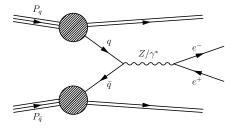
ATLAS and CMS Drell-Yan measurements / weak mixing angle

Tony Kwan on behalf of the ATLAS and CMS Collaborations

SM@LHC 2021



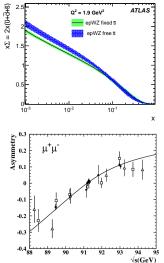
April 26-30, 2021

The Drell-Yan Process

Neutral current Drell-Yan (DY) process: $q(P_1) + \bar{q}(P_2) \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^-$

Measurement of the Drell-Yan process:

- Provides a tests of perturbative QCD;
- Constrains the parton distribution functions of the proton;
- Extraction of fundamental electroweak parameters like the weak mixing angle θ_W.

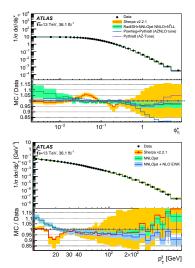

Presentation Outline:

- ATLAS [1] and CMS [2] differential measurements of the Drell-Yan cross section at 13 TeV;
- ATLAS weak mixing angle measurement using polarization coefficients at 8 TeV [3];
- CMS weak mixing angle measurement using forward-backward asymmetry at 8 TeV [4];
- Prospects at the HL-LHC [5];
- ATLAS [6] and CMS [7] charged current Drell-Yan.

Differential Measurements

Differential measurements of the Drell-Yan cross section allow a wide variety of physics to be tested, constrained, and extracted.

- Measurement about $m_Z \longrightarrow$ calibrate the detector.
- Measurement in *y* and $m_{\ell\ell} \rightarrow$ probe PDF space.
- Measurement in $\theta \longrightarrow A_{FB}$.
- Dilepton transverse momentum, $p_{T}^{\ell\ell}$, predictions:
 - At low $p_T^{\ell\ell}$, soft-gluon resummation and non-perturbative models more accurately describe $p_T^{\ell\ell}$.
 - At high $p_{\rm T}^{\ell\ell},$ fixed-order perturbative QCD predictions are better.
 - Matching the two prediction methods to measurements of p^ℓ_T gives the most reliable predictions of the dilepton transverse momentum.
- Knowledge of p^{ℓℓ}_T is important for SM measurements; e.g. the W boson mass.
- Constraints on the SM are beneficial to the searches for physics beyond the SM.

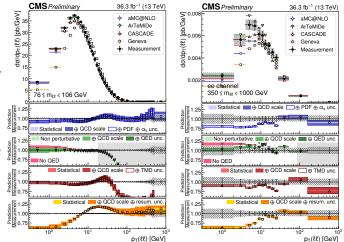


ATLAS Z Transverse Momentum at 13 TeV

- ► $\mathcal{L} = 36.1 \text{ fb}^{-1}$ of *pp* data from 2015 and 2016; $Z/\gamma^* \rightarrow e^+e^-$ and $Z/\gamma^* \rightarrow \mu^+\mu^-$ channels; unfolded to the Born and dressed levels [see talk by Dennis Pudzha later today].
- Measurement in $p_T^{\ell\ell}$ and observable ϕ_η^* :

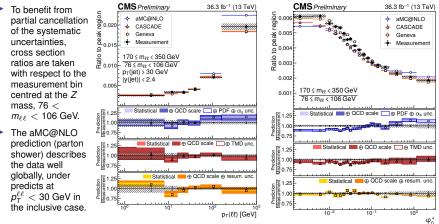
$$\phi_{\eta}^{*} = \tan\left(\frac{\pi - (\phi^{-} - \phi^{+})}{2}\right) \sin \theta_{\eta}^{*}$$
$$\cos \theta_{\eta}^{*} = \tanh\left(\frac{\eta^{-} - \eta^{+}}{2}\right)$$

- φ^{*}_η ~ p^{ℓℓ}_T / m_{ℓℓ}, ideal observable to probe p_T of the Z.
- Sherpa (merging of higher-order, highmultiplicity matrix elements) prediction gives a good description of data at high p^ℓ_ℓ.
- RadISH (NNLO+N³LL) prediction agrees with data for the full spectrum.
- Pythia8 (parton showering) predictions found to describe the 13 TeV data at low ρ^{ℓℓ}_T and φ^{*}_η.
- ► Fixed-order NNLOjet prediction with and without NLO EW effects describes the data well for high p^{ℓℓ}_T.



Tony Kwan (McGill University)

[1]


CMS Differential DY Cross Section at 13 TeV (I) [2]

- $\mathcal{L} = 36.3 \text{ fb}^{-1} \text{ of } pp$ data from 2016; $Z/\gamma^* \rightarrow e^+e^-$ and $Z/\gamma^* \rightarrow \mu^+\mu^$ channels; unfolded to the dressed level.
- Additionally, a measurement is performed requiring at least one jet in the final state.
- Measurement in p^{ℓℓ}_T and φ^{*}_η, in addition to m_{ℓℓ}.
- Selection:
 - *p*^ℓ_T > 25, 20 GeV;
 - $|\eta^{\ell}| < 2.4;$
 - $p_{ au}^{jet} >$ 30 GeV and $|\eta^{jet}| <$ 2.4;
 - 50 < m_{ℓℓ} < 1000 GeV.

Dominant uncertainties include the limited data and Monte Carlo statistics, especially in high p^{ll}_T regions, and uncertainty from fakes background.

CMS Differential DY Cross Section at 13 TeV (II)

- CASCADE (soft gluon resummation) predictions give an overall good description of the ratio measurements.
- GENEVA (NNLO matrix element) at high p^{ℓℓ}_T is the only prediction presented here in agreement with the measurement in all mass bins, showing the importance of higher order matrix element inclusion in this phase space region.

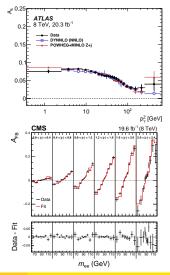
Drell-Yan and the Effective Weak Mixing Angle

Effective weak mixing angle θ_{eff} : $\sin^2 \theta_{eff} = \kappa \sin^2 \theta_W$, where $\kappa = 1 + \delta \kappa$, and $\delta \kappa$ contains the higher-order corrections.

Polarization coefficients:

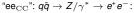
► 5D Drell-Yan differential cross section decomposed into 1 + 8 harmonic polynomials, $P_i(\cos\theta, \phi)$, with coefficients $A_i(p_\ell^{\ell\ell}, y^{\ell\ell}, m^{\ell\ell})$:

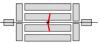
$$\begin{split} \frac{d\sigma}{dp_{T}^{\ell\ell} \, dy^{\ell\ell} \, dm^{\ell\ell} \, d\cos\theta \, d\phi} &= \frac{3}{16\pi} \frac{d\sigma^{\ell'\ell}}{dp_{T}^{\ell\ell} \, dp_{T}^{\ell\ell} \, dm^{\ell\ell}} \\ &\left\{ (1 + \cos^2\theta) + \frac{1}{2} \, A_0(1 - 3\cos^2\theta) + A_1 \, \sin 2\theta \, \cos\phi \right. \\ &\left. + \frac{1}{2} \, A_2 \, \sin^2\theta \, \cos 2\phi + A_3 \, \sin\theta \, \cos\phi + A_4 \, \cos\theta \right. \\ &\left. + A_5 \, \sin^2\theta \, \sin 2\phi + A_6 \, \sin 2\theta \, \sin\phi + A_7 \, \sin\theta \, \sin\phi \right\} \end{split}$$

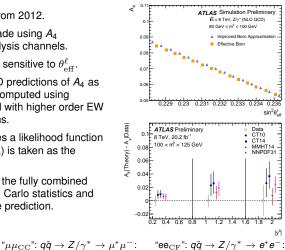

Electroweak parameters can be extracted from measurements of A_i, e.g. A₄ can be used to extract θ_{eff}.

Forward-Backward Asymmetry:

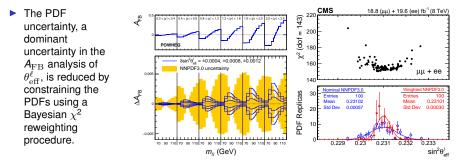
- Collins-Soper frame polar angle θ* can be computed using lab frame quantities.
- Imbalance between forward (cos θ* > 0) and backward (cos θ* < 0) events is the forward-backward asymmetry:</p>


$$A_{\rm FB} = (N_{\rm fwd} - N_{\rm bwd})/(N_{\rm fwd} + N_{\rm bwd})$$


A_{FB} is sensitive to θ_{eff}.


ATLAS Effective Weak Mixing Angle at 8 TeV [3]

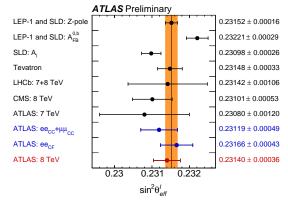
- $\mathcal{L} = 20.2 \text{ fb}^{-1}$ of *pp* data from 2012.
- Extraction of sin² θ^ℓ_{eff} is made using A₄ measurements from 3 analysis channels.
- ee_{CF} most challenging but sensitive to θ_{eff}^{ℓ} .
- ► LO in EW and NLO in QCD predictions of A_4 as a function of sin² θ_{eff}^{ℓ} are computed using DYTurbo, further enhanced with higher order EW and NNLO QCD corrections.
- ► The sin² θ^ℓ_{eff} that maximizes a likelihood function (or best describes the data) is taken as the measurement.
- Dominant uncertainties on the fully combined result include signal Monte Carlo statistics and the PDF uncertainty on the prediction.


Tony Kwan (McGill University)

April 26–30, 2021 8 / 13

CMS Effective Weak Mixing Angle at 8 TeV

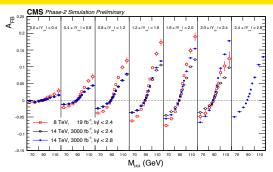
[4]


- $\mathcal{L} = 19.6$ (muon channel), 18.8 fb⁻¹ (electron channel) of *pp* data from 2012.
- ee_{CC} and $\mu\mu_{CC}$ were used in the measurement of A_{FB} .
- An angular event weighting is used to compute A_{FB}, making it less sensitive to detector efficiency and acceptance effects while reducing the statistical uncertainty.
- Experimental uncertainty is dominated by the lepton momentum calibration and the limited size of the signal MC.
- sin² θ^ℓ_{eff} is extracted from the data by fitting it with predictions from POWHEG v2 event generator using the NNPDF3.0 PDFs and varying the input effective weak mixing angle.

ATLAS and CMS Results

ATLAS: $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23140 \pm 0.00021 \text{ (stat.)} \pm 0.00024 \text{ (PDF)} \pm 0.00016 \text{ (syst.)}$

CMS: $\sin^2 \theta_{\rm eff}^{\ell} = 0.23101 \pm 0.00036 \, ({\rm stat.}) \pm 0.00031 \, ({\rm PDF}) \pm 0.00018 \, ({\rm syst.}) \pm 0.00016 \, ({\rm theo.})$

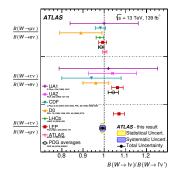


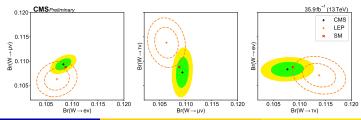
- Uncertainties are significantly reduced relative to previous measurements, now approaching Tevatron precision:
 - ATLAS: 0.23080 \pm 0.0012 (ATLAS 7 TeV) \rightarrow 0.23140 \pm 0.00036 (ATLAS 8 TeV)
 - CMS: 0.22870 \pm 0.0032 (CMS 7 TeV) \rightarrow 0.23101 \pm 0.00053 (CMS 8 TeV)
- ▶ Not including ee_{CF} , ATLAS $ee_{CC} + \mu\mu_{CC}$ comparable to CMS result.

Tony Kwan (McGill University)

Prospects at the HL-LHC

- Studies performed to assess the potential impact of the HL-LHC on future measurements of θ^ℓ_{eff} at ATLAS and CMS (and LHCb).
- $\mathcal{L} = 3000 \text{ fb}^{-1} \text{ of data at}$ $\sqrt{s} = 14 \text{ TeV.}$
- ▶ θ^ℓ_{eff} precision obtained from an A_{FB} analysis with expected to exceed the precision achieved in all previous single-experiment results to date.


The uncertainty on future measurements with HL-LHC are expected to be dominated by PDF uncertainty making it essential to reduce their effect as much as possible.


	ATLAS $\sqrt{s} = 8 \text{ TeV}$	ATLAS $\sqrt{s} = 14 \text{ TeV}$	ATLAS $\sqrt{s} = 14 \text{ TeV}$	Lint	$\delta_{\text{stat}}[10^{-5}]$		$\delta_{nnpdf3.0}^{nominal}[10^{-5}]$		$\delta_{nnpdf3.0}^{constrained} [10^{-5}]$	
$\mathcal{L} [fb^{-1}]$	20	3000	3000	(fb ⁻¹)	$ \eta < 2.4$	$ \eta < 2.8$	$ \eta < 2.4$	$ \eta < 2.8$	$ \eta < 2.4$	$ \eta < 2.8$
PDF set	MMHT14	CT14	PDF4LHC15 _{HL-LHC}	10	76	51	75	57	39	29
$sin^2 \theta_{eff}^{kept} [\times 10^{-5}]$	23140	23153	23153		76	51		57		
SIII Ueff [X10]	25140	25155	25155	100	24	16	75	57	27	20
Stat.	± 21	± 4	± 4	500	1 11	7	75	57	20	16
PDFs	± 24	± 16	± 13	1000	8	5	75	57	18	14
Experimental Syst.	± 9	± 8	± 6			5			10	
Other Syst.	± 13	-	-	3000	4	3	75	57	15	12
Total	± 36	± 18	± 15	19	43		49		27	
				19 (from [4])	44		54		32	

[5]

ATLAS and CMS Charged Current Drell-Yan [6, 7]

- Charged current Drell-Yan (mediated by the W[±]) is also an important and physics rich process actively being studied by the two experiments.
- Recent ATLAS measurements include a test of the universality of τ and μ lepton couplings in W decays from tt
 events at 13 TeV.
 - $R(\tau/\mu) = B(W \to \tau \nu_{\tau})/B(W \to \mu \nu_{\mu}) =$ 0.992 ± 0.013 (or ±0.007(stat.) ± 0.011(syst.)), which is in agreement with the hypothesis of universal lepton couplings.
- CMS has performed a similar measurement of the W branching fractions in pp collisions at 13 TeV.
 - $W \to e, \mu, \tau$: (10.83 ± 0.1)%, (10.94 ± 0.08)%, and (10.77 ± 0.21)% in support of lepton universality.

Tony Kwan (McGill University)

SM@LHC 2021

- Both the ATLAS and CMS experiments have thoroughly studied the Drell-Yan process using their respective 8 TeV and 13 TeV datasets.
- Differential measurements of the production cross section have been used to further our understanding of QCD in a large energy range – greatly important for a wide variety of Standard Model measurements and searches being done by the two experiments.
- ATLAS and CMS have measured the effective weak mixing angle at 8 TeV using novel techniques, drastically improving on the precision of the 7 TeV measurements.
- As the community works towards the HL-LHC, the large dataset that will be collected will offer many new opportunities for exciting Drell-Yan measurements.
- Finally, extremely rich Standard Model physics can be studied from measurements of the charged current Drell-Yan process.