CKM measurements and hadronic form factors

Svende Braun on behalf of the LHCb collaboration

University of Maryland

SM@LHC 2021 April 26-30, 2021

S. Braun (University of Maryland)

CKM measurements and hadronic FF

Motivation

- Precisely measure CKM matrix elements
 → fundamental SM parameters
- Discrepancy between **exclusive** and **inclusive** $|V_{ub}|$ and $|V_{cb}|$ measurements: $\approx 3\sigma$ tension \rightarrow new complementary measurements needed
- Using semileptonic decays: theoretically clean but experimentally challenging

- Exclusive determinations rely on form factors (FF) to parametrize hadronic current as function of q^2 ($\mu\nu$ invariant mass)
 - \rightarrow Lattice QCD (LQCD) or QCD sum rules
 - \rightarrow Extracted in experimental measurements from data
- B_s^0 decays are advantageous compared to $B^{0/+}$
 - Easier to calculate in LQCD due to heavier spectator quark \rightarrow more precise predictions
 - Experimentally less backgrounds contamination $(D_s^{**}$ mainly decays to $D^{(*)}K)$

First observation of the decay ${\it B_s^0} \to {\it K^-}\mu^+\nu_\mu$ and a measurement of $|{\it V_{ub}}|/|{\it V_{cb}}|$

Phys. Rev. Lett. 126 081804

(published 25 February 2021)

Measurement strategy

Phys. Rev. Lett. 126 081804

- Using 2012 data (2 fb⁻¹ @ 8 TeV)
- Signal decay $B^0_s o K^- \mu^+
 u_\mu$
- Normalized to $B^0_s o D^-_s \mu^+
 u_\mu$ with $D^-_s o K^+ K^- \pi^+$
- Measure

$$\underbrace{\frac{\mathcal{B}(\mathcal{B}_{s}^{0} \to \mathcal{K}^{-}\mu^{+}\nu_{\mu})}{\mathcal{B}(\mathcal{B}_{s}^{0} \to \mathcal{D}_{s}^{-}\mu^{+}\nu_{\mu})}}_{\text{Experiment}} = \frac{|V_{\textit{ub}}|^{2}}{|V_{\textit{cb}}|^{2}} \times \underbrace{\frac{\mathsf{FF}_{\mathcal{K}}}{\mathsf{FF}_{\mathcal{D}_{s}}}}_{\text{Theory input}}$$

- Split signal into 2 regions of q² to exploit different FF_K
 - Light-Cone sum rules (LCSR) @ low q^2 ($q^2 < 7 \, {
 m GeV}^2/c^4$)
 - LQCD @ high $q^2 (q^2 > 7 \, \text{GeV}^2/c^4)$
- Normalization mode FF fully described by LQCD [Phys Rev D. 101 074513]

Signal and normalization fits

• Perform binned maximum likelihood fit to B_s corrected mass $m_{corr} = \sqrt{m^2(X\mu) + p_{\perp}^2} + p_{\perp}$, with $X = K, D_s$ \rightarrow allows to discriminate between signal and different backgrounds

$$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

 $B_{c}^{0} \rightarrow D_{c}^{-} \mu^{+} \nu_{\mu}$

Signal and normalization fits

 \rightarrow First observation of the decay $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$

$|V_{ub}|/|V_{cb}|$ result

together with FF predictions from LCSR [JHEP 08 (2017) 112] for low q^2 and LQCD [Phys Rev D.100 034501] for high q^2 :

$$\begin{split} |V_{ub}| / |V_{cb}| (low) = & 0.0607 \pm 0.0015 (stat) \pm 0.0013 (syst) \pm 0.0008 (D_s) \pm 0.0030 (FF) \\ |V_{ub}| / |V_{cb}| (high) = & 0.0946 \pm 0.0030 (stat) {}^{+0.0024}_{-0.0025} (syst) \pm 0.0013 (D_s) \pm 0.0068 (FF) \end{split}$$

Measurement of $|V_{cb}|$ with $B_s^0 o D_s^{(*)-} \mu^+ u_\mu$ decays

Phys. Rev. D101 072004

(published 20 April 2020)

$B_s ightarrow D_s^{(*)} \mu u$ form factors

- Functions of di-lepton momentum transfer squared q^2 or hadron recoil w: $w = \frac{m_B^2 + m_D^2 q^2}{2m_B m_D}$
- Differential decay rates: $\frac{\mathrm{d}\Gamma(B_s \to D_s \mu \nu)}{\mathrm{d}w} = \frac{G_F^2 m_{D_s^3}}{48\pi^3} (m_{B_s} + m_{D_s})^2 \eta_{EW}^2 |V_{cb}|^2 (w^2 - 1)^{3/2} \frac{|\mathcal{G}(w)|^2}{|\mathcal{G}(w)|^2}$

$$\frac{\mathrm{d}^{4}\Gamma(B_{s}\to D_{s}^{*}\mu^{+}\nu_{\mu})}{\mathrm{d}w\mathrm{d}\cos\theta_{\mu}\mathrm{d}\cos\theta_{D}\mathrm{d}\chi} = \frac{3m_{B_{s}}^{2}m_{D_{s}^{*}}^{2}G_{F}^{2}}{16(4\pi)^{4}}\eta_{EW}^{2}|V_{cb}|^{2}\underbrace{|\mathcal{A}(w,\theta_{\mu},\theta_{D},\chi)|^{2}}_{\hookrightarrow 3\;\mathrm{FF}:\;h_{A1}(w),R_{1}(w),R_{2}(w)}$$

- At zero recoil point $(q_{max}^2, w = 1)$ FF can be computed precisely with LQCD, whereas experimental measurements done at different q^2 range
 - \rightarrow needs extrapolation, done through different FF parametrisations:
 - CLN (Caprini-Lellouch-Neubert) Nucl. Phys. B530 (1998) 153
 - BGL (Boyd-Grinstein-Lebed) Phys. Rev. Lett. 74 (1995) 4603
 → so far no significant differences observed

Measurement strategy

Phys. Rev. D101 072004

- Uses full Run 1 data (1 fb⁻¹ @ 7 TeV + 2 fb⁻¹ @ 8 TeV)
- Signal decays $B_s^0 \to D_s^{(*)-} \mu^+ \nu_\mu$ are reconstructed through $D_s(\to [KK]_\phi \pi)$
- Normalized to $B^0 \rightarrow D^{(*)-}\mu^+\nu_{\mu}$ kinematically similar \rightarrow reduce systematic uncertainties, needs as external input hadronization fraction f_s/f_d and measured branching fractions
- Measure $\mathcal{R}^{(*)} = \frac{\mathcal{B}(B_s^0 \to D_s^{(*)} \mu^+ \nu_\mu)}{\mathcal{B}(B^0 \to D^{(*)} \mu^+ \nu_\mu)} \to \text{extract } |V_{cb}|$ and branching fraction from that
- New idea: use variable $p_{\perp}(D_s^-) \rightarrow$ highly correlated with w and fully reconstructible

Signal and normalization fits

Phys. Rev. D101 072004

• Perform 2D template fit to $p_{\perp}(D_s)$ and corrected mass

 $m_{corr} = \sqrt{m^2(D_s\mu) + p_\perp^2(D_s\mu) + p_\perp(D_s\mu)}$

- \rightarrow allows to discriminate between signal and different backgrounds
- Signal templates depend on form factors \rightarrow recalculated at each fit iteration
 - \rightarrow fit also sensitive to FF parameters
 - \rightarrow use both parametrisations: CLN and BGL

Signal fit results

Signal fit using CLN parametrisation:

Phys. Rev. D101 072004

Background-subtracted distributions of D_s and D^{*}_s

Results

Phys. Rev. D101 072004

- $|V_{cb}|_{CLN} = (41.6 \pm 0.6(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$ $|V_{cb}|_{BGL} = (42.3 \pm 0.8(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$
- Both in agreement with each other
- Confirms trend that parametrisation not responsible for inclusive vs exclusive disagreements
- Dominant uncertainty comes from external inputs f_s/f_d , then $D_s \rightarrow KK\pi$ Dalitz structure
- Both results are in agreement with previous exclusive and inclusive $|V_{cb}|$ determinations

 \rightarrow First exclusive $|V_{cb}|$ measurement at hadron collider and using B_s mesons

Measurement of the shape of the $B^0_s o D^{*-}_s \mu^+
u_\mu$ differential decay rate

JHEP 12 (2020) 144

(published 22 December 2020)

Measurement strategy

JHEP 12 (2020) 144

- Uses Run 2 data from 2016 (1.7 fb $^{-1}$ @ 13 TeV)
- Goal: measure $B_s^0 o D_s^{*-} \mu^+ \nu_\mu$ FF precisely using CLN and BGL parametrisations
- Reconstruct $B_s^0 \to D_s^{*-}\mu^+\nu_{\mu}$ through $D_s^{*-} \to D_s^-\gamma$ with $D_s^- \to \phi(\to K^+K^-)\pi^-$ and $D_s^- \to K^{*0}(\to K^+\pi^-)K^-$

 \rightarrow Reconstruct soft photon in cone around D_s^- flight direction

ightarrow fit to ${\it D_s^*}^-$ mass removes background

Measure differential decay rate as function of w

 \rightarrow template fit to corrected mass in bins of *w* using simulation

• Correct raw yields for detector resolution (unfolding), selection and reconstruction efficiencies \rightarrow fit resulting spectrum with CLN and BGL parametrisations

Signal fits

JHEP 12 (2020) 144

- Extended binned maximum-likelihood fit in 7 bins of *w* to extract raw yields $\rightarrow w$ binning chosen to have same amount of signal yield
- *w* known up to quadratic ambiguity \rightarrow use MVA regression method <u>JHEP 02 (2017) 021</u> to select solution with 70% purity
- Signal component and backgrounds from semitauonic B_s decays, double charm decays, feed-down from higher excited D_s^{*-} and combinatorial background from SS data

Form factor Fit

JHEP 12 (2020) 144

1.3

14 $w_{\rm unf}$

- Measured w spectrum unfolded and corrected using bin-by-bin efficiencies to extract FF \rightarrow CLN and BGL parametrisations consistent with each other and data
- Leading FF results:
 - CLN: $\rho^2 = 1.16 \pm 0.05(stat) \pm 0.07(syst)$
 - BGL: $a_1^f = -0.002 \pm 0.034(stat) \pm 0.046(syst),$ $a_{2}^{f} = 0.93^{+0.05}_{-0.20}(stat)^{+0.06}_{-0.28}(syst)$

 \rightarrow systematically limited measurement, mainly from simulation statistics

 \rightarrow Values agree with HFLAV world average from $B^0 \rightarrow D^{*+} \mu^- \bar{\nu}_\mu$

→ Consistent results with previously discussed analysis Phys. Rev. D101 072004

3

 \rightarrow First unfolded differential decay rate for $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ as function of the w

Conclusion and Outlook

- **1** Measurement of $|V_{ub}|/|V_{cb}|$ from $B_s^0 \to K^- \mu^+ \nu_\mu$ in two q^2 regions
 - Discrepancy between low and high q² found
 - $|V_{ub}|/|V_{cb}|$ in high q^2 region compatible with previous measurements

ightarrow Planned measurement of differential q^2 spectrum of $B^0_s
ightarrow K^- \mu^+
u_\mu$ with full Run 1 + Run 2 data

- 2 Exclusive $|V_{cb}|$ measurement using $B_s \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$
 - Result in agreement with previous exclusive and inclusive measurements from B^{0/+} decays
- **3** Measurement of $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ FF
 - Data consistent with both CLN and BGL FF parametrisations & in agreement with HFLAV world-average
 - \rightarrow Paves the way towards future $R(D_s^*)$ measurements

Outlook:

- Several other $|V_{ub}|/|V_{cb}|$ analysis in the pipeline using $B_c^+ \to D^{0(*)}\mu^+\nu$ and $B^+ \to \rho^0\mu^+\nu$ decays \to theoretical FF predictions needed
- $|V_{cb}|$ and FF measurement of $B^0 \rightarrow D^{*-}\mu^+\nu$ and differential $d\Gamma/dq^2$ from $\Lambda_b^0 \rightarrow \Lambda_c^+\mu^-\bar{\nu}$

Thanks for your attention!

You can also contact me via svende.braun@cern.ch

Ongoing measurements

 $|V_{ub}|/|V_{cb}|$ analyses:

- B⁺_c → D^{0(*)}(→ K⁻π⁺)μ⁺ν as signal wrt. B⁺_c → J/ψ(→ μ⁺μ⁻)μ⁺ν as normalization channel
 - $B_c^+ \rightarrow D$ FF in progress by L. Cooper et al, HPQCD using heavy-HISQ approach, expect 10%(20%) uncertainty at $q_{max}^2(q^2 = 0)$ presented by Christine Davies at Implications Workshop 2020

$$B^+ o
ho^0 (o \pi^+\pi^-) \mu^+
u$$
 as signal wrt. $B^+ o ar{D}^0 (o \pi^+\pi^-) \mu^+
u$

 \rightarrow precise theoretical FF predictions needed

|V_{cb}| analyses:

.

Λ⁰_b → Λ⁺_c μ⁻ν̄: normalise to inclusive Λ⁰_b semileptonic decays and employ equal semileptonic partial widths (JHEP 09(2011)012), by measuring

$$\Gamma(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}) = \frac{n_{corr}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu})}{n_{corr}(\Lambda_b^0 \to X_c \mu^-) \times \Gamma(\Lambda_b^0 \to X_c \mu^- \bar{\nu})}$$

 \rightarrow perform differential measurement $d\Gamma/dq^2$ as function of q^2 to control FF uncertainties Phys Rev D 96 112005

•
$$B^0 \to D^{*-}\mu^+\nu$$
 measure also FF using similar method:
 $\frac{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu)}{\mathcal{B}(B \to X_c \mu^+ \nu X)} = \frac{2n_{corr}(B^0 \to D^{*-}\mu^+\nu)}{n_{corr}(D^0 \mu^+ X) + n_{corr}(D^-\mu^+ X)}$

Prospects for the Upgrade II

- Potential gains in detector performance arXiv 1808.08865:
 - RF foil: removal or further thinning reduces multiple scattering and such improves corrected mass resolution, selection efficiency, purity and q² resolution
 - TORCH detector: improves low momentum PID performance \rightarrow important for kaon reconstruction at large q^2

 \rightarrow together with large dataset of 300 fb⁻¹ expected experimental systematic uncertainty on $|V_{ub}|/|V_{cb}|$ of 0.5%

- External inputs from branching fractions for B_s, Λ_c need to be measured up to 1% uncertainty by BesIII & others
- Further Lattice QCD improvements needed \rightarrow uncertainty of 1%

 \Rightarrow Official goal: total uncertainty of 1% expected with Upgrade II dataset, same precision as for Belle II experiment (50 ab^{-1} by 2031)

Also other decay modes accessible: 30k $B_c^+ \rightarrow D^0 \mu^+ \nu$ and $B^+ \rightarrow \mu^+ \mu^- \mu^+ \nu$ expected and large

datasets for precise shape & $|V_{cb}|$ measurements available

Branching fraction result

Phys. Rev. Lett. 126 081804

Full ratio of branching fractions gives:

$$\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_{\mu})}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_{\mu})} = 4.89 \pm 0.21(\textit{stat})^{+0.20}_{-0.21}(\textit{syst}) \pm 0.14(D_s) \times 10^{-3}$$

including external branching fraction $\mathcal{B}(D_s^- \to K^+ K^- \pi^-)$. This can be converted into total branching fraction using external inputs:

$$\mathcal{B}(B^0_s \to K^- \mu^+ \nu_\mu) = \tau_{B_s} \times \frac{\mathcal{B}(B^0_s \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B^0_s \to D_s^- \mu^+ \nu_\mu)} \times |V_{cb}|^2 \times FF_{D_s},$$

with $\tau_{B_{\rm S}}=1.515\pm0.004~{\rm ps},~|V_{cb}|_{\it excl}=(39.5\pm0.9)\times10^{-3}$ from PDG and $FF_{D_{\rm S}}=9.15\pm0.37~{\rm ps}^{-1}$ [Phys Rev D. 101 074513] gives

 $\mathcal{B}(\textit{B}_{s}^{0} \rightarrow \textit{K}^{-}\mu^{+}\nu_{\mu}) = (1.06 \pm 0.05(\textit{stat}) \pm 0.04(\textit{syst}) \pm 0.06(\textit{ext}) \pm 0.04(\textit{FF})) \times 10^{-4}$

 \rightarrow First observation of the decay $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$ and measurement of its branching fraction

Systematic Uncertainties

Phys. Rev. Lett. 126 081804

$\frac{\mathcal{B}(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu})}{\mathcal{B}(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu})} \ [\%]$	All q ²	low q^2	high q ²
Fit template	+2.3	+1.8	+3.0
Tracking	2.0	2.0	2.0
Trigger	1.4	1.2	1.6
q ² migration	-	2.0	2.0
Efficiency	1.2	1.6	1.6
Neutral BDT	1.1	1.1	1.1
Particle identification	1.0	1.0	1.0
$\sigma(m_{\rm corr})$	0.5	0.5	0.5
Isolation	0.2	0.2	0.2
Charged BDT	0.6	0.6	0.6
Total	+4.0 -4.3	$^{+4.3}_{-4.5}$	$^{+5.0}_{-5.3}$
MC statistical uncert.	2.1	2.4	3.2

- Largest systematic from fit templates:
 - · variations of FF models
 - relative K* contributions
 - modelling of $B
 ightarrow c ar c (
 ightarrow \mu \mu) KX$ component
- Tracking systematic due to remaining differences between 2-track signal and 4-track normalization channel → hadronic interaction with detector material
- q² migration & efficiency evaluated from MC simulation → reducible with larger simulation samples

\rightarrow Systematically limited measurement

Neutrino and q^2 - reconstruction

1) Infer Neutrino momentum p_{ν} from B_s^0 -topology:

 transverse momentum of neutrino component p_⊥ easy to calculate

longitudinal component p_{||} determined up to 2-fold ambiguity with quadratic equation:

$$abla_{\parallel}=rac{-b\pm\sqrt{b^2-4ac}}{2a},$$

where *a*, *b* and *c* are defined as $a = |2p_{\parallel}m_{X\mu}|^2$, $b = 4p_{\parallel}(2p_{\perp}p_{\parallel} - m_{miss}^2)$, $c = 4p_{\perp}(p_{\parallel}^2 + m_{B_s}^2) - |m_{miss}^2|^2$, $m_{miss}^2 = m_{B_s}^2 - m_{X\mu}^2$.

ightarrow known to 2-fold ambiguity

2) Use linear regression method [JHEP02(2017)021] to choose solution most consistent with B_s momentum

$B^0_s o K^- \mu^+ u_\mu$ Signal Selection

Phys. Rev. Lett. 126 081804

- Large background contributions from
 - $|V_{cb}|$ -decays: $B \rightarrow D(\rightarrow KX)\mu X'$
 - $B \rightarrow c\bar{c}(\rightarrow \mu\mu)KX$ background, dominated by $B^+ \rightarrow J/\psi(\rightarrow \mu\mu)K^+$, $B^+ \rightarrow J/\psi(\rightarrow \mu\mu)K^{*+}$
 - higher excited kaon resonances: $B_s^0 \rightarrow K^{*+} \mu \nu_{\mu}, B_s^0 \rightarrow K_2^{*+}(1430) \mu \nu_{\mu},$ $B_s^0 \rightarrow K^{*,+}(1430) \mu \nu_{\mu}$ with $K^{*+} \rightarrow K^+ \pi^0$
 - MisID & combinatorial background: estimated from data
- \rightarrow require signal tracks to be isolated

 \rightarrow train two BDT classifiers against additional charge and neutral particles

$B^0_s ightarrow K^- \mu^+ u_\mu$ FF predictions

Theoretical calculations:

- LCSR [JHEP 08 (2017) 112] at low q²
- 3 different LQCD predictions at high q²:
 - UKQCD [Phys. Rev. D 91, 074510 (2015)]
 - HPQCD [Phys. Rev. D 90, 054506 (2014)]
 - MILC [Phys Rev D.100 034501 (2019)]

Integrated decay width:

	full q ²	low q ²	high q²
LCSR	11.07 ± 1.14	4.14 ± 0.38	6.94 ± 1.04
UKQCD	4.54 ± 1.29	1.18 ± 0.63	3.37 ± 0.74
HPQCD	7.75 ± 1.56	3.29 ± 1.00	4.47 ± 0.58
MILC	$\textbf{4.26} \pm \textbf{0.92}$	0.94 ± 0.48	3.32 ± 0.46

Phys. Rev. Lett. 126 081804

Recent update from Flavour Lattice Averaging Group (FLAG) [arXiv 1902.08191] \rightarrow dominated by MILC FFs

 \rightarrow preliminary fit to lattice and LHCb data gives value of $|V_{ub}|/|V_{cb}|$ consistent with our high q^2 value

(Stefan Meinel @Snowmass Mini-workshop, January 2021)

Normalization Fit

Phys. Rev. Lett. 126 081804

Fit is performed in two stages:

- fit to D⁻_s → K⁺K[−]π[−] invariant mass in 40 bins of B_s corrected mass (3000-6500 MeV/c²) → gives Ds yield as function of mcorr & removes combinatorial background
- 2 binned maximum likelihood fit to B_s corrected mass

Background contributions from:

- higher excitations: $B_s^0 \rightarrow D_s^{*-}(\rightarrow D_s^-\gamma)\mu^+\nu_\mu,$ $B_s^0 \rightarrow D_s^{**-}(\rightarrow D_s^-X)\mu^+\nu_\mu$ where $D_s^{**-} =$ $D_{s0}^{*-}(2317), D_{s1}^-(2460), D_{s1}^-(2536)$
- double charm decays: $B_{u,d,s} \rightarrow D_s^{(*)-} D^{(*)}(\rightarrow \mu\nu X')$
- semitauonic decays: $B^0_s o D^-_s au^+
 u_ au$
- MisID muon background
- \rightarrow templates of similar shape are grouped together

$B^0_s o K^- \mu^+ u_\mu$ Fit projections

projections on control variables for low q^2 bin:

Phys. Rev. Lett. 126 081804

S. Braun (University of Maryland)

CLN parametrisation

based on Heavy Quark Effective Theory \rightarrow includes more constraints: dispersion relations and reinforced unitarity bounds \rightarrow simplified FF expression

for vector case:

$$\begin{split} h_{A1}(w) &= h_{A1}(1) [1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3] \\ R_1(w) &= R_1(1) - 0.12(w-1) + 0.05(w-1)^2 \\ R_2(w) &= R_2(1) - 0.11(w-1) - 0.06(w-1)^2 \end{split}$$

with $z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$

 \rightarrow form factors depend on 4 parameters: ρ^2 , $R_1(1)$, $R_2(1)$ and $h_{A1}(1)$, $h_{A1}(1)$ taken from LQCD

for scalar case:

$$\mathcal{G}(z) = \mathcal{G}(0)[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3]$$

 \rightarrow form factors expressed in terms of ρ^2 and $\mathcal{G}(0)$, $\mathcal{G}(0)$ taken from LQCD

BGL parametrisation

follows from more general arguments based on dispersion relations, analyticity and crossing symmetry, form factors expressed as series expansion:

in vector case 3 series:

$$f(z) = \frac{1}{P_{1+}(z)\phi_{f}(z)}\sum_{i=0}^{N}b_{i}z^{i}, g(z) = \frac{1}{P_{1-}(z)\phi_{g}(z)}\sum_{i=0}^{N}a_{i}z^{i}, \mathcal{F}_{1}(z) = \frac{1}{P_{1+}(z)\phi_{\mathcal{F}_{1}}(z)}\sum_{i=0}^{N}c_{i}z^{i}$$

for 3 FF:

$$h_{A1}(w) = \frac{f(w)}{\sqrt{m_B m_{D^*}(1+w)}}, R_1(w) = (1+w)m_B m_{D^*} \frac{g(w)}{f(w)}, R_2(w) = \frac{w-r}{w-1} - \frac{\mathcal{F}_1(w)}{m_B(w-1)f(w)}$$

with $r = m_{D^*}/m_B$

in scalar case 1 series for 1 FF:

$$f_+(z) = \frac{1}{P_1 - (z)\phi(z)} \sum_{i=0}^N d_i z^i, |\mathcal{G}(z)|^2 = \frac{4r}{(1+r)^2} |f_+(z)|^2$$
 with $r = m_D/m_B$

 $P_{1\pm}(z)$ Blaschke factors and $\phi_{f,g,\mathcal{F}_1}(z)$ so-called outer functions

 \rightarrow coefficients of series a_i, b_i, c_i, d_i to be determined, either from data or calculations, bound by unitarity constraints, with small ranges for *z* series converge fast

Selection for Phys. Rev. D101 072004

- Selection closely follows paper Phys. Rev. Lett. 119 101801
- Apply vetoes to suppress misID bkg:
 - $B_{\rm s} o \psi(o \mu^+\mu^-)\phi(o K^+K^-)$ where muon misid. as kaon
 - $\Lambda_b \to \Lambda_c (\to p K^- \pi^+) \mu \nu X$ where the proton is mis-identified as a kaon or a pion
 - $B^0_{(s)} \rightarrow D^-_{(s)} \pi^+$ with pion is mis-identified as muon
- Suppress partially reconstructed background via $p_{\perp}(D_s) < 1.5 + 1.1 \times (m_{corr} 4.5))$

 $\rightarrow 2.72 x 10^5$ signal and $0.82 x 10^5$ normalization channel candidates remain

• remaining background from D_s^{**} feed-down such as $D_{s0}^{*}(2317)^{-}, D_{s1}(2460)^{-}$, semitauonic B_s decays, double charm decays

ightarrow very similar shape therefore merged together as 'physics background' in signal fit

Complete fit results for Phys. Rev. D101 072004

CLN parametrization

BGL parametrization

Parameter	Value
$ V_{cb} $ [10 ⁻³]	$41.4 \pm 0.6 \text{ (stat)} \pm 1.2 \text{ (ext)}$
$\mathcal{G}(0)$	$1.102 \pm 0.034 (\mathrm{stat}) \pm 0.004 (\mathrm{ext})$
$\rho^{2}(D_{s}^{-})$	$1.27 \pm 0.05 \text{ (stat)} \pm 0.00 \text{ (ext)}$
$\rho^2(D_s^{*-})$	$1.23 \pm 0.17 \text{ (stat)} \pm 0.01 \text{ (ext)}$
$R_1(1)$	$1.34 \pm 0.25 \text{ (stat)} \pm 0.02 \text{ (ext)}$
$R_{2}(1)$	$0.83 \pm 0.16 \text{ (stat)} \pm 0.01 \text{ (ext)}$

a	meter		7	/alue	
5	$[10^{-3}]$	42.3	± 0.8	$(stat) \pm 1.2$	(ext)
I)		1.097	$\pm \ 0.034$	$(stat) \pm 0.001$	(ext)
		-0.017	$\pm \ 0.007$	$(stat) \pm 0.001$	(ext)
		-0.26	± 0.05	$(stat) \pm 0.00$	(ext)
		-0.06	± 0.07	$(stat) \pm 0.01$	(ext)
		0.037	$\pm \ 0.009$	$(stat) \pm 0.001$	(ext)
		0.28	± 0.26	$(stat) \pm 0.08$	(ext)
		0.0031	± 0.0022	$2(\text{stat}) \pm 0.0006$	$6 (\mathrm{ext})$

external inputs:

experiment

t	h	e	o	r١	v
		0	0	•	y

Parameter	Value	Parameter	Value
$ \begin{array}{c} f_s/f_d \times \mathcal{B}(D_s^- \to K^- K^+ \pi^-) \times \tau \ [\text{ps}] \\ \mathcal{B}(D^- \to K^- K^+ \pi^-) \end{array} $	$\begin{array}{c} 0.0191 \pm 0.0008 \\ 0.00993 \pm 0.00024 \end{array}$	$\eta_{\rm EW} \\ h_{A_1}(1)$	$\begin{array}{c} 1.0066 \pm 0.0050 \\ 0.902 \pm 0.013 \end{array}$
$\mathcal{B}(D^{*-} \to D^{-}X)$ $\mathcal{B}(B \stackrel{0}{\to} D^{-}\mu^{+}\nu_{\mu})$ $\mathcal{B}(B \stackrel{0}{\to} D^{*-}\mu^{+}\nu_{\nu})$	0.323 ± 0.006 0.0231 ± 0.0010 0.0505 ± 0.0014	CLN param $\mathcal{G}(0)$ $\rho^2(D_s^-)$	$\begin{array}{c} \text{etrization} \\ 1.07 \pm 0.04 \\ 1.23 \pm 0.05 \end{array}$
$ \begin{array}{c} \mathbb{G}_{s}^{0} \max \left[\mathrm{GeV}/c^{2} \right] \\ D_{s}^{-} \max \left[\mathrm{GeV}/c^{2} \right] \\ D_{s}^{*-} \max \left[\mathrm{GeV}/c^{2} \right] \end{array} $	$\begin{array}{c} 5.36688 \pm 0.00017 \\ 1.96834 \pm 0.00007 \\ 2.1122 \pm 0.0004 \end{array}$	BGL param $\mathcal{G}(0)$ d_1 d_2	etrization 1.07 ± 0.04 -0.012 ± 0.008 -0.24 ± 0.05

Systematic uncertainties for Phys. Rev. D101 072004

	Uncertainty															
Source	CLN parametrization					BGL parametrization										
	$ V_{cb} $ [10 ⁻³]	$\begin{array}{c} \rho^2(D_s^-) \\ [10^{-1}] \end{array}$	G(0) [10 ⁻²]	$\begin{array}{c} \rho^2(D_s^{\star-}) \\ [10^{-1}] \end{array}$	$R_1(1)$ [10 ⁻¹]	$R_2(1)$ [10 ⁻¹]	$ V_{cb} $ [10 ⁻³]	d_1 [10 ⁻²]	d_2 [10 ⁻¹]	G(0) [10 ⁻²]	$\begin{bmatrix} b_1 \\ [10^{-1}] \end{bmatrix}$	$\begin{bmatrix} c_1 \\ 10^{-3} \end{bmatrix}$	$\begin{bmatrix} a_0 \\ [10^{-2}] \end{bmatrix}$	a_1 [10 ⁻¹]	\mathcal{R} [10 ⁻¹]	\mathcal{R}^{*} [10 ⁻¹]
$f_s/f_d \times \mathcal{B}(D_s^- \rightarrow K^+K^-\pi^-)(\times \tau)$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.4
$\mathcal{B}(D^- \rightarrow K^-K^+\pi^-)$	0.5	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.3
$\mathcal{B}(D^{*-} \rightarrow D^{-}X)$	0.2	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.2	0.0	0.3	-	0.2
$\mathcal{B}(B^0 \rightarrow D^- \mu^+ \nu_\mu)$	0.4	0.0	0.3	0.1	0.2	0.1	0.5	0.1	0.0	0.1	0.1	0.4	0.1	0.7	-	-
$\mathcal{B}(B^0 \rightarrow D^{*-}\mu^+\nu_{\mu})$	0.3	0.0	0.2	0.1	0.1	0.1	0.2	0.0	0.0	0.1	0.1	0.3	0.1	0.4	-	-
$m(B_s^0), m(D^{(*)-})$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-	-
η_{EW}	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-	-
$h_{A_1}(1)$	0.3	0.0	0.2	0.1	0.1	0.1	0.3	0.0	0.0	0.1	0.1	0.3	0.1	0.5	-	-
External inputs (ext)	1.2	0.0	0.4	0.1	0.2	0.1	1.2	0.1	0.0	0.1	0.1	0.6	0.1	0.8	0.5	0.5
$D^{(s)} \rightarrow K^+ K^- \pi^- \text{ model}$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.4
Background	0.4	0.3	2.2	0.5	0.9	0.7	0.1	0.5	0.2	2.3	0.7	2.0	0.5	2.0	0.4	0.6
Fit bias	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.2	0.4	0.2	0.4	0.0	0.0
Corrections to simulation	0.0	0.0	0.5	0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0
Form-factor parametrization	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	0.1
Experimental (syst)	0.9	0.3	2.2	0.5	0.9	0.7	0.9	0.5	0.2	2.3	0.7	2.1	0.5	2.0	0.6	0.7
Statistical (stat)	0.6	0.5	3.4	1.7	2.5	1.6	0.8	0.7	0.5	3.4	0.7	2.2	0.9	2.6	0.5	0.5

Complete fit results for JHEP 12 (2020) 144

different fit results

CLN fit	
Unfolded fit Unfolded fit with massless leptons Folded fit	$\begin{split} \rho^2 &= 1.16 \pm 0.05 \pm 0.07 \\ \rho^2 &= 1.17 \pm 0.05 \pm 0.07 \\ \rho^2 &= 1.14 \pm 0.04 \pm 0.07 \end{split}$
BGL fit	
Unfolded fit	$a_1^f = -0.002 \pm 0.034 \pm 0.046 a_2^f = 0.93^{+0.05}_{-0.20} + 0.06 a_0.38$
Folded fit	$a_1^f = 0.042 \pm 0.029 \pm 0.046 a_2^f = 0.93^{+0.05}_{-0.20} {}^{+0.06}_{-0.38}$

total efficiency dependence

cross check: data-MC comparisons after fit using fitted fractions

 \rightarrow MC describes angular distributions well!

Systematic uncertainties for JHEP 12 (2020) 144

Source	$\sigma(\rho^2)$	$\sigma(a_1^f)$	$\sigma(a_2^f)$
Simulation sample size	0.053	0.036	+0.04 -0.35
Sample sizes for efficiencies and corrections	0.020	0.016	+0.02 -0.16
SVD unfolding regularisation	0.008	0.004	_
Radiative corrections	0.004	-	-
Simulation FF parametrisation	0.007	0.005	-
Kinematic weights	0.024	0.013	-
Hardware-trigger efficiency	0.001	0.008	-
Software-trigger efficiency	0.004	0.002	-
D_s^- selection efficiency	-	0.008	-
D_s^{*-} weights	0.002	0.014	_
External parameters in fit	0.024	0.002	0.04
Total systematic uncertainty	0.068	0.046	$^{+0.06}_{-0.38}$
Statistical uncertainty	0.052	0.034	+ 0.05 - 0.20

Previous measurements

 $\Lambda_b \rightarrow \Lambda_c^+ \mu^- \nu$ differential decay rate [Phys Rev D. 96 112005 (2017)]

- Using Run 1 data (1 fb⁻¹ @ 7 TeV + 2 fb⁻¹ @ 8 TeV)
- Signal reconstructed through $\Lambda_c (\rightarrow p K^- \pi^+) \mu$
- Use decay $\Lambda_b \to \Lambda_c^+ \pi^+ \pi^- \mu^- \nu$ to estimate bkg from $\Lambda_b \to \Lambda_c^{*+} \mu^- \nu$ with $\Lambda_c^{*+} \to \Lambda_c^+ \pi^+ \pi^- \to$ contributions subtracted from data
- Measured as function of q^2 , $w \to$ reconstructed up to 2-fold ambiguity (50-60% purity), lower momentum solution chosen
- Correct raw yields for detector resolution and efficiencies and fit spectrum with FF predictions from LQCD [PhysRevD 92 034503] and HQET [Phys Rev D 79 014023]

 \rightarrow spectrum is well described by both

Previous measurements

 $|V_{ub}|/|V_{cb}|$ using $\Lambda_b
ightarrow p \mu^-
u~$ [Nature Physics 11 (2015) 743]

- Using 2012 data (2 fb⁻¹ @ 8 TeV)
- Signal: $\Lambda_b \to p \mu^- \nu$, normalisation: $\Lambda_b \to \Lambda_c^+ (\to p K^- \pi^+) \mu^- \nu$
- Measure

$$\underbrace{\frac{\mathcal{B}(\Lambda_b \to \rho \mu^- \nu)_{q^2 > 15 \text{ GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \mu^- \nu)_{q^2 > 7 \text{ GeV}^2/c^4}}_{\text{Experiment}} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \times \underbrace{\frac{\mathsf{FF}_{\rho}}{\mathsf{FF}_{\Lambda_c}}}_{\text{Theory input}}$$

with FF from LQCD [PhysRevD 92 034503]

 $\rightarrow |V_{ub}|/|V_{cb}| = 0.079 \pm 0.004(exp.) \pm 0.004(FF)$

gives 17687 \pm 733

S. Braun (University of Maryland)

LHCb Detector

JINST 3 S08005 (2008), Int. J. Mod. Phys. A 30, 1530022 (2015)

- VELO: primary and secondary vertex
- Tracking: momentum of charged particle
- RICHs: particle identification K^{\pm}, π^{\pm}

- MUON: trigger on high $ho_{
 m T}~\mu^{\pm}$ & PID
- Calorimeter: ECAL and HCAL for γ, \textit{e}^{\pm} and hadronic energy