NP implications of B-anomalies & connections with high-pT

David Marzocca INFN Trieste

$\mathbf{R}_{\mathbf{K}}$ and the other $b \rightarrow s \mu^+ \mu^-$ probes

Compilation of "clean" observables

The global significance of the **New Physics hypothesis** in b \rightarrow sµ+µ- (very conservative SM uncertainties estimate) is:

Lancierini, Isidori, Owen, Serra [2104.05631]

3.9σ

Angular observables and Br's

Specific NP hypothesis, with less conservative estimates of SM uncertainties show significances in the 5.9 - 7σ range. Altmannshofera and Staub [2103.13370], Algueró et al. [2104.08921], Geng et al. [2103.12738]

Very good solution to all these deviations with:

 $\mathcal{L}_{eff} \supset \frac{e^{-\alpha_{bs}}}{\Lambda_{bs}^{2}} (\bar{s}_{L} \gamma^{\mu} b_{L}) (\bar{\mu}_{L} \gamma_{\mu} \mu_{L}) + h.c.$ Best-fit for $\alpha_{bs}=0$: $\Lambda_{bs} \approx 37 \text{ TeV}$

From flavour to High-pt: EFT

The same contact interactions can be probed at both high and low energies

From RK anomalies: $\frac{1}{\Lambda_{bs\mu}^2} (\bar{s}_L \gamma_\mu b_L) (\bar{\mu}_L \gamma^\mu \mu_L)$ $\Lambda_{bs\mu} \sim 37 \text{ TeV}$

 $\Lambda_{bs\mu} > 2.4$ (4.1) TeV

[Greljo, DM 1704.09015] ATLAS search ATLAS-CONF-2021-012

- If $m_{EW} < E_{\mu\mu} \ll M_{NP}$ we can use an EFT approach:
- Present (future 3ab⁻¹) limits from LHC:
 - [See also Kohda et al. 1803.07492, Afik et al. 1811.07920]
- No hope to see this directly.... but...

From flavour to High-p_T: EFT and MFV

In Minimal Flavor Violation the b-s contact interaction is suppressed by Vts compared to flavor-diagonal ones: D'Ambrosio, Giudice, Isidori, Strumia [hep-ph/0207036]

$$\mathcal{J} = \frac{C_{ij}^{p}}{\nabla^2} \left[\overline{d}_i^i \mathcal{X}_p \mathcal{A}_i^j \right] \left(\overline{p}_l \mathcal{Y}_p \mathcal{M}_l \right)$$

$$|C_{lsp}| \sim |C_{lsp}| \sqrt{V_{ts}} |$$
 Coeff. of

$$C_{bs\mu} = \frac{v^2}{\Lambda_{bs\mu}^2} \text{ is fixed by RK fits}$$

$$C_{D\mu}| \sim 1.$$

$$\Lambda_{D\mu} \sim 6.$$

[Greljo, DM 1704.09015]

Coeff. of flavor-diagonal (qi-qi-µ-µ) operators

> $.4 \times 10^{-3}$.4 TeV

The MFV solution is in tension with LHC Drell-Yan!

Tree-level Mediators: Z'

Altmannshofer et al 1403.1269, Allanach et al. 1904.10954, 2009.02197, 2103.12056, etc...

B_s-mixing induced at tree-level:

$$\frac{g_{bs}^{z}}{M_{z'}^{z}} < \frac{1}{(zzo TeV)^{2}}$$

+ imposing R_{K} : $\gamma_{LS} \lesssim 0.03 \, \gamma_{\mu\nu}$

Saturating this and for $g_{\mu\mu} \sim \sqrt{4\pi}$:

Upper bound on $M_{z'}$ $M_{z'}$ ≤ 22 TeV

This can be searched in high-pT Drell-Yan. For **MFV**-like flavor structure (e.g. $U(1)_{B-L}$):

This bound is avoided if Z' coupled mainly to 3rd gen: e.g. $U(1)_{B3-L2}$ or via mixing with vector-like quarks. Allanach 2009.02197, Altmannshofer et al 1403.1269

Tree-level Mediators: Leptoquarks

Bs-mixing is only loop-induced.

$$\mathcal{L}_{\text{int}} \supset (\lambda^{3L})_{i\alpha} \bar{q}_i^c \epsilon \sigma^I \ell_{\alpha} S_3^I + \text{h.c.}$$

$$\mathcal{L}_{\text{eff}} \supset \frac{\lambda_{s\ell}^{3L*} \lambda_{b\ell}^{3L}}{M_3^2} (\bar{s}_L \gamma^\mu b_L) (\bar{\mu}_L \gamma_\mu \mu_L) + h.c.$$

TeV-scale LQs can fit the anomaly with small couplings.

No show-stoppers to fit the $\mathbf{R}_{\mathbf{K}}$ anomalies with LQs at tree-level.

Charged-current B-anomalies $b \rightarrow c \tau v \text{ vs. } b \rightarrow c \ell v$

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(B^0 \to D^{(*)+}\tau\nu)}{\mathcal{B}(B^0 \to D^{(*)+}\ell\nu)}$$
$$\ell = \mu,$$

Tree-level SM process with V_{cb} suppression.

20% enhancements since 2012 cor4gister 11 above the SM predictions

B

~ 3σ from the SM (3.7 σ when combined)

While μ /e universality well tested

 $R(D)^{\mu/e} = 0.995 \pm 0.045$ Belle - [1510.03657]

Low-energy New Physics interpretations:

$$\mathcal{L}_{BSM} = \frac{2c}{\Lambda^2} (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_\tau) + h$$
$$\Lambda / \sqrt{c} \sim 4.5 \text{ TeV}$$

Other solutions with tensor and scalar operators also fit well data.

From R_K to $R(D^{(*)})$ anomalies

A large coupling to the t induces an RGenhanced lepton-flavor universal contribution proportional to C_{9^u} Capdevila et al. 1712.01919, Crivellin et al. 1807.02068

Correct size obtained with the preferred value of

David Marzocca (INFN)

From $R(D^{(*)})$ to mono- τ tails

Greljo, Camalich, Ruiz-Alvarez [1811.07920]

David Marzocca (INFN)

SM@LHC 2021 - 28/04/2021

The mono-tau tail is directly sensitive to the same operator (or mediator) contributing to $R(D^{(*)})$

Mono-tau tails at LHC

[DM, Min, Son, 2008.07541]

Optimise the sensitivity to $b \rightarrow c \tau v$ operators requiring **b-jet tagging**:

Improves the Signal/Background ratio

Selects only operators with b-quark

95%CL limits

By comparing 3rd and 4th

columns:

b-tagging improves the limits by at least ~30%

EFT coeff.	CMS (\mathcal{L} =35.9 fb ⁻¹)	$ au u$ - \mathcal{L} =300 fb ⁻¹	$ au u b$ - $\mathcal L$
$ C_{SL}^{11} $	$1.5 imes 10^{-3}$	1.1×10^{-3}	
$ C_{SL}^{12} $	$9.8 imes 10^{-3}$	$7.5 imes 10^{-3}$	
$ C_{SL}^{13} $	2.2	1.7	
$ C_{SL}^{21} $	$1.6 imes 10^{-2}$	1.2×10^{-2}	
$ C_{SL}^{22} $	$9.8 imes10^{-3}$	7.5×10^{-3}	
$\left C_{SL}^{23} ight $	0.33	0.26	(
$ C_{SL}^{23} = 4 C_T^{23} $	0.31	0.24	(
$ C_{SR}^{11} $	$1.5 imes 10^{-3}$	1.1×10^{-3}	
$\left C_{SR}^{12} ight $	$9.9 imes10^{-3}$	$7.5 imes 10^{-3}$	
$\left C_{SR}^{13} ight $	2.2	1.7	
$\left C_{SR}^{21} ight $	$1.6 imes 10^{-2}$	$1.2 imes 10^{-2}$	
$\left C_{SR}^{22} ight $	$9.7 imes10^{-3}$	$7.5 imes 10^{-3}$	
$\left C_{SR}^{23} ight $	0.33	0.26	(
$ C_{T}^{11} $	$8.5 imes 10^{-4}$	$6.5 imes 10^{-4}$	
$ C_{T}^{12} $	$5.5 imes 10^{-3}$	4.2×10^{-3}	
$ C_T^{13} $	1.3	0.97	(
$ C_{T}^{21} $	$9.4 imes 10^{-3}$	$7.2 imes 10^{-3}$	
$ C_{T}^{22} $	$5.8 imes10^{-3}$	$4.5 imes 10^{-3}$	
$ C_{T}^{23} $	0.20	0.16	0
C_{VLL}^{11}	$[-0.40, 3.2] \times 10^{-3}$	$3.1 imes 10^{-4}$	
C_{VLL}^{12}	$[-0.78, 1.1] imes 10^{-2}$	9.0×10^{-3}	
C^{13}_{VLL}	[-2.1, 2.1]	1.6	(
C_{VLL}^{21}	$[-1.4, 1.8] imes 10^{-2}$	$1.4 imes 10^{-2}$	
C_{VLL}^{22}	$[-0.73, 1.2] \times 10^{-2}$	$1.5 imes 10^{-3}$	
C_{VLL}^{23}	$\left[-0.33, 0.34\right]$	[-0.25, 0.26]	[-0.]
$ C_{VRL}^{11} $	$1.5 imes 10^{-3}$	1.1×10^{-3}	
$\left C_{VRL}^{12} ight $	$9.6 imes10^{-3}$	7.3×10^{-3}	
$\left C_{VRL}^{13} ight $	2.1	1.6	(
$ C_{VRL}^{21} $	$1.6 imes 10^{-2}$	1.2×10^{-2}	
$ C_{VRL}^{22} $	$9.6 imes10^{-3}$	-7.4×10^{-3}	
$ C_{VRL}^{23} $	0.33	0.26	(
·			

Di-tau high-pr tail

If $R(D^{(*)})$ is addressed by this operator

$$\left(\bar{b}_{L}^{\gamma} \vartheta_{\alpha}^{\gamma} C_{L}\right) \left(\bar{\nu}_{\alpha}^{\gamma} \vartheta^{\alpha} \gamma_{L}\right)$$

$$SU(2)L$$

A sizeable effect is also induced in at least one of these:

$$(\overline{b}_{L} \mathcal{X}_{s} S_{i}) (\overline{\tau}_{L} \mathcal{X}_{s} \mathcal{X}_{i})$$
$$(\overline{b}_{L} \mathcal{X}_{s} b_{i}) (\overline{\tau}_{L} \mathcal{X}_{s} \mathcal{T}_{i})$$
$$(\overline{c}_{L} \mathcal{X}_{s} c_{i}) (\overline{\tau}_{L} \mathcal{X}_{s} \mathcal{T}_{i})$$

[Faroughy, Greljo, Kamenik 1609.07138]

These can be looked for in ττ high-p_T searches

[Buttazzo, Greljo, Isidori, DM 1706.07808, see also 1808.08179, 1810.10017 for more general scenarios]

11

Tree-level Mediators: Leptoquarks

These two setups offer the best explanations to both anomalies:

al 1512.01560; Buttazzo, Greljo, Isidori, DM 1706.07808; Di Luzio et al 1708.08450; Bordone et al. 1/12.01368; Calibbi et al. '1/; Blanke, Crivellin '18; Cornella et al 2103.16558; Angelescu et al 1808.08179

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM D.M. 1803.10972; Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224; Saad 2005.04352; V. Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone et al. 2010.03297; Crivellin et al. 2010.06593, 2101.07811; ETC...

Scalar Leptoquarks S₁ and S₃:

$$\mathcal{L}_{int} \sim \left(\lambda_{ij}^{\prime \prime} q_{c}^{i} \varepsilon l_{c}^{j} + \lambda_{ij}^{\prime \prime \prime} u_{R}^{i} e_{R}^{j}\right) S_{1} + \lambda_{ij}^{3 \prime} q_{c}^{i} \varepsilon \varepsilon^{A} l_{c}^{j} S_{3}^{A} + h.c.$$

Several important **observables** constraining this model are induced at one-loop.

We approach this problem systematically, performing a full one-loop analysis by:

 deriving the complete one-loop SMEFT matching for these two leptoquarks, V. Gherardi, E. Venturini, D.M. [2003.12525]

• including an **exhaustive list of observables**, computed at one-loop. V. Gherardi, E. Venturini, D.M. [2008.09548]

The combination of the two scalars can address both anomalies. If the S_1 coupling to RH fermions is allowed, also a solution to $(g-2)_{\mu}$ is possible.

$S_1 + S_3$: R(K(*)) + R(D(*)) + (g-2)_µ

10 active couplings

$R(K^{(*)})$

David Marzocca (INFN)

 $R(D^{(*)})$

A very good fit of all three classes of anomalies can be achieved, while being consistent with all

phenomenological bounds.

The Threefold Way of LQ Searches at LHC

QCD pair-production

single-production

High-pT Drell-Yan

[Diaz, Schmaltz, Zhong 1706.05033, 1810.10017; Dorsner, Greljo 1801.07641]

In order to cover all couplings it is important to consider all combinations of different lepton & quark combinations in final state!

Leptoquark searches at CMS and ATLAS

<u>CMS</u>

-eptoquarks

scalar LQ (pair prod.), coupling to 1st gen. fermions, $\beta = 1$ scalar LQ (pair prod.), coupling to 1st gen. fermions, $\beta = 0.5$ scalar LQ (pair prod.), coupling to 2nd gen. fermions, $\beta = 1$ scalar LQ (pair prod.), coupling to 2nd gen. fermions, $\beta = 1$ scalar LQ (pair prod.), coupling to 2nd gen. fermions, $\beta = 0.5$ scalar LQ (pair prod.), coupling to 3rd gen. fermions, $\beta = 1$ scalar LQ (pair prod.), coupling to 3rd gen. fermions, $\beta = 1$

CMS ττbb <u>1703.03995</u>, <u>1811.00806</u> CMS ττtt <u>1803.02864</u> CMS μμjj & μνjj <u>CMS PAS EXO-17-003</u> CMS μμtt <u>1809.05558</u> CMS νν+(jj,bb,tt) <u>1805.10228</u>

ATLAS IIji, Ivji <u>1902.00377</u> ATLAS IIji <u>2006.05872</u> ATLAS tt(ee,µµ) <u>2010.02098</u> ATLAS LQ→(tv,bt) <u>1902.08103</u> ATLAS LQ→(bv,tt) <u>2101.12527</u> ATLAS ttrt <u>2101.11582</u>

Conclusions

- R_K anomalies are now rather robust deviations from the SM
- While signatures at LHC cannot be guaranteed, in several motivated scenarios LHC searches are already constraining: in particular **di-muon high-p_T tails**.
- R(D(*)) anomalies still need more experimental confirmation, they would strongly hint to leptoquark solutions.
- The model-independent signature is **mono-\tau at high-p_{T}**, potentially improved by requiring **b-tagging**.
- A sizeable effect is also expected in di-tau high-p_T tails.
- In general, following the threefold way of leptoquark searches in all possible channels is crucial.

The Threefold Way of LQ Searches at LHC

David Marzocca (INFN)

Backup

Di-lepton tails at LHC

	Operato	ors interferii	ng with	ר SM:	
Preliminary eV, 36.1 fb ⁻¹ Search Selec	 Φ Data Z/γ* 	$\gamma^{\mu}q_{i})$ $\gamma^{\mu}e_{\alpha})$ $\gamma^{\mu}e_{\alpha})$	$(\mathcal{O}_{lq}^{(3)})_{lpha i}$ =	$= (\bar{l}_{\alpha}\gamma_{\mu}\sigma^{a}l_{\alpha})(\bar{q}_{i}\gamma_{\mu}\gamma_{\mu}q_{\alpha})(\bar{d}_{i}\gamma^{\mu}d_{i}\gamma_{\mu}q_{\alpha})(\bar{d}_{i}\gamma^{\mu}q_{i}\gamma_{\mu}q_{\alpha})(\bar{d}_{i}\gamma^{\mu}q_{\alpha}q_{\mu}q_{\alpha})(\bar{d}_{i}\gamma_{\mu}q_{\alpha}))(\bar{d}_{i}\gamma_{\mu}q_{\alpha})(\bar{d}_{i}\gamma_{\mu}q_{\alpha})(\bar{d}_{i}\gamma_{\mu}q_{\alpha})($	
	ATL AS 3 ₫.1 (5 TeV)		C_i	ATLAS 36.1 fb ⁻¹	3000 fb^{-1}
	0.0, 1.75] ×10 ⁻³	[-1.] [-1.] ×10 ⁻⁴	$C_{O^{1}I^{2}}^{(1)}$	[-5.73, 14.2] ×10 ⁻⁴	[-1.30, 1.51] ×10 ⁻⁴
$C_{Q^{1}L^{1}}^{(3)}$	[-8.92, -0, 54] ×10 ⁻⁴	[-3 .9 , 3.93] ×10 ^{−5}	$egin{array}{c} C^{(1)}_{Q^1L^2} \ C^{(3)}_{Q^1L^2} \end{array}$	[-7.11, 2.84] ×10 ⁻⁴	$[-5.25, 5.25] \times 10^{-5}$
$C_{u_R L^1}$	[-0.19, [.92]] +10 ⁻³	[-1. <u>56</u> , 1.92] ×10 ⁻⁴	$C_{u_R L^2}$	[-0.84, 1.61] ×10 ⁻³	[-2.00, 2.66] ×10 ⁻⁴
$C_{u_R e_R}$	[0.15, 2.06] × 10 ⁻²	-4[-7.89, 8.23] ×10 ⁻⁵	$C_{u_R\mu_R}$	$[-0.52, 1.36] \times 10^{-3}$	[-1.04, 1.08] ×10 ⁻⁴
$C_{Q^1e_R}$	[-0.40, 1.37] ×10 ⁻³	4 , 2.85] ×10 ⁻⁴	$C_{Q^1\mu_R}$	$[-0.82, 1.27] \times 10^{-3}$	$[-2.25, 4.10] \times 10^{-4}$
$C_{d_R L^1}$	[-2.1, 1.04] ×10 ⁻³	$[17, 5] \times 10^{-4}$	$C_{d_R L^2}$	$[-2.13, 1.61] \times 10^{-3}$	[-8.98, 5.11] ×10 ⁻⁴
$C_{d_R e_R \cdots}$	[-2:55, 0.46] × 103	$[-3.37] \times 10^{-4}$	$C_{d_R\mu_R}$	$[-2.31, 1.34] \times 10^{-3}$	[-4.89, 3.33] ×10 ⁻⁴
	[-6]62;4.36 ×10 ⁻³	[-3.3], 1.92] ×10 ⁻³	$C^{(1)}_{Q^2L^2}$	$[-8.84, 7.35] \times 10^{-3}$	$[-3.83, 2.39] \times 10^{-3}$
$C_{O^2L^1}^{(3)}$	$[-8.24, 2.05] \times 10^{-3}$	$[-8.87, 7.90] \times 10^{-4}$	$C^{(1)}_{Q^2L^2}\ C^{(3)}_{Q^2L^2}$	[-9.75, 5.56] ×10 ⁻³	$[-1.43, 1.15] \times 10^{-3}$
$C_{Q^2e_R}$	[-4:67, [6,34] × 10 ⁻³	[-2,1], 3.30] ×10 ⁻³	$C_{Q^2\mu_R}$	$[-7.53, 8.67] \times 10^{-3}$	$[-2.58, 3.73] \times 10^{-3}$
$C_{a} L^{1}$	[][]]]/[4,5]9] ¥10 ⁻³ ·····	$[-3.9]6, 2.8] \times 10^{-3}$	$C_{s_R L^2}$	$[-1.04, 0.93] imes 10^{-2}$	$[-4.42, 3.33] \times 10^{-3}$
$C_{s_R e_R}$	^T + + + + + + + + + +	$[-3.8], 2.13] \times 10^{-3}$	$C_{s_R\mu_R}$	$[-1.09, 0.87] imes 10^{-2}$	$[-4.67, 2.73] \times 10^{-3}$
$300 C_{c_R L^1}$	[1080 , 1.1 2]0000 ⁻²	$[-3.74, 5.77] \times 10^{-3}$	$C_{c_R L^2}$	$[-1.33, 1.52] \times 10^{-2}$	[-4.58, 6.54] ×10 ⁻³
$C_{c_R e_R}$	Dimuon Invariant Ma [-0,67, 1.27] ×10	ss [GeV] [-2.59, 4.17] ×10 ⁻³	$C_{c_R\mu_R}$	$[-1.21, 1.62] \times 10^{-2}$	$[-3.48, 6.32] \times 10^{-3}$
$\cdots C_{b_L L^1}$	$11.93, 1.19] \times 10^{-2}$	$[-8.62, 4.82] \times 10^{-3}$	$C_{b_L L^2}$	$[-2.61, 2.07] \times 10^{-2}$	$[-11.1, 6.33] \times 10^{-3}$
$C_{b_{L}e_{R}}$	<u>- [-1,47, 1,67]</u> × 10 ⁻²	= [-7.29, 8.99] ×10 ⁻³	$C_{b_L \mu_R}$	$[-2.28, 2.42] \times 10^{-2}$	$[-8.53, 10.0] \times 10^{-3}$
$C_{b_{P}L^{1}}$	[-1] 6 5•1.49] ×10 ⁻²	$[-8.85, 7.48] \times 10^{-3}$	$C_{b_R L^2}$	$[-2.41, 2.29] \times 10^{-2}$	[-9.90, 8.68] ×10 ⁻³
	◆ ↓ ◆◆◆◆◆◆◆◆◆◆◆◆◆	[-9.33, 6.63] ×10 ⁻³	$C_{b_R\mu_R}$	$[-2.47, 2.23] \times 10^{-2}$	$[-10.5, 7.97] \times 10^{-3}$
300	1000 2000 Dimuon Invariant Ma	ss [GeV]			

Mono-tau tails at LHC

[D.M., Min, Son, 2008.07541]

We recast CMS τv analysis at 13 TeV and 35.9fb⁻¹ [1807.11421]

 $p_T(\tau) > 80 \text{ GeV}$, $|\eta(\tau)| < 2.1$, $p_T^{miss} > 200 \text{ GeV}$ $0.7 < p_T^{\tau} / p_T^{miss} < 1.3$, $\Delta \phi(\vec{p}_T^{\tau}, \vec{p}_T^{miss}) > 2.4$

Bins in transverse mass $m_T = \sqrt{2p_T^{\tau} p_T^{miss} [1 - \cos \Delta \phi(\vec{p}_T^{\tau}, \vec{p}_T^{miss})]}$

For each bin we get the xsection:

 $\sigma = \sigma_{SM} + C_X^{ij} \sigma_{SM-EFT}^{ij,X} + (C_X^{ij})^2 \sigma_{EFT^2}^{ij,X}$

... which we use to build the likelihood and get limits on all $u_i d_j \tau v$ operators.

Flavor at High vs. Low Energy

[D.M., Min, Son, 2008.07541]

How do these LHC limits compare with bounds from low energy?

Let us focus for simplicity on LL operators.

EFT coeff.	CMS ($\mathcal{L}=35.9 \text{ fb}^{-1}$)	$\tau \nu$ - $\mathcal{L}=300~{ m fb}^{-1}$	$\tau \nu b$ - $\mathcal{L}=300~{ m fb}^{-1}$
C_{VLL}^{11}	$[-0.40, 3.2] \times 10^{-3}$	$3.1 imes 10^{-4}$	_
C_{VLL}^{12}	$[-0.78, 1.1] \times 10^{-2}$	$9.0 imes 10^{-3}$	_
C_{VLL}^{13}	[-2.1, 2.1]	1.6	0.93
C_{VLL}^{21}	$[-1.4, 1.8] imes 10^{-2}$	1.4×10^{-2}	_
C_{VLL}^{22}	$[-0.73, 1.2] \times 10^{-2}$	$1.5 imes 10^{-3}$	_
C_{VLL}^{23}	[-0.33, 0.34]	[-0.25, 0.26]	[-0.14, 0.15]

Mono-tau tails are (or will be in the future) competitive with low-energy limits from **semileptonic τ decays** [A. Pich 1310.7922] and charm physics [Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez, 2003.12421]

 $\mathcal{L}_{\text{eff}}^{\text{CC}} = -\mathcal{H}_{\text{eff}}^{\text{CC}} = -\frac{4G_f V_{ij}}{\sqrt{2}} \Big[C_{VLL}^{ij} (\bar{u}_i \gamma_\mu P_L d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) + C_{VRL}^{ij} (\bar{u}_i \gamma_\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) + C_{VRL}^{ij} (\bar{u}_i \gamma_\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] + C_{VRL}^{ij} (\bar{\tau} \gamma^\mu P_R d_j) (\bar{\tau} \gamma^\mu P_R d_j) \Big] + C_{VRL}^{ij} (\bar{\tau$ $C_{SL}^{ij}(\bar{u}_i P_L d_j)(\bar{\tau} P_L \nu_{\tau}) + C_{SR}^{ij}(\bar{u}_i P_R d_j)(\bar{\tau} P_L \nu_{\tau}) +$ $C_T^{ij}(\bar{u}_i\sigma_{\mu\nu}P_Ld_j)(\bar{\tau}\sigma^{\mu\nu}P_L\nu_{\tau})\Big]+h.c.$

20