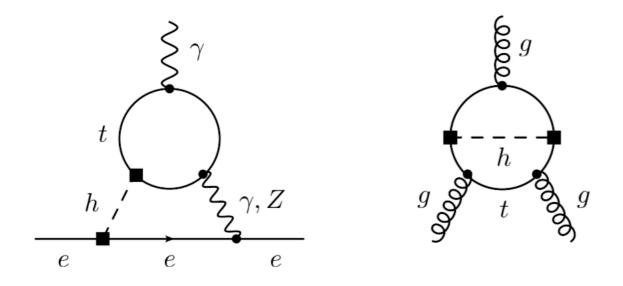
$$Br(h \to \tau \mu) < 0.28 \%$$


$$Br(h \to \tau e) < 0.47 \%$$

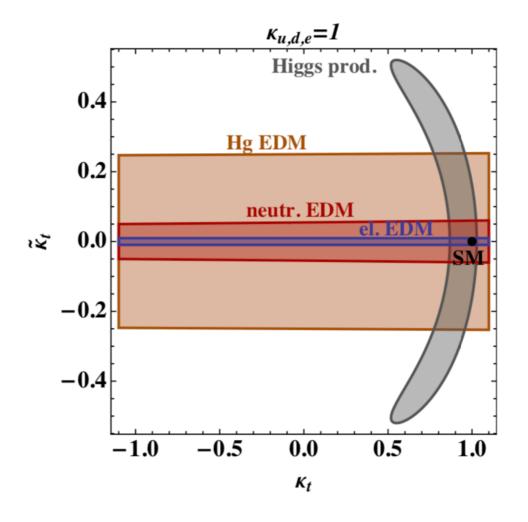
CMS 1712.07173

ATLAS 1907.06131

CP violation


• EDMs

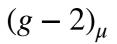
1310.1385, 1503.04830, 1510.00725

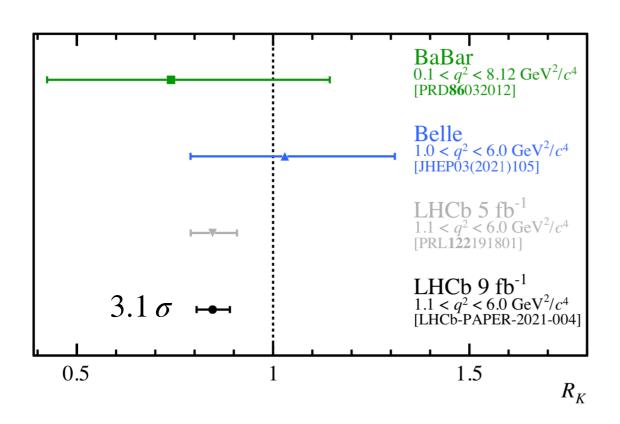

CP violation

• EDMs

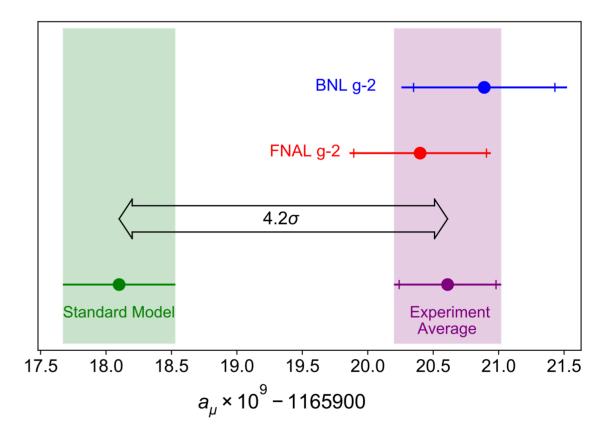
1310.1385, 1503.04830, 1510.00725

• EDMs versus LHC interplay

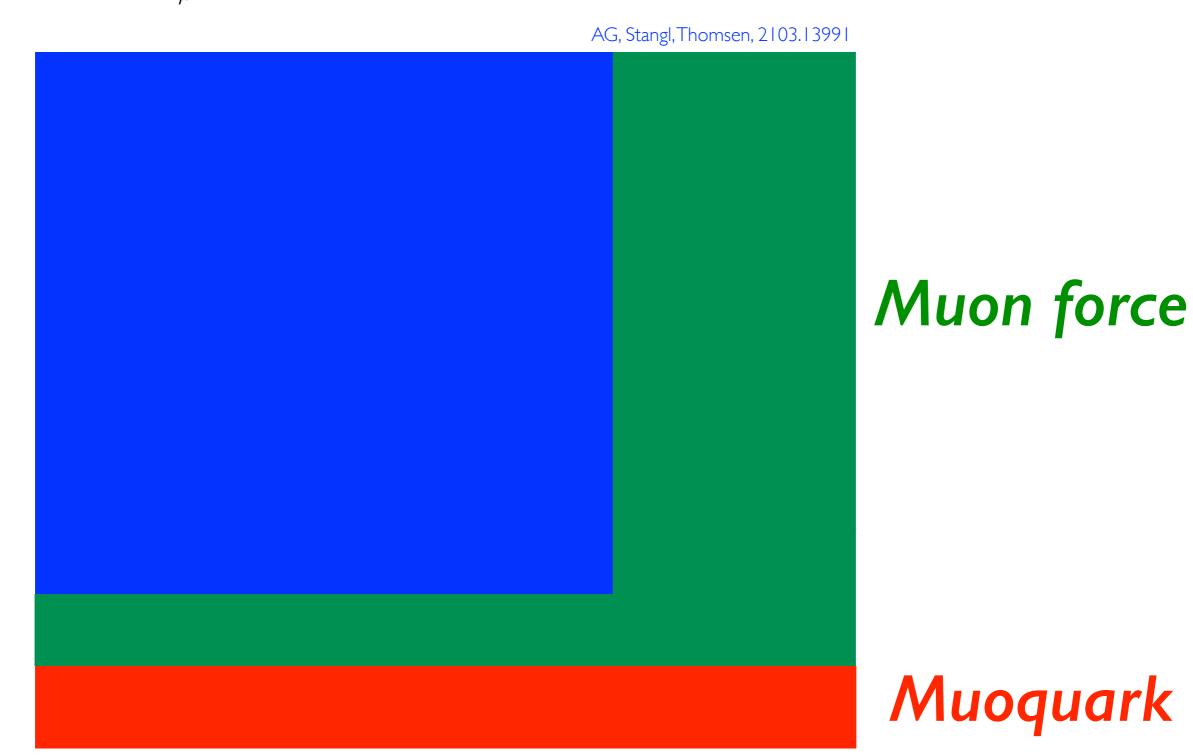



1310.1385

Part II


Hot topic in flavour physics: Muon Anomalies

$$\frac{b \to s\mu\mu}{b \to see}$$


LHCb, CERN, 2103.11769

The Muon g-2, Fermilab, 2104.03281

• $SM \times U(1)_{B-3L_{\mu}}$ gauge symmetry

SM

• $SM \times U(1)_{B-3L_{\mu}}$ gauge symmetry

SM

AG, Stangl, Thomsen, 2103.13991

	AG, Stangl, I homsen, 2103.1399				
	SU(3) _e	SU(2)L	U(1) _Y		
QL	3	2	1/6		
L	1	2	-1/2		
UR	3	ı	2/3		
dR	3	l	-1/3		
V _R	1	l	0		
$\mathcal{C}_{\mathcal{R}}$	l	1	-1		
H	1	2	1/2		

Muon force

Muoquark

• $SM \times U(1)_{B-3L_{\mu}}$ gauge symmetry

SM

AC Stand Thomson 2103 13991

	AG, Stangl, Thomsen, 2103.13991				
	SU(3) _e	SU(2)L	U(1) _Y	U(1) B-3 Lm	
QL	3	2	1/6	1/3	
L	1	2	-1/2	₹0,-3,0g	
UR	3	ı	2/3	1/3	
_ dr	3	l	-1/3	1/3	
V_R	1	ı	0	₹0,-3,0g	
e _R	l	l	-1	₹0,-3,0g	
+	1	2	1/2	0	
豆	1	l	0	3	

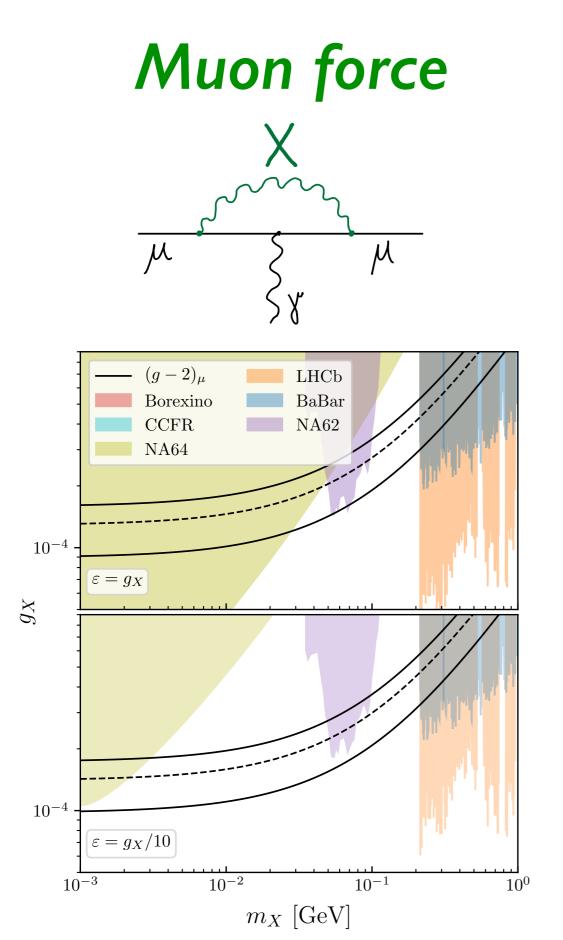
Muon force

* Minimal type-I seesaw for the neutrino masses

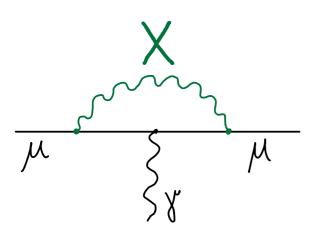
Muoquark

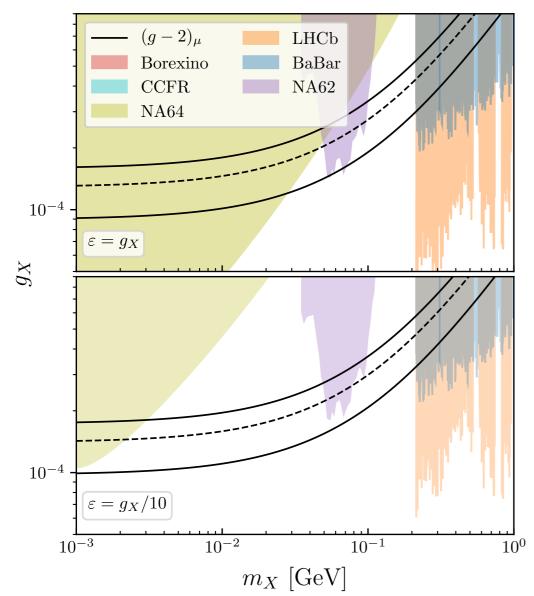
• $SM \times U(1)_{B-3L_{\mu}}$ gauge symmetry

SM

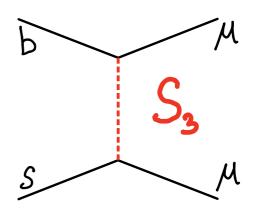

AG, Stangl, Thomsen, 2103.13991

	SU(3)c	SU(2)L	U(1) _Y	U(1) B-3 Lm
Q_{L}	3	2	1/6	1/3
L	1	2	-1/2	₹0,-3,03
UR	3		2/3	1/3
clr	3		-1/3	1/3
V_R	1		0	₹0,-3,0g
$\mathcal{C}_{\mathcal{R}}$	l		-1	₹0,-3,03
+	1	2	1/2	0
更			0	3
S_3	3	3	1/3	8/3


Muon force

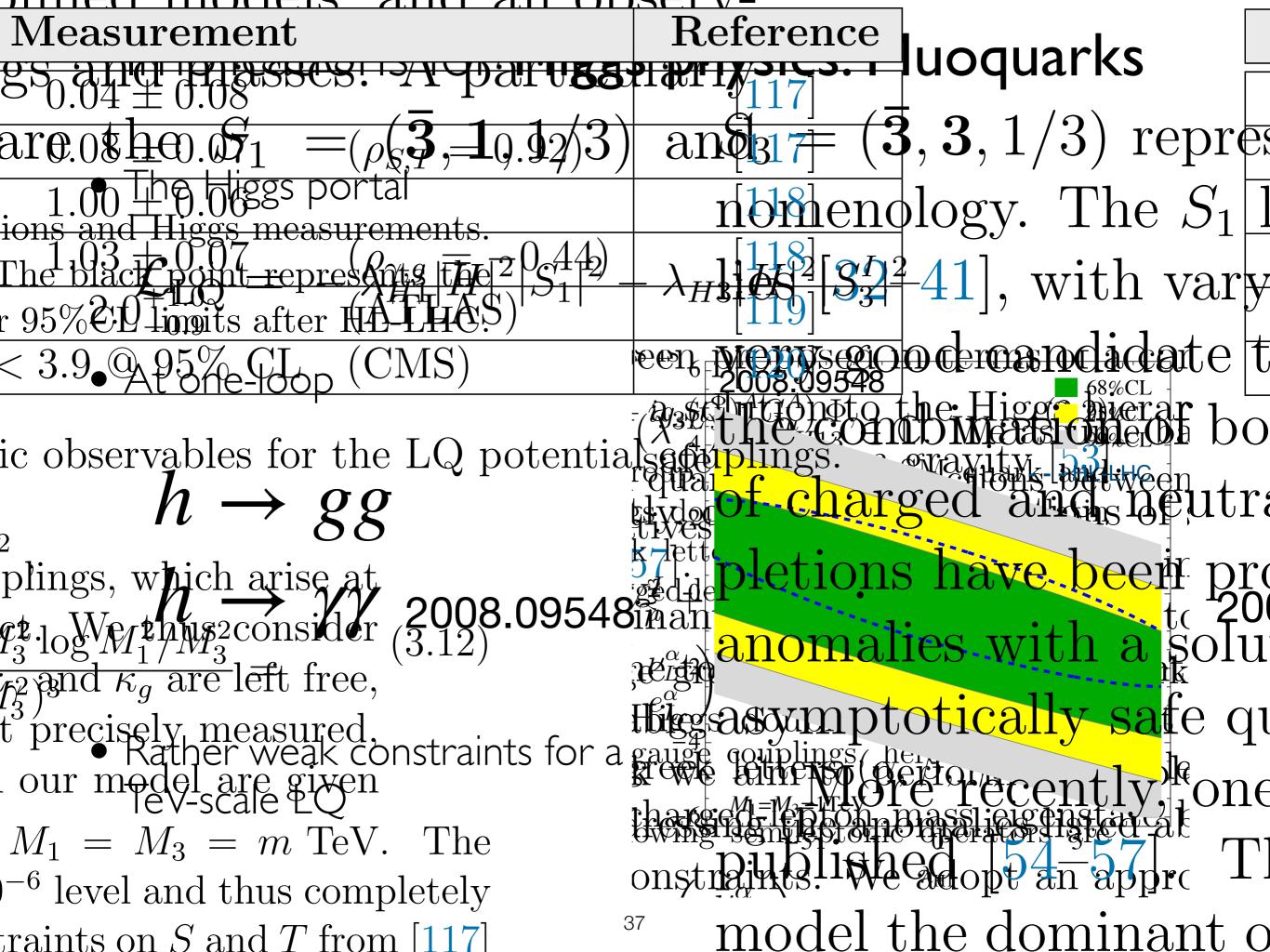

Muoquark

$$\mathcal{L} \supset Q_L L_L^{(2)} S_3$$



Muon force

Muoquark


- What $U(1)_{X_{\mu}}$ does to a leptoquark?
 - Interacts only with muons

$$\mathcal{L} \supset Q_L L_L^{(2)} S_3$$

No proton decay up to dim-6

Juoquarks gs and masses: A parusse $\frac{1}{3}$ (3, 3, 1/3) represent $are.0$heo.6 = (\rho(3.10.12)$ the higgs portal <u>nbinenology</u>. The S_1 $H^{\frac{3}{2}}[S_3^2] + 41]$, with vary r 95% EV Timpits after HALLAC very good candidate t < 3.9ic observables for the LQ potential couplings. of charged and neutra $h \rightarrow gg$ pletions have been pro plings, which arise at 2008.09548 1×1008 1×10 anomalies with a solu $\frac{1}{2}$ and $\frac{1}{\kappa_g}$ are left free, asymptotically safe qu t³ precisely measured, our model are given More recently, one $M_1 = M_3 = m \text{ TeV.}$ The published [54–57]. T 0^{-6} level and thus completely model the dominant of traints on S and T from [117]

Implications for Higgs physics: Muon force

$$V_{H\Phi} = -\mu_H^2 |H|^2 - \mu_\Phi^2 |\Phi|^2 + \frac{1}{2}\lambda_H |H|^4 + \frac{1}{4}\lambda_\Phi |\Phi|^4 + \lambda_{\Phi H} |\Phi|^2 |H|^2$$

• From $(g-2)_{\mu}$ we have $g_X \sim 10^{-4}$ and $m_X \in [10,200]\,{
m MeV}$.

$$v_{\Phi} = \sqrt{2}m_X/|q_{\Phi}|g_X \sim 60 \,\mathrm{GeV}/|q_{\Phi}|$$

Implications for Higgs physics: Muon force

$$V_{H\Phi} = -\mu_H^2 |H|^2 - \mu_\Phi^2 |\Phi|^2 + \frac{1}{2}\lambda_H |H|^4 + \frac{1}{4}\lambda_\Phi |\Phi|^4 + \lambda_{\Phi H} |\Phi|^2 |H|^2$$

• From $(g-2)_{\mu}$ we have $g_X \sim 10^{-4}$ and $m_X \in [10,200] \, \mathrm{MeV}$.

$$v_{\Phi} = \sqrt{2}m_X/|q_{\Phi}|g_X \sim 60 \,\mathrm{GeV}/|q_{\Phi}|$$

• Mixing between real scalars h and ϕ .

$$g_X: X \to \nu_{\mu} \bar{\nu}_{\mu}$$
 $\lambda_{\Phi}: \phi \to XX$
 $h \to inv$

• This scenario has a chance to leave observable imprints in the overall Higgs couplings or in the invisible Higgs decays.

Conclusions

- Flavor physics of the Higgs Boson is a rich subject
 - Diagonal couplings
 - Off-diagonal couplings
 - CP violation
- Flavor anomalies: Model specific predictions for Higgs physics