NP implications of B-anomalies \& connections with high-pT

David Marzocca INFN Trieste

Trieste

R_{K} and the other $b \rightarrow s \mu^{+} \mu^{-}$probes

Compilation of "clean" observables

The global significance of the New Physics hypothesis in $b \rightarrow s \mu^{+} \mu^{-}$(very conservative SM uncertainties estimate) is:
3.9 σ

Lancierini, Isidori, Owen, Serra [2104.05631]

Angular observables and Br's

Specific NP hypothesis, with less conservative estimates of SM uncertainties show significances in the 5.9-7б range. Altmannshofera and Staub [2103.13370], Algueró et al. [2104.08921], Geng et al. [2103.12738]

Very good solution to all these deviations with:

$$
\mathcal{L}_{\text {eff }} \supset \frac{e^{i \alpha_{b s}}}{\Lambda_{b s}^{2}}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu}_{L} \gamma_{\mu} \mu_{L}\right)+\text { h.c. }
$$

$$
\text { Best-fit for } \mathrm{a}_{\mathrm{bs}}=0: \Lambda_{\mathrm{bs}} \approx 37 \mathrm{TeV}
$$

From flavour to High- $\mathbf{p}_{\text {т }}$ EFT

The same contact interactions can be probed at both high and low energies

$$
\begin{aligned}
& \text { From RK anomalies: } \\
& \frac{1}{\Lambda_{b s \mu}^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\mu}_{L} \gamma^{\mu} \mu_{L}\right) \\
& \Lambda_{b s \mu} \sim 37 \mathrm{TeV}
\end{aligned}
$$

If $\mathrm{m}_{\mathrm{EW}}<\mathrm{E}_{\mu \mu} \ll \mathrm{MNP}$ we can use an EFT approach:
Present (future $3 a b^{-1}$) limits from LHC:

$$
\Lambda_{b s \mu}>2.4(4.1) \mathrm{TeV}
$$

[Greljo, DM 1704.09015]
[See also Kohda et al. 1803.07492, Afik et al. 1811.07920] ATLAS search ATLAS-CONF-2021-012

No hope to see this directly.... but...

From flavour to High-рт: EFT and MFV

In Minimal Flavor Violation the b-s contact interaction is suppressed by Vts compared to flavor-diagonal ones:

D'Ambrosio, Giudice, Isidori, Strumia [hep-ph/0207036]
$\left|c_{s p}\right| \sim\left|c_{o p} v_{t s} v_{t s}^{*}\right|$
Coeff. of flavor-diagonal (qi-qi- $\mu-\mu$) operators

$$
C_{b s \mu}=\frac{v^{2}}{\Lambda_{b s \mu}^{2}} \text { is fixed by RK fits }
$$

$$
\begin{aligned}
\left|C_{D \mu}\right| & \sim 1.4 \times 10^{-3} \\
\Lambda_{D \mu} & \sim 6.4 \mathrm{TeV}
\end{aligned}
$$

We get a prediction for $C_{D \mu}$
[Greljo, DM 1704.09015]

The MFV solution is in tension with LHC Drell-Yan!

Tree-level Mediators: Z'

Altmannshofer et al 1403.1269, Allanach et al. 1904.10954, 2009.02197, 2103.12056, etc..

B_{s}-mixing induced at tree-level:

$$
\frac{g_{b s}^{2}}{M_{z^{\prime}}^{2}}<\frac{1}{(220 \mathrm{TeV})^{2}}
$$

+ imposing $R_{K}: \quad g_{b S} \leqslant 0.03 g_{\mu \mu}$
Saturating this and for $g_{\mu \mu \sim} \sqrt{ } 4 \pi$:
Upper bound on $\mathrm{Mz}^{\prime} M_{z^{\prime}} \leqslant 22 \mathrm{TeV}$

This can be searched in high-рт Drell-Yan.
For MFV-like flavor structure (e.g. $\left.\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}}\right)$:

This bound is avoided if Z^{\prime} coupled mainly to 3rd gen: e.g. $U(1)_{\text {B3-L2 }}$ or via mixing with vector-like quarks.

Allanach 2009.02197, Altmannshofer et al 1403.1269

Tree-level Mediators: Leptoquarks

Bs-mixing is only loop-induced.

$$
\mathcal{L}_{\text {int }} \supset\left(\lambda^{3 L}\right)_{i \alpha} \bar{q}_{i}^{c} \in \sigma^{I} \ell_{\alpha} S_{3}^{I}+\text { h.c. }
$$

$\mathcal{L}_{\text {eff }} \supset \frac{\lambda_{s e}^{3 L *} \lambda_{e}^{3 L}}{M_{3}^{2 L}}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu}_{L} \gamma_{\mu} \mu_{L}\right)+h . c$.

TeV-scale LQs can fit the anomaly with small couplings.

No show-stoppers to fit the R_{K} anomalies with LQs at tree-level.

Charged-current B-anomalies

$\boldsymbol{b} \rightarrow \boldsymbol{\sim} \boldsymbol{\sim} V$ VS. $\boldsymbol{b} \rightarrow \boldsymbol{C} \boldsymbol{C}$

$$
\begin{array}{r}
R\left(D^{(*)}\right) \equiv \frac{\mathcal{B}\left(B^{0} \rightarrow D^{(*)+} \tau \nu\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{(*)+} \ell \nu\right)}, \\
\ell=\mu, e
\end{array}
$$

Tree-level SM process with $\bigvee_{c b}$ suppression.
~ 14\% enhancement from the SM
~ 3 σ from the SM (3.7o when combined)
While μ / e universality well tested
$R(D) \mu e=0.995 \pm 0.045$
Belle - [1510.03657]

All measurements since 2012
consistently above the SM predictions

Low-energy New Physics interpretations:

$$
\mathcal{L}_{\mathrm{BSM}}=\frac{2 c}{\Lambda^{2}}\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \nu_{\tau}\right)+h . c .
$$

$$
\Lambda / V_{c} \sim 4.5 \mathrm{TeV}
$$

Other solutions with tensor and scalar operators also fit well data.

From R_{k} to $R\left(D^{(*)}\right)$ anomalies

A large coupling to the t induces an RGenhanced lepton-flavor universal contribution proportional to Cgu

Capdevila et al. 1712.01919, Crivellin et al. 1807.02068

$\mathcal{C}_{9}^{\mathrm{U}} \approx 7.5\left(1-\sqrt{\frac{R_{D^{(* *}}}{R_{D^{(*)} \mathrm{SM}}}}\right)\left(1+\frac{\log \left(\Lambda^{2} /\left(1 \mathrm{TeV}^{2}\right)\right)}{10.5}\right)$

$$
\mathbf{R}_{\mathbf{K}} \longrightarrow \sim \frac{g_{\mu} V_{t s}}{\Lambda^{2}}\left(\bar{b}_{L} \gamma_{\alpha} s_{L}\right)\left(\bar{\mu}_{L} \gamma^{\alpha} \mu_{L}\right)
$$

TeV	SM gauge invariance $\mathrm{SU}(2)$
M- like flavor structure	$\left.\sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)$
$\frac{g_{\mu} V_{c b}}{\Lambda^{2}}\left(\bar{b}_{L} \gamma_{\alpha} c_{L}\right)\left(\bar{\nu}_{L}^{\mu} \gamma^{\alpha} \mu_{L}\right.$	Usually UV physics generates both The exception are Z' models, which generate only the singlet

Charged-current in muons
Generalising lepton flavour

$$
\sim \frac{g_{\tau} V_{c b}}{\Lambda^{2}}\left(\bar{b}_{L} \gamma_{\alpha} c_{L}\right)\left(\bar{\nu}_{L}^{\tau} \gamma^{\alpha} \tau_{L}\right)
$$

$\mathbf{R}\left(\mathbf{D}^{*}\right)$)
$\Lambda / \operatorname{Vg}_{\tau} \sim 1 \mathbf{T e V}$
If $g_{e} \ll g_{\mu} \ll g_{\tau}$ same hierarchy as $m_{e} \ll m_{\mu} \ll m_{\tau}$
Required for R_{K}

From $R\left(D^{(*)}\right)$ to mono- τ tails

The mono-tau tail is directly sensitive to the same operator (or mediator) contributing to $R\left(\mathrm{D}^{*}\right)$ Greto, Camalich, Ruiz-Alvarez [1811.07920]

Mono-tau tails at LHC

[DM, Min, Son, 2008.07541]
95\%CL limits
Optimise the sensitivity to $b \rightarrow c \tau v$ operators requiring \mathbf{b}-jet tagging:

- Improves the Signal/Background ratio
- Selects only operators with b-quark

By comparing 3rd and 4th columns:
b-tagging improves the limits by at least $\mathbf{\sim 3 0 \%}$

EFT coeff.	CMS $\left(\mathcal{L}=35.9 \mathrm{fb}^{-1}\right)$	$\tau \nu-\mathcal{L}=300 \mathrm{fb}^{-1}$	$\tau \nu b-\mathcal{L}=300 \mathrm{fb}^{-1}$
$\left\|C_{S L}^{11}\right\|$	1.5×10^{-3}	1.1×10^{-3}	-
$\left\|C_{S L}^{12}\right\|$	9.8×10^{-3}	7.5×10^{-3}	-
$\left\|C_{S L}^{13}\right\|$	2.2	1.7	1.1
$\left\|C_{S L}^{21}\right\|$	1.6×10^{-2}	1.2×10^{-2}	-
$\left\|C_{S L}^{22}\right\|$	9.8×10^{-3}	7.5×10^{-3}	-
$\left\|C_{S L}^{23}\right\|$	0.33	0.26	0.18
$\left\|C_{S L}^{23}\right\|=4\left\|C_{T}^{23}\right\|$	0.31	0.24	0.17
$\left\|C_{S R}^{11}\right\|$	1.5×10^{-3}	1.1×10^{-3}	-
$\left\|C_{S R}^{12}\right\|$	9.9×10^{-3}	7.5×10^{-3}	-
$\left\|C_{S R}^{13}\right\|$	2.2	1.7	1.1
$\left\|C_{S R}^{21}\right\|$	1.6×10^{-2}	1.2×10^{-2}	-
$\left\|C_{S R}^{22}\right\|$	9.7×10^{-3}	7.5×10^{-3}	-
$\left\|C_{S R}^{23}\right\|$	0.33	0.26	0.19
$\left\|C_{T}^{11}\right\|$	8.5×10^{-4}	6.5×10^{-4}	-
$\left\|C_{T}^{12}\right\|$	5.5×10^{-3}	4.2×10^{-3}	-
$\left\|C_{T}^{13}\right\|$	1.3	0.97	0.57
$\left\|C_{T}^{21}\right\|$	9.4×10^{-3}	7.2×10^{-3}	-
$\left\|C_{T}^{22}\right\|$	5.8×10^{-3}	4.5×10^{-3}	-
$\left\|C_{T}^{23}\right\|$	0.20	0.16	0.099
$C_{V L L}^{11}$	$[-0.40,3.2] \times 10^{-3}$	3.1×10^{-4}	-
$C_{V L L}^{12}$	$[-0.78,1.1] \times 10^{-2}$	9.0×10^{-3}	-
$C_{V L L}^{13}$	$[-2.1,2.1]$	1.6	0.93
$C_{V L L}^{21}$	$[-1.4,1.8] \times 10^{-2}$	1.4×10^{-2}	-
$C_{V L L}^{22}$	$[-0.73,1.2] \times 10^{-2}$	1.5×10^{-3}	-
$C_{V L L}^{23}$	$[-0.33,0.34]$	$[-0.25,0.26]$	$[-0.14,0.15]$
$\left\|C_{V R L}^{11}\right\|$	1.5×10^{-3}	1.1×10^{-3}	-
$\left\|C_{V R L}^{12}\right\|$	9.6×10^{-3}	7.3×10^{-3}	-
$\left\|C_{V R L}^{13}\right\|$	2.1	1.6	0.94
$\left\|C_{V R L}^{21}\right\|$	1.6×10^{-2}	1.2×10^{-2}	-
$\left\|C_{V R L}^{22}\right\|$	9.6×10^{-3}	7.4×10^{-3}	-
$\left\|C_{V R L}^{23}\right\|$	0.33	0.26	0.15
			-

Di-tau high-p tail

If $R\left(D^{(*)}\right)$ is addressed by this operator

$$
\begin{aligned}
& \left(\bar{b}_{L} \gamma_{\alpha} c_{L}\right)\left(\bar{V}_{\tau} \gamma^{\alpha} \tau_{L}\right) \\
& \operatorname{SU}(2)_{L}
\end{aligned}
$$

A sizeable effect is also induced in at least one of these:

$$
\begin{aligned}
& \left(\bar{b}_{L} \gamma_{\alpha} s_{L}\right)\left(\tau_{L} \gamma^{\alpha} \tau_{L}\right) \\
& \left(\overline{b_{L}} \gamma_{\alpha} b_{L}\right)\left(\tau_{L} \gamma^{\alpha} \tau_{L}\right) \\
& \left(\overline{C_{L}} \gamma_{\alpha} c_{L}\right)\left(\overline{\tau_{L}} \gamma^{\alpha} \tau_{L}\right)
\end{aligned}
$$

[Faroughy, Greljo, Kamenik 1609.07138]
These can be looked for in

π high- p_{T} searches

[Buttazzo, Greljo, Isidori, DM 1706.07808, see also 1808.08179, 1810.10017 for more general scenarios]

Tree-level Mediators: Leptoquarks

These two setups offer the best explanations to both anomalies:

Barbieri et al 1512.01560; Buttazzo, Greljo, Isidori, DM 1706.07808; Di Luzio et al 1708.08450; Bordone et al 1712.01368; Calibbi et al. '17; Blanke, Crivellin '18; Cornella et al 2103.16558; Angelescu et al 1808.08179

Scalar Leptoquarks

$$
S_{1}=(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3),
$$

$$
S_{3}=(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3),
$$

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. 1803.10972; Arnan et al 1901.06315 Bigaran et al. 1906.01870; Crivellin et al. 1912.04224 Saad 2005.04352; V. Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone et al. 2010.03297 Crivellin et al. 2010.06593, 2101.07811; ETC.

Scalar Leptoquarks S_{1} and S_{3} :

$$
\mathcal{L}_{\text {int }} \sim\left(\lambda_{i j}^{1 L} q_{L}^{i} \varepsilon l_{L}^{j}+\lambda_{i j}^{1 R} u_{R}^{i} e_{R}^{j}\right) S_{1}+\lambda_{i j}^{3 L} q_{L}^{i} \varepsilon c^{A} l_{2}^{j} S_{3}^{A}+h \cdot c .
$$

Several important observables constraining this model are induced at one-loop.
We approach this problem systematically, performing a full one-loop analysis by:

- deriving the complete one-loop SMEFT matching for these two leptoquarks,
V. Gherardi, E. Venturini, D.M. [2003.12525]
- including an exhaustive list of observables, computed at one-loop
V. Gherardi, E. Venturini, D.M. [2008.09548]

The combination of the two scalars can address both anomalies.
If the S_{l} coupling to RH fermions is allowed, also a solution to $(g-2)_{\mu}$ is possible.

$S_{I}+S_{3}: \mathrm{R}\left(\mathrm{K}^{(*)}\right)+\mathrm{R}\left(\mathrm{D}\left({ }^{(*)}\right)+(\mathrm{g}-2)_{\mu}\right.$

The Threefold Way of LQ Searches at LHC

QCD
pair-production

single-production

SINGLE
PROD.

[Diaz, Schmaltz, Zhong 1706.05033, 1810.10017; Dorsner, Greljo 1801.07641]

In order to cover all couplings it is important to consider all combinations of different lepton \& quark combinations in final state!

Leptoquark searches at CMS and ATLAS

CMS

scalar LQ (pair prod.), coupling to $1^{\text {st }}$ gen. fermions, $\beta=1$
Leptoquarks scalar LQ (pair prod.), coupling to $1^{\text {st }}$ gen. fermions, $\beta=0.5$ scalar LQ (pair prod.), coupling to $2^{\text {nd }}$ gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to $2^{\text {nd }}$ gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to $2^{\text {nd }}$ gen. fermions, $\beta=0.5$ scalar LQ (pair prod.), coupling to $3^{\text {rd }}$ gen. fermions, $\beta=1$ scalar LQ (single prod.), coup. to $3^{\text {rd }}$ gen. ferm., $\beta=1, \lambda=1$

CMS ттbb 1703.03995, 1811.00806
CMS titt 1803.02864
CMS $\mu \mu j j_{j} \& \mu v j j$ CMS PAS EXO-17-003
CMS μ utt 1809.05558
CMS W+(jj,bb, tt) 1805.10228

ATLAS IIjj, Ivjj 1902.00377
ATLAS Ijj 2006.05872
ATLAS tt(ee, $\mu \mu) \underline{2010.02098}$
ATLAS LQ $\rightarrow(\mathrm{tv}, \mathrm{bt}) \underline{1902.08103}$
ATLAS LQ $\rightarrow(\mathrm{bv}, \mathrm{tt}) \underline{2101.12527}$
ATLAS tttt 2101.11582

Conclusions

- Rk anomalies are now rather robust deviations from the SM
- While signatures at LHC cannot be guaranteed,
in several motivated scenarios LHC searches are already constraining: in particular di-muon high- p_{t} tails.
- $R\left(D^{(*)}\right)$ anomalies still need more experimental confirmation, they would strongly hint to leptoquark solutions.
- The model-independent signature is mono-т at high-pт, potentially improved by requiring b-tagging.
- A sizeable effect is also expected in di-tau high-pт tails.
- In general, following the threefold way of leptoquark searches in all possible channels is crucial.

The Threefold Way of LQ Searches at LHC

Backup

Di-lepton tails at LHC

$$
\begin{aligned}
\mathcal{L}_{\text {SMEFT }} & =\sum_{i} \frac{C_{i}}{v^{2}} \mathcal{O}_{i} \\
C_{x} & \equiv \frac{v^{2}}{\Lambda^{2}} c_{x}
\end{aligned}
$$

Operators interfering with SM:

$$
\begin{array}{|l|l|}
\hline\left(\mathcal{O}_{l q}^{(1)}\right)_{\alpha i}=\left(\bar{l}_{\alpha} \gamma_{\mu} l_{\alpha}\right)\left(\bar{q}_{i} \gamma^{\mu} q_{i}\right) & \left(\mathcal{O}_{l q}^{(3)}\right)_{\alpha i}=\left(\bar{l}_{\alpha} \gamma_{\mu} \sigma^{a} l_{\alpha}\right)\left(\bar{q}_{i} \gamma^{\mu} \sigma^{a} q_{i}\right) \\
\left(\mathcal{O}_{q e}\right)_{i \alpha}=\left(\bar{q}_{i} \gamma^{\mu} q_{i}\right)\left(\bar{e}_{\alpha} \gamma^{\mu} e_{\alpha}\right) & \\
\left(\mathcal{O}_{l u} \bar{l}_{\alpha i}=\left(\bar{l}_{\alpha} \gamma_{\mu} l_{\alpha}\right)\left(\bar{u}_{i} \gamma^{\mu} u_{i}\right)\right. & \left(\mathcal{O}_{l d}\right)_{\alpha i}=\left(\bar{l}_{\alpha} \gamma_{\mu} l_{\alpha}\right)\left(\bar{d}_{i} \gamma^{\mu} d_{i}\right) \\
\left(\mathcal{O}_{e u}\right)_{\alpha i}=\left(\bar{e}_{\alpha} \gamma_{\mu} e_{\alpha}\right)\left(\bar{u}_{i} \gamma^{\mu} u_{i}\right) & \left(\mathcal{O}_{e d}\right)_{\alpha i}=\left(\bar{e}_{\alpha} \gamma_{\mu} e_{\alpha}\right)\left(\bar{d}_{i} \gamma^{\mu} d_{i}\right) \\
\hline
\end{array}
$$

- Limits on flavor-conserving operators, recasting ATLAS 13TeV analysis: [Greljo, D.M. 1704.09015]
- Limits recasting ATLAS Drell-Yan 8TeV analysis:
[Les Houches 2002.12220 (Sec.2)]

C_{i}	ATLAS 36.1 fb	-1
$C_{Q^{1} L^{1}}^{(1)}$	$[-0.0,1.75] \times 10^{-3}$	$[-1.01,1.13] \times 10^{-4}$
$C_{Q^{1} L^{1}}^{(3)}$	$[-8.92,-0.54] \times 10^{-4}$	$[-3.99,3.93] \times 10^{-5}$
$C_{u_{R} L^{1}}$	$[-0.19,1.92] \times 10^{-3}$	$[-1.56,1.92] \times 10^{-4}$
$C_{u_{R} e_{R}}$	$[0.15,2.06] \times 10^{-3}$	$[-7.89,8.23] \times 10^{-5}$
$C_{Q^{1} e_{R}}$	$[-0.40,1.37] \times 10^{-3}$	$[-1.8,2.85] \times 10^{-4}$
$C_{d_{R} L^{1}}$	$[-2.1,1.04] \times 10^{-3}$	$[-7.59,4.23] \times 10^{-4}$
$C_{d_{R} e_{R}}$	$[-2.55,0.46] \times 10^{-3}$	$[-3.37,2.59] \times 10^{-4}$
$C_{Q^{2} L^{1}}^{(1)}$	$[-6.62,4.36] \times 10^{-3}$	$[-3.31,1.92] \times 10^{-3}$
$C_{Q^{2} L^{1}}^{(3)}$	$[-8.24,2.05] \times 10^{-3}$	$[-8.87,7.90] \times 10^{-4}$
$C_{Q^{2} e_{R}}$	$[-4.67,6.34] \times 10^{-3}$	$[-2.11,3.30] \times 10^{-3}$
$C_{s_{R} L^{1}}$	$[-7.4,5.9] \times 10^{-3}$	$[-3.96,2.8] \times 10^{-3}$
$C_{S_{R} e_{R}}$	$[-8.17,5.06] \times 10^{-3}$	$[-3.82,2.13] \times 10^{-3}$
$C_{C_{R} L^{1}}$	$[-0.83,1.13] \times 10^{-2}$	$[-3.74,5.77] \times 10^{-3}$
$C_{C_{R} e_{R}}$	$[-0.67,1.27] \times 10^{-2}$	$[-2.59,4.17] \times 10^{-3}$
$C_{b_{L} L^{1}}$	$[-1.93,1.19] \times 10^{-2}$	$[-8.62,4.82] \times 10^{-3}$
$C_{b_{L} e_{R}}$	$[-1.47,1.67] \times 10^{-2}$	$[-7.29,8.99] \times 10^{-3}$
$C_{b_{R} L^{1}}$	$[-1.65,1.49] \times 10^{-2}$	$[-8.86,7.48] \times 10^{-3}$
$C_{b_{R} e_{R}}$	$[-1.73,1.40] \times 10^{-2}$	$[-9.38,6.63] \times 10^{-3}$

C_{i}	ATLAS 36.1 fb^{-1}	$3000 \mathrm{fb}^{-1}$
$C_{Q^{1} L^{2}}^{(1)}$	$[-5.73,14.2] \times 10^{-4}$	$[-1.30,1.51] \times 10^{-4}$
$C_{Q^{1} L^{2}}^{(3)}$	$[-7.11,2.84] \times 10^{-4}$	$[-5.25,5.25] \times 10^{-5}$
$C_{u_{R} L^{2}}$	$[-0.84,1.61] \times 10^{-3}$	$[-2.00,2.66] \times 10^{-4}$
$C_{u_{R} \mu_{R}}$	$[-0.52,1.36] \times 10^{-3}$	$[-1.04,1.08] \times 10^{-4}$
$C_{Q^{1} \mu_{R}}$	$[-0.82,1.27] \times 10^{-3}$	$[-2.25,4.10] \times 10^{-4}$
$C_{d_{R} L^{2}}$	$[-2.13,1.61] \times 10^{-3}$	$[-8.98,5.11] \times 10^{-4}$
$C_{d_{R} \mu_{R}}$	$[-2.31,1.34] \times 10^{-3}$	$[-4.89,3.33] \times 10^{-4}$
$C_{Q^{2} L^{2}}^{(1)}$	$[-8.84,7.35] \times 10^{-3}$	$[-3.83,2.39] \times 10^{-3}$
$C_{Q^{2} L^{2}}^{(3)}$	$[-9.75,5.56] \times 10^{-3}$	$[-1.43,1.15] \times 10^{-3}$
$C_{Q^{2} \mu_{R}}$	$[-7.53,8.67] \times 10^{-3}$	$[-2.58,3.73] \times 10^{-3}$
$C_{S_{R} L^{2}}$	$[-1.04,0.93] \times 10^{-2}$	$[-4.42,3.33] \times 10^{-3}$
$C_{S_{R} \mu_{R}}$	$[-1.09,0.87] \times 10^{-2}$	$[-4.67,2.73] \times 10^{-3}$
$C_{C_{R} L^{2}}$	$[-1.33,1.52] \times 10^{-2}$	$[-4.58,6.54] \times 10^{-3}$
$C_{C_{R} \mu_{R}}$	$[-1.21,1.62] \times 10^{-2}$	$[-3.48,6.32] \times 10^{-3}$
$C_{b_{L} L^{2}}$	$[-2.61,2.07] \times 10^{-2}$	$[-11.1,6.33] \times 10^{-3}$
$C_{b_{L} \mu_{R}}$	$[-2.28,2.42] \times 10^{-2}$	$[-8.53,10.0] \times 10^{-3}$
$C_{b_{R} L^{2}}$	$[-2.41,2.29] \times 10^{-2}$	$[-9.90,8.68] \times 10^{-3}$
$C_{b_{R} \mu_{R}}$	$[-2.47,2.23] \times 10^{-2}$	$[-10.5,7.97] \times 10^{-3}$

Mono-tau tails at LHC

[D.M., Min, Son, 2008.07541]

We recast CMS τv analysis at 13 TeV and 35.9fb-1 [1807.11421]

$$
p_{T}(\tau)>80 \mathrm{GeV}, \quad|\eta(\tau)|<2.1, \quad p_{T}^{m i s s}>200 \mathrm{GeV}
$$

$$
0.7<p_{T}^{\tau} / p_{T}^{m i s s}<1.3, \quad \triangle \phi\left(\vec{p}_{T}^{\tau}, \vec{p}_{T}^{m i s s}\right)>2.4
$$

Bins in transverse mass
$m_{T}=\sqrt{2 p_{T}^{\tau} p_{T}{ }^{m i s s}\left[1-\cos \Delta \phi\left(\vec{p}_{T}^{\tau}, \vec{p}_{T}{ }^{\text {miss }}\right)\right]}$

For each bin we get the xsection:

$$
\sigma=\sigma_{S M}+C_{X}^{i j} \sigma_{S M-E F T}^{i j, X}+\left(C_{X}^{i j}\right)^{2} \sigma_{E F T^{2}}^{i j, X}
$$

... which we use to build the likelihood and get limits on all $u_{i} d_{j} \tau v$ operators.

After validating with CMS τv analysis, we devise our own $\boldsymbol{\tau v}+\mathbf{b}$ analysis

$$
\begin{gathered}
p_{T}(\tau)>70 \mathrm{GeV}, \quad|\eta(\tau)|<2.1, \quad p_{T}^{\text {miss }}>150 \mathrm{GeV} \\
p_{T}(b)>20 \mathrm{GeV}, \quad|\eta(b)|<2.5, \quad N_{j} \leq 4 \\
0.7<p_{T}^{\tau} / p_{T}^{\text {miss }}<1.3, \quad \Delta \phi\left(\vec{p}_{T}^{\tau}, \vec{p}_{T}^{\text {miss }}\right)>2.4
\end{gathered}
$$

Flavor at High vs. Low Energy

[D.M., Min, Son, 2008.07541]

How do these LHC limits compare with bounds from low energy?

Let us focus for simplicity on LL operators.

EFT coeff.	CMS $\left(\mathcal{L}=35.9 \mathrm{fb}^{-1}\right)$	$\tau \nu-\mathcal{L}=300 \mathrm{fb}^{-1}$	$\tau \nu b-\mathcal{L}=300 \mathrm{fb}^{-1}$
$C_{V L L}^{11}$	$[-0.40,3.2] \times 10^{-3}$	3.1×10^{-4}	-
$C_{V L L}^{12}$	$[-0.78,1.1] \times 10^{-2}$	9.0×10^{-3}	$\tau \rightarrow v \pi$
$C_{V L L}^{13}$	$[-2.1,2.1]$	1.6	-
$C_{V L L}^{21}$	$[-1.4,1.8] \times 10^{-2}$	1.4×10^{-2}	$\tau \rightarrow v \mathrm{~K}$
$C_{V L L}^{22}$	$[-0.73,1.2] \times 10^{-2}$	1.5×10^{-3}	-93
$C_{V L L}^{23}$	$[-0.33,0.34]$	$[-0.25,0.26]$	$-0.14,0.15]$

$$
\begin{aligned}
& C_{V L L}^{u d} \in[-9.2,1.6] \times 10^{-3} \\
& C_{V L L}^{u s} \in[-2.8,-0.02] \times 10^{-2} \\
& C_{V V L}^{u b}\left(m_{b}\right) \in[-0.13,0.41] \\
& C_{V L L}^{c d} \in[-0.21,0.27] \\
& C_{V L L}^{c s} \in[-1.4,7.0] \times 10^{-2} \\
& C_{V L L}^{c b}(\mathrm{TeV})=0.068 \pm 0.017
\end{aligned}
$$

Mono-tau tails are (or will be in the future) competitive with low-energy limits from
semileptonic τ decays
and charm physics
[A. Pich 1310.7922]
[Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez, 2003.12421]

