Precise Standard Model predictions for **B** decays

Nico Gubernari

Standard Model at the LHC 2021 ONLINE, 29-Apr-2021

Introduction

Flavour changing currents

flavour changing charged currents (FCCC) occur at tree level (mediated by W^{\pm}) in the SM

flavour changing neutral currents (FCNC) absent at tree level in the SM FCNC are loop, GIM and CKM **suppressed in the SM**

FCNC sensitive to new physics contributions probe the SM through indirect searches

integrate out the W (and Z) boson \downarrow weak effective field theory

1/12

Hadronic matrix elements

study **B-meson decays to test the SM** (neglect QED corrections)

$$b \to c \qquad \langle D^{(*)}\ell \nu_{\ell} | \mathcal{O}_{eff} | B \rangle = \langle \ell \nu_{\ell} | \mathcal{O}_{lep} | 0 \rangle \langle D^{(*)} | \mathcal{O}_{had} | B \rangle$$

$$b \to s$$
 $\langle K^{(*)}\ell\ell | \mathcal{O}_{eff} | B \rangle = \langle \ell\ell | \mathcal{O}_{lep} | 0 \rangle \langle K^{(*)} | \mathcal{O}_{had} | B \rangle + \text{non-fact.}$

leptonic matrix elements: perturbative objects, high accuracy

hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties

decay amplitudes depend on:

 local hadronic matrix elements (form factors)
 (K^(*) | O(0) | B)
 (D^(*) | O(0) | B)

• nonlocal hadronic matrix elements (soft gluon contributions to the charm-loop) $\langle K^{(*)} | \mathcal{O}(0, x) | B \rangle$

Interesting observables

test the lepton flavour universality to test the SM

lepton flavour universality = the 3 lepton generations have the same couplings to the gauge bosons

violations of lepton flavour universality \Rightarrow new physics

observables to test LFU

$$R_{D^{(*)}} = \frac{\Gamma(B \to D^{(*)} \nu \tau)}{\Gamma(B \to D^{(*)} \nu \mu)} \qquad \qquad R_{K^{(*)}} = \frac{\Gamma(B \to K^{(*)} \mu^+ \mu^-)}{\Gamma(B \to K^{(*)} e^+ e^-)}$$

another test of the SM: angular observables in $B \rightarrow K^* \ell \ell$ (e.g. P'_5)

right choice of observables can reduce the hadronic uncertainties

B-anomalies

B-anomalies = tension between experimental measurements and theoretical predictions in B-meson decays involving different observables ($R_{D^{(*)}}, R_{K^{(*)}}, P'_{5}$...) and experiments

Standard Model predictions

Methods to compute hadronic matrix elements 5/12

non-perturbative techniques are needed

to compute hadronic matrix elements

Lattice QCD

numerical evaluation of correlators in a finite and discrete space-time

local matrix elements (usually at high q^2)

nonlocal matrix elements still work in progress

Light-cone sum rules (LCSRs)

based on unitarity, analyticity, and quark-hadron duality approximation

need universal *B*-meson matrix elements

applicable for both local and nonlocal matrix elements (at low q^2)

Definition of the form factors

form factors (FFs) parametrize exclusive hadronic matrix elements

$$\langle P(k) | \bar{q}_1 \gamma_\mu b | B(q+k) \rangle = 2 k_\mu f_+(q^2) + q_\mu (f_+(q^2) + f_-(q^2))$$

$$\langle P(k) | \bar{q}_1 \sigma_{\mu\nu} q^\nu b | B(q+k) \rangle = \frac{i f_T(q^2)}{m_B + m_P} (q^2 (2k+q)_\mu - (m_B^2 - m_P^2) q_\mu)$$

decomposition follows from Lorentz invariance

FFs are functions of the momentum transferred q^2 (q^2 is the dilepton mass squared)

3 independent *B* to pseudoscalar meson (*P*) FFs7 independent *B* to vector meson (*V*) FFs

State of the art

Transition	Lattice QCD	LCSR
$B \rightarrow K$	high q^2	$q^2 < 12 \text{ GeV}^2$
$B \rightarrow K^*$	high q^2	$q^2 < 6 \text{ GeV}^2$
$B_s \rightarrow \phi$	high q ²	$q^2 < 6 \text{ GeV}^2$
$B \rightarrow D$	high q^2	$q^2 < 0 \ { m GeV}^2$
$B \rightarrow D^*$	only A_1 at max q^2	$q^2 < 0 \text{ GeV}^2$
$B_s \rightarrow D_s$	high q ²	$q^2 < 0 \text{ GeV}^2$
$B_s \to D_s^*$	only A_1 at max q^2	$q^2 < 0 \text{ GeV}^2$

չ Տ

q

נ ↑

q

Combine lattice QCD and LCSRs for local FFs 8/12

obtain the FF values to the whole spectrum (no additional assumptions required) good agreement between lattice and LCSRs calculations

More on the $b \rightarrow c$ FFs

only one (A_1) out seven $B_{(s)} \rightarrow D^*_{(s)}$ FFs is known from lattice QCD

use Heavy Quark Effective Theory (HQET) to relate $B_{(s)} \rightarrow D_{(s)}$ FFs to $B_{(s)} \rightarrow D_{(s)}^*$ FFs

expand
$$B \rightarrow D^{(*)}$$
 FFs in the limit HQET $(m_{b,c} \rightarrow \infty)$

$$FF^{B \rightarrow D^{(*)}}(q^2) = c_0\xi(q^2) + c_1\frac{\alpha_s}{\pi}C_i(q^2) + c_2\frac{1}{m_b}L_i(q^2) + c_3\frac{1}{m_c}L_i(q^2) + c_4\frac{1}{m_c^2}l_i(q^2)$$

$$FF^{B_s \rightarrow D_s^{(*)}}(q^2) = c_0\xi^s(q^2) + c_1\frac{\alpha_s}{\pi}C_i(q^2) + c_2\frac{1}{m_b}L_i^s(q^2) + c_3\frac{1}{m_c}L_i^s(q^2) + c_4\frac{1}{m_c^2}l_i(q^2)$$
include $1/m_c^2$ corrections [Bordone/Jung/van Dyk '19]
all $B \rightarrow D^{(*)}$ and $B_s \rightarrow D_s^{(*)}$ FFs parametrized in terms of 14 Isgur-Wise functions

More on the $b \rightarrow c$ FFs

combine

- lattice QCD (where available)
- light-cone sum rules for the FFs
- dispersive bounds
- SVZ sum rules for Isgur-Wise functions
- with and w/o exp data

results for all $B \rightarrow D^{(*)}$ FFs and $B_s \rightarrow D_s^{(*)}$ FFs in the whole physical phase space

improved precision going beyond the $SU(3)_F$ limit

More on the $b \rightarrow s$ FFs

rare decays amplitude written in term of (local) FFs and non-local FFs

$$\mathcal{A}(B \to K^{(*)}\ell\ell) = \mathcal{N}\left[\left(C_9 L_V^{\mu} + C_{10} L_A^{\mu} \right) \mathcal{F}_{\mu} - \frac{L_V^{\mu}}{q^2} \left(C_7 \mathcal{F}_{T,\mu} + \mathcal{H}_{\mu} \right) \right]$$

(local) FFs:

• combine lattice QCD (high q^2) and LCSRs (low q^2) to get good precision ~10%

non-local FFs (charm-loop effects):

- calculated using an Operator Product Expansion (OPE)
- large uncertainties \rightarrow reduce uncertainties for a better understanding of rare *B* decays

Conclusions and outlook

Conclusion and outlook

$\boldsymbol{b} \rightarrow \boldsymbol{c}$ transitions:

- $B_{(s)} \rightarrow D_{(s)}$ FFs lattice QCD (and LCSRs) calculations available
- $B_{(s)} \rightarrow D^*_{(s)}$ FFs only LCSRs available except $A_1(q^2_{max})$ from lattice QCD (use HQET and dispersive bounds)
- non-local effects absent (neglect QED corrections)
- $\Rightarrow B_{(s)} \rightarrow D_{(s)}^*$ FFs from lattice are needed (and will come soon)!

$b \rightarrow s$ transitions:

 $B \rightarrow K^{(*)}$ and $B_s \rightarrow \phi$ FFs – lattice QCD (and LCSRs) calculations available

 \Rightarrow non-local effects implies large uncertainties – control these uncertainties (use dispersive bounds) [NG/van Dyk/Virto '20]

