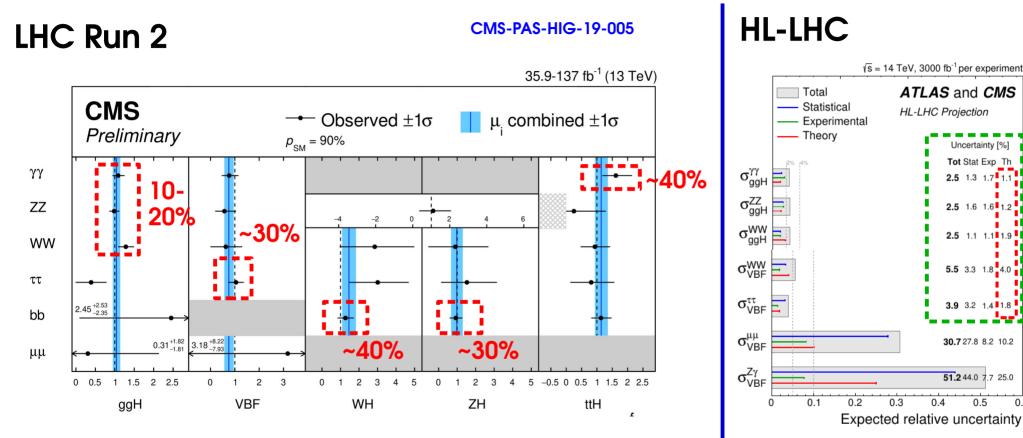


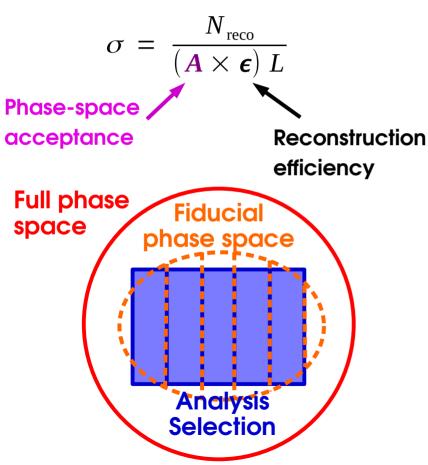
Nicolas Berger (LAPP Annecy) on behalf of the ATLAS and CMS collaborations



Higgs boson production and decay

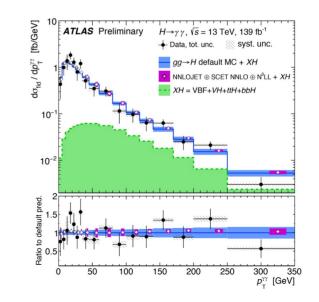
Inclusive Higgs boson measurements @ LHC

CERN-LPCC-2018-04

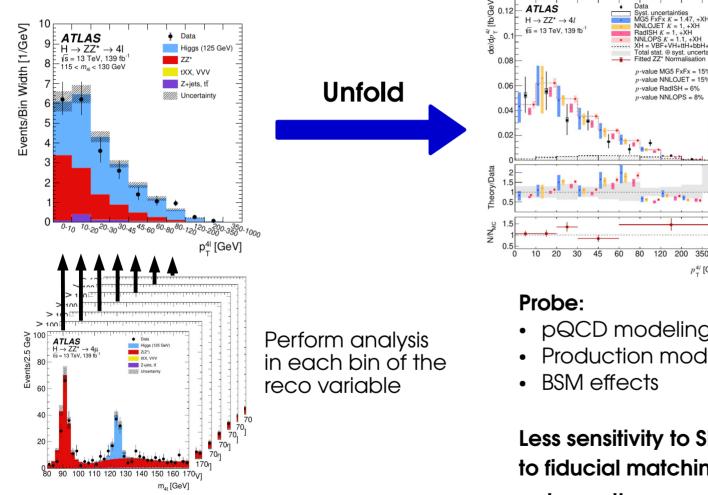

All main production and decay modes observed in Runs 1 and 2 Precision ~10-40% (per experiment) in all processes Systematics comparable to statistical uncertainties for some modes

Precision reaches <3% Large theory uncertainties

0.6


Fiducial Differential cross-section measurements

Cross-section measurement:



Fiducial differential cross-sections

- \rightarrow Fiducial : target phase-space region matching experimental selection (A \approx 1)
- → **Differential**: in bins of a variable $(p_T^H, N_{jets}, ...)$, typically unfolded to particle-level quantities

Fiducial differential measurements

Variables:

Production kinematics р_т ^н, у^н

Associations $N_{iets}, m_{ii}, p_T^{j1}$

Decay kinematics m₁₂, m₃₄ (H→ZZ*) $\cos \theta^* (H \rightarrow \gamma \gamma)$

- pQCD modeling
- Production mode composition

350 1000 p_{τ}^{4l} [GeV]

adISH K = 1 + X +

VBE+VH+ttH+bbH

otal stat @ syst uncertain

value NNLOJET - 159

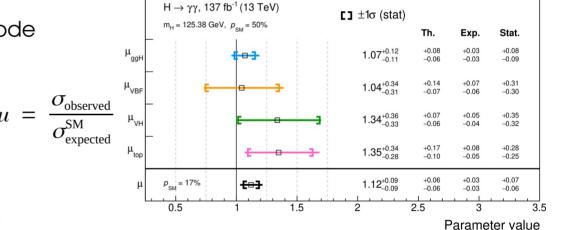
.....

120 200

value RadISH - 6%

value NNI OPS - 8

BSM effects


Less sensitivity to SM model assumptions thanks to fiducial matching and kinematic binning \Rightarrow Lower theory uncertainties.

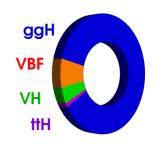
Production modes to Simplified Template Cross-sections

Multiple relevant Higgs production modes, sensitive to different couplings, ⇒ Important to separately measure

Per-mode total cross-section measurements

- Assume SM kinematics valid within each mode
 ⇒ model dependence
- No sensitivity to kinematics

CMS


How to improve further?

- Better match to measurement acceptance
- Measure in smaller kinematic regions within each mode

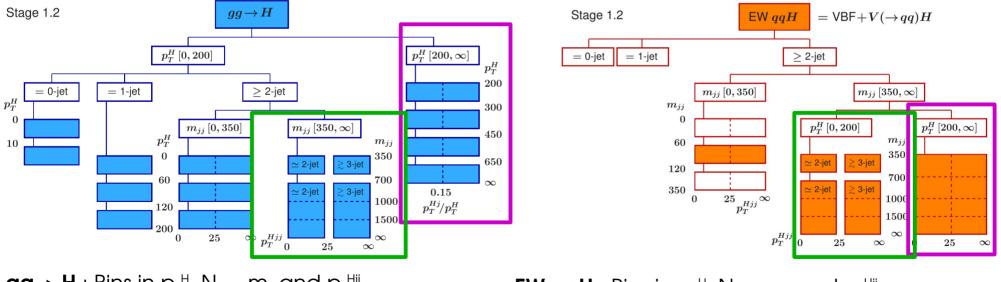
⇒ Simplified Template Cross-sections (STXS)

Number of STXS results

2017	2018	2019	2020
5	4	6	10

 \Box Observed — $\pm 1\sigma$ (stat \oplus syst)

Simplified Template Cross-sections


In practice, by just taking subsets of signal MC samples.

Break up each production mode into smaller **templates** within **Jy_HI<2.5** (~ ATLAS/CMS acc.)

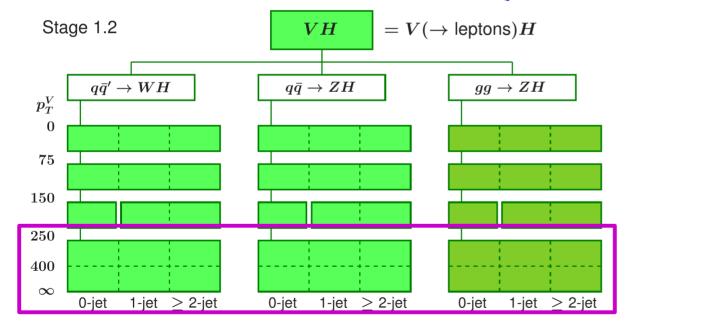
Assume SM behavior within each bin

Multi-variable split to compromise between:

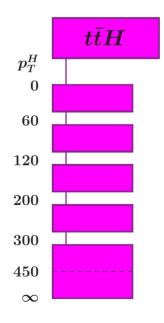
- → Stronger BSM sensitivity (high-mass, etc.)
- → Weaker theory extrapolations (e.g. VBF-like ggF)
- → Match to experimental selections

gg→ **H** : Bins in p_T^H , N_{jets} , m_{jj} and p_T^{Hjj} . → Isolate VBF-like region (hard to extrapolate) **EW qqH** : Bins in p_T^H , N_{jets} , m_{jj} and p_T^{Hjj} . \rightarrow Both VBF and (V \rightarrow jj)H (same initial/final states)7

Simplified Template Cross-sections


Break up each production mode into smaller **templates** within **Jy_HI<2.5** (~ ATLAS/CMS acc.)

Assume SM behavior within each bin


Multi-variable split to compromise between:

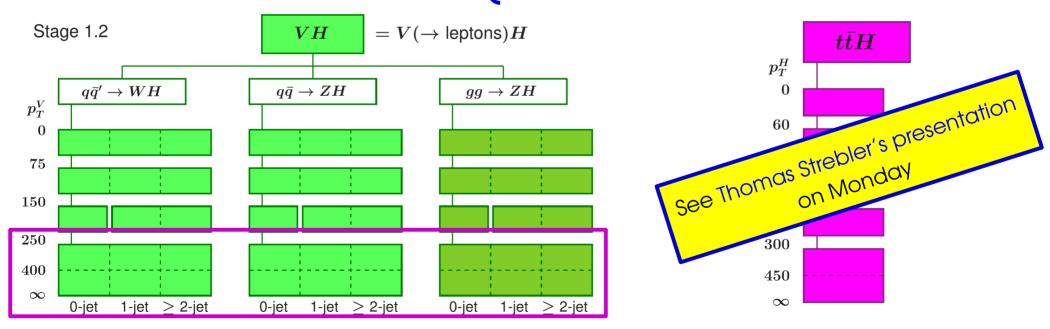
→ Stronger BSM sensitivity (high-mass, etc.)
 → Weaker theory extrapolations (e.g. VBF-like ggF)

 \rightarrow Match to experimental selections

VH: Bin in process, p_T^{\vee} and N_{iets} .

ttH : bin in p_{τ}^{H}

Simplified Template Cross-sections


Break up each production mode into smaller **templates** within **|y_H|<2.5** (~ ATLAS/CMS acc.)

Assume SM behavior within each bin

Multi-variable split to compromise between:

→ Stronger BSM sensitivity (high-mass, etc.)
 → Weaker theory extrapolations (e.g. VBF-like ggF)

 \rightarrow Match to experimental selections

VH: Bin in process, p_T^{\vee} and N_{iets} .

ffH : bin in p_{T}^{H}

Break up each production mode into smaller **templates** within **Jy_HI<2.5** (~ ATLAS/CMS acc.)

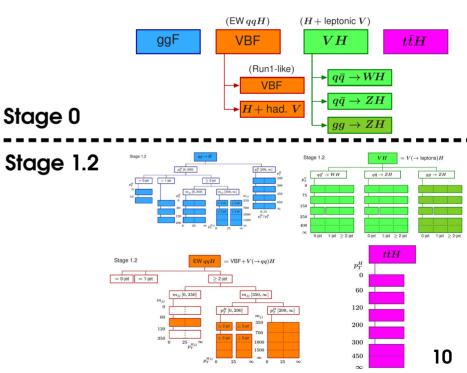
Assume SM behavior within each bin

Multi-variable split to compromise between:

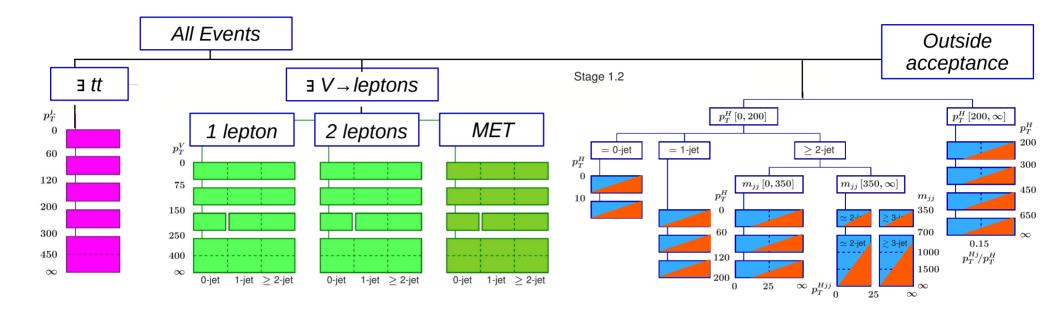
→ Stronger BSM sensitivity (high-mass, etc.)

- → Weaker theory extrapolations (e.g. VBF-like ggF)
- → Match to experimental selections

Only partially fiducial on production side


 \Rightarrow Same binning for all Higgs decay modes

Increase granularity with measurement precision


- \Rightarrow More detailed measurements
- \Rightarrow Reduce SM model assumptions

Perform measurement through implicit matrix unfolding

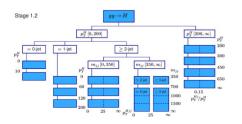
$$N_{SR1} = (A_{11} \sigma_{STXS1} + A_{12} \sigma_{STXS2} + ...) \epsilon_1 L$$
$$N_{SR2} = (A_{21} \sigma_{STXS1} + A_{22} \sigma_{STXS2} + ...) \epsilon_2 L$$

Fiducial STXS measurements ?

→ Similar to regular STXS for VH & ttH, but no ggF/VBF/VH separation

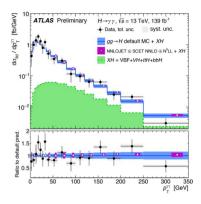
Need additional assumptions to separate production modes and measure couplings

→ Analysis selections must match truth-level binning \Rightarrow simple selections only **Regular STXS:** assume SM within each bin \Rightarrow can use information in MVAs \Rightarrow Stronger sensitivity


Pros and Cons

Minimizes model-dependence

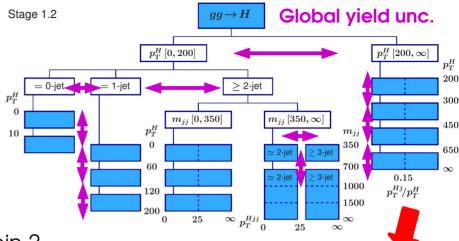
- \rightarrow Small extrapolations and SM assumptions (mainly through unfolding)
- \rightarrow Reinterpretable in models with similar A \Rightarrow Long measurement lifetime
- e Simple experimental selection only (should match truth-level selection)
- Can be performed for any measurement variable
- Only 1 or 2 variables at a time (but can have fine binning)
- o Works best for "clean" modes : good resolution, manageable backgrounds
- \bullet Fiducial region depends on final state \Rightarrow cannot trivially combine different modes

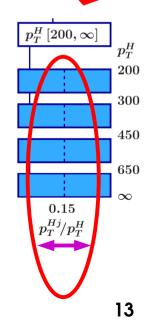

STXS

e SM description within each bin ⇒ Larger model-dependence
e SM description within each bin ⇒ Can use MVAs/NNs/ML.
e Well-suited to measure perturbations from SM (e.g. SMEFT)

- Common binning includes information from multiple variables
 Larger bins, only limited number of variables
- Common binning for all decay modes → simplifies combination

dif/fid XS

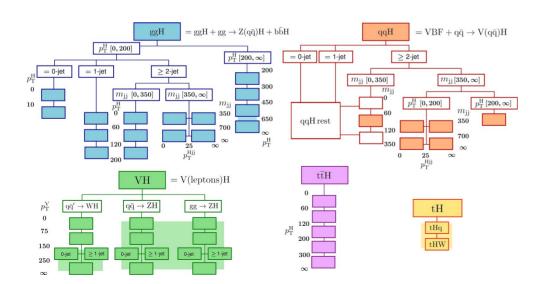

Theory Uncertainties

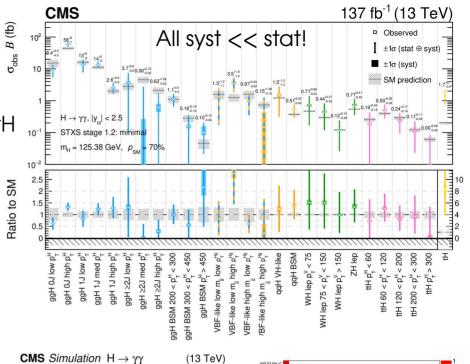

STXS: Unified treatment of theory uncertainties:

- Global "yield" uncertainties + "migrations"
 between bins (See Higgs YR3, YR4, BLPTW paper)
 - \rightarrow Implements correlations across bins and analyses
 - → Very convenient for combinations across different analyses and experiments.
- Only between-bin uncertainties. what about within-bin ?
 - "dotted" boundaries covering largest effects
 - Additional ad-hoc uncertainties where needed
 - Increase binning granularity to keep uncertainties manageable!

fiducial/differential XS

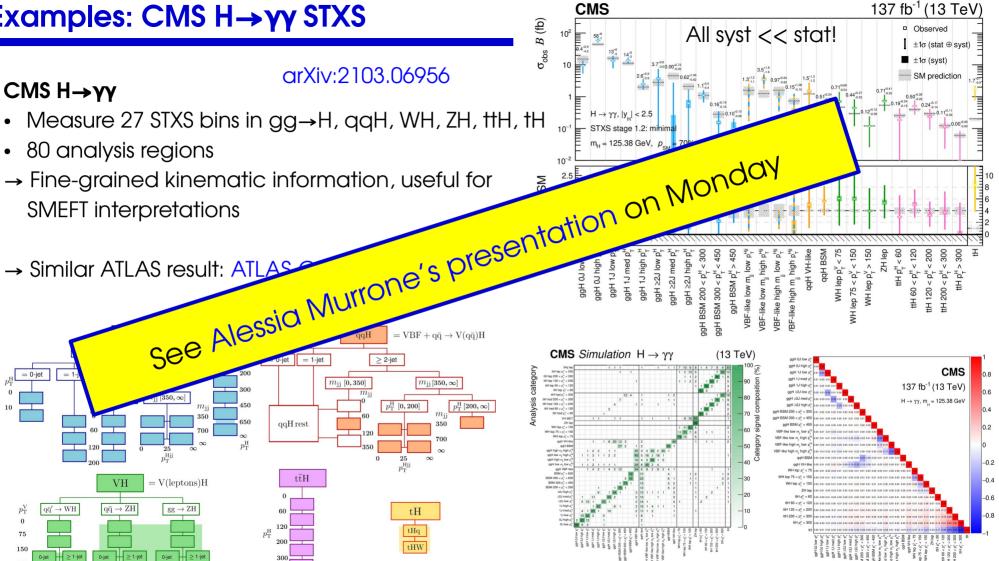
- Fiducial matching of reco/truth ⇒ residual theory effects typically small
- Typically implemented within the unfolding procedure



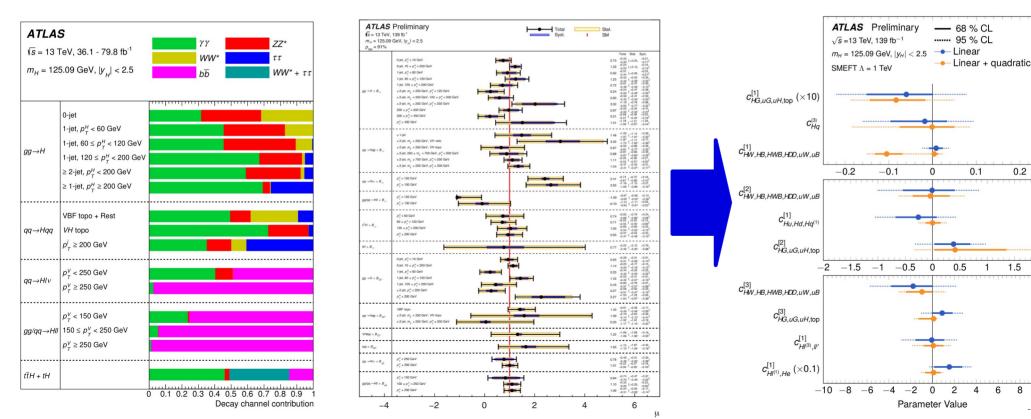

Examples: CMS H→ γγ STXS

arXiv:2103.06956

CMS H→γγ


- Measure 27 STXS bins in $gg \rightarrow H$, qqH, WH, ZH, ttH, tH
- 80 analysis regions
- → Fine-grained kinematic information, useful for SMEFT interpretations
- → Similar ATLAS result: ATLAS-CONF-2020-026

Examples: CMS H→yy STXS



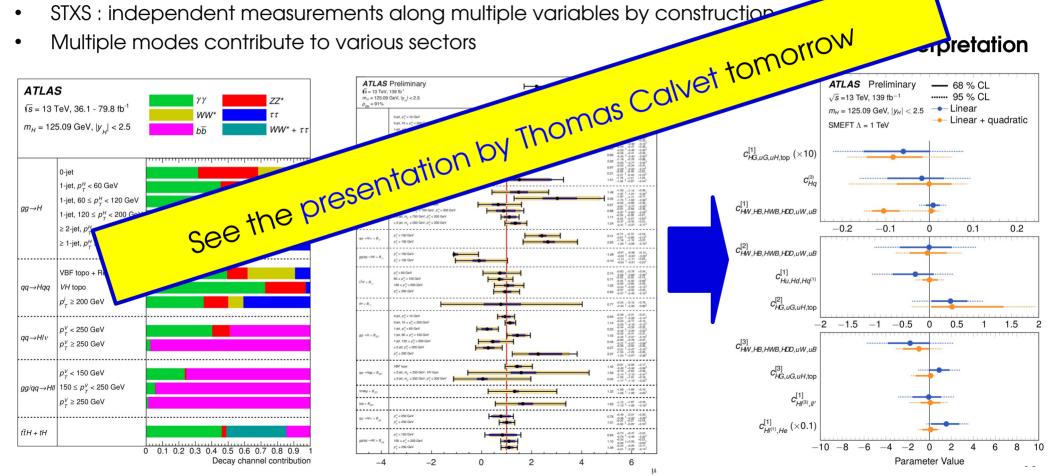
STXS stage 1.2 bins (reduced)

Combinations and reinterpretations : STXS

Phys. Rev. D 101 (2020) 012002

- Combining information from multiple sources typically improves BSM sensitivity
- Combining multiple modes/experiments : main difficulty is properly correlating systematics
- STXS : independent measurements along multiple variables by construction
- Multiple modes contribute to various sectors

SMEFT Interpretation

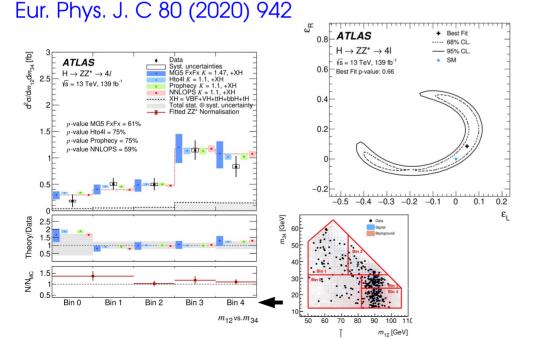

10

Combinations and reinterpretations : STXS

Phys. Rev. D 101 (2020) 012002

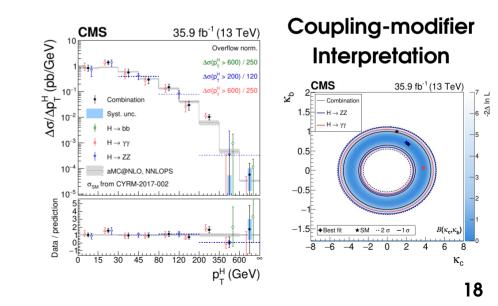
pretation

- Combining information from multiple sources typically improves BSM sensitivity
- Combining multiple modes/experiments : main difficulty is properly correlating system
- STXS : independent measurements along multiple variables by construction
- Multiple modes contribute to various sectors



Combinations and reinterpretations of fiducial/differential XS

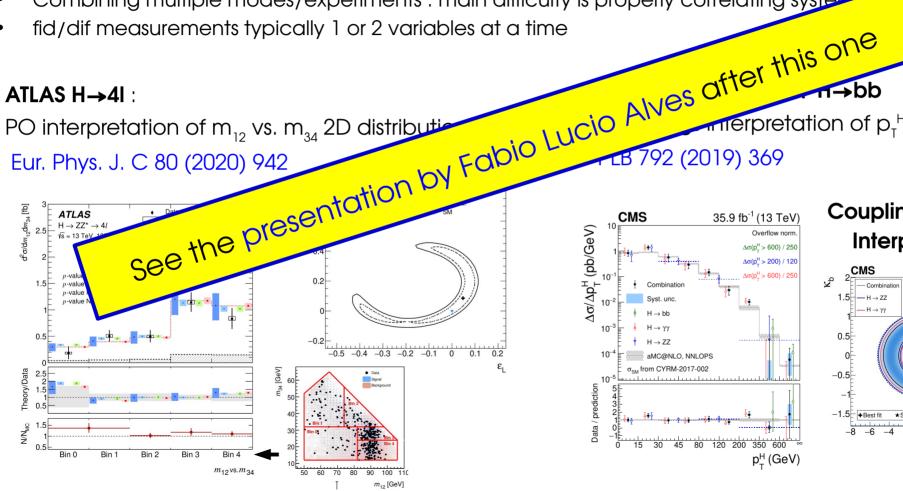
- Combining information from multiple sources typically improves BSM sensitivity
- Combining multiple modes/experiments : main difficulty is properly correlating systematics
- fid/dif measurements typically 1 or 2 variables at a time

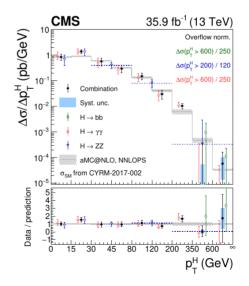

ATLAS H→4I :

PO interpretation of m_{12} vs. m_{34} 2D distribution

$CMS H \rightarrow \gamma \gamma + H \rightarrow 4I + H \rightarrow bb$

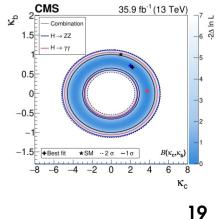
Couplings interpretation of p_T^H distribution PLB 792 (2019) 369


Combinations and reinterpretations of fiducial/differential XS


- Combining information from multiple sources typically improves BSM sensitivity
- Combining multiple modes/experiments : main difficulty is properly correlating system
- fid/dif measurements typically 1 or 2 variables at a time

ATLAS $H \rightarrow 4I$:

PO interpretation of m_{12} vs. m_{34} 2D distribut


Eur. Phys. J. C 80 (2020) 942

Coupling-modifier Interpretation

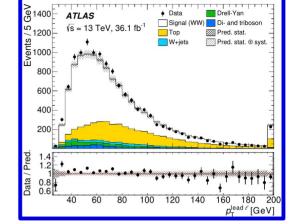
repretation of p_{τ}^{H} distribution

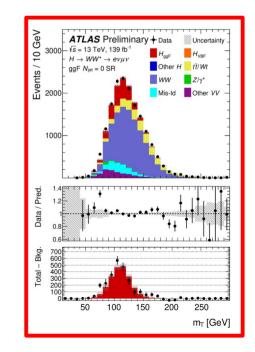
Combined H→WW* + SM WW SMEFT interpretation

SM WW:

Measure pp \rightarrow WW \rightarrow IvIv in bins of p₁^{lead I}.

Fiducial differential cross-sections $d\sigma/dp_T^{leadl}$.

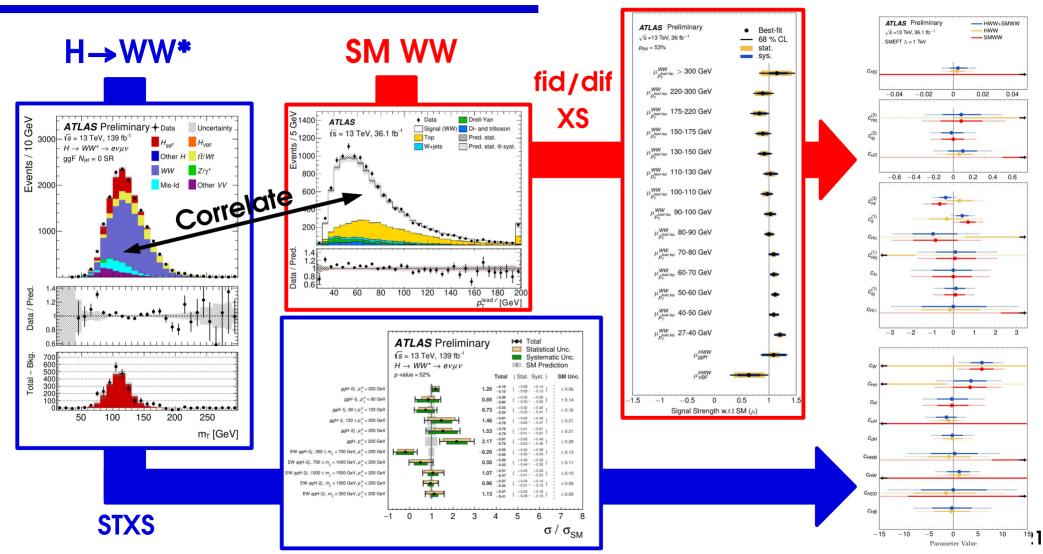

H→WW*


Measure STXS in ggF and VBF modes, with H \rightarrow WW* \rightarrow evµv decay pp \rightarrow WW is the main analysis background

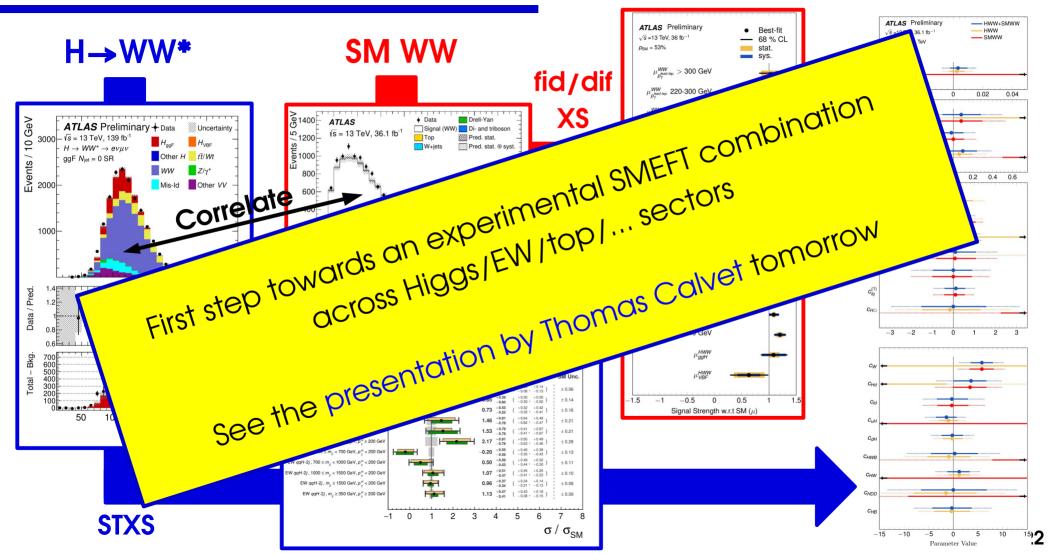
Combination

Correlate systematic uncertainties Use pp \rightarrow WW to constrain backgrounds to H \rightarrow WW* Interpret the results in the context of SMEFT.

Eur. Phys. J. C 79 (2019) 884



ATLAS-CONF-2021-014


Combined H→WW* + SM WW SMEFT interpretation

ATL-PHYS-PUB-2021-010

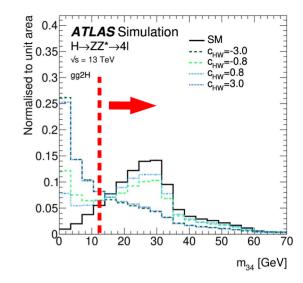
Combined H→WW* + SM WW SMEFT interpretation

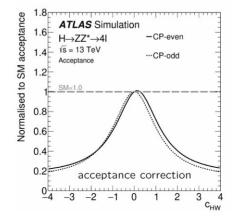
ATL-PHYS-PUB-2021-010

Acceptance effects in $H \rightarrow 4I$ STXS

H→ 4I STXS measured under SM assumptions.
 SMEFT interpretation: some modifications change kinematics
 ⇒ also changes analysis acceptance & reconstruction efficiency.
 ⇒ Partially invalidate the STXS measurement
 A H→4I: m→12 GeV cut, and m→strongly depends on c

$$\frac{A(\vec{c})}{A_{\rm SM}} = \alpha_0 + (\alpha_1)^2 \cdot \left[\alpha_2 + \sum_i \delta_i \cdot (c_i + \beta_i)^2 + \sum_{\substack{ij \\ i \neq j}} \delta_{(i,j)} \cdot c_i c_j + \delta_{(i,j,k)} \cdot c_i c_j c_k \right]^{-1}$$


\Rightarrow Parameterize acceptance A(c) :


Need to include the (model-dependent) correction when performing the interpretation

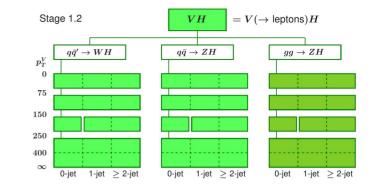
Similar effects also in $H \rightarrow WW^*$

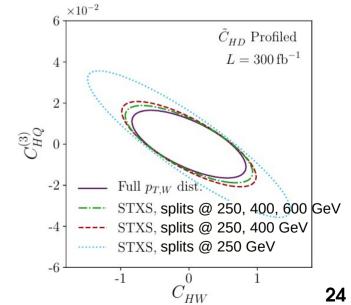
ATL-PHYS-PUB-2021-010

Could be mitigated with STXS binning of final state (here in m_{34}) \Rightarrow Also provides BSM sensitivity

STXS Optimality and Future Evolutions

STXS measurements generally more sensitive than fid/diff XS due to additional assumptions


How close to optimal sensitivity achieved by dedicated analyses ?


→ Affected by choice of binning variables, binning granularity

JHEP 1911 (2019) 034 : study of SMEFT interpretations of STXS in pp \rightarrow WH mode \rightarrow More bins at high-p^V_T improve sensitivity ⁶

⇒ Important to improve binning granularity as more data becomes available, in particular in BSM-sensitive regions.

⇒ Future evolution: additional splits to include new observables: e.g. signed $\Delta \phi_{\mu}$ in gg→H+2 jets and qq→Hqq, sensitive to Higgs CP

Challenges: a partial list

Fiducial differential

STXS

Refined binnings adapted to larger datasets

Reduced theory uncertainties (for acceptances and interpretations)

Better control of experimental uncertainties (e.g. through more data-driven methods)

Measurements in $H \rightarrow bb$, $H \rightarrow WW$, $H \rightarrow \tau\tau$

Multidimensional measurements

Combinations with other sectors (top/EW/QCD/...)

Decay-side bins:

- Additional information
- Avoid model-dependence in acceptance in H→4I and H→WW

New variables (e.g. sensitive to Higgs CP)

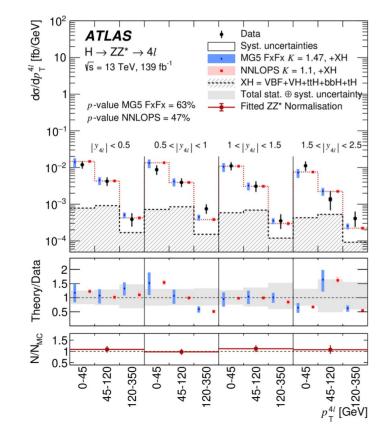
Possible extension to top/EW/... sectors:

- Could improve BSM sensitivity
- Easier combinations across Higgs/ EW/top measurements

Conclusions

- Fiducial differential cross-sections and STXS provide complementary frameworks to characterize kinematics
 - differential/fiducial measurements more model-independent
 - STXS higher sensitivity to BSM effects
- Both increasingly useful as we move towards (even) higher-precision measurements
 - \rightarrow Crucial in particular to set contraints on SMEFT parameters
- STXS binning designed to evolve with dataset size Finer bins ⇒ lower model-dependence, higher BSM sensitivity
- STXS also could be useful in non-Higgs measurements (e.g. top, pp→VV, QCD vs. EW production)
 - \rightarrow Could improve measurement sensitivity (at the cost of some model-dependence)
 - → Could also make for easier combinations across multiple analyses. e.g. SM EW/Higgs/Top, SMEFT interpretations.

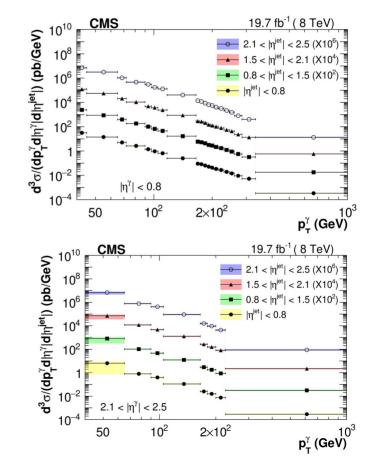
Backup


CMS Combined results

Decay	Production Process														
mode	ggH			VBF		WH		ZH			ttH				
	Uncertainty			Uncertainty			Uncertainty		Uncertainty		Uncertainty				
	Best-fit	Stat.	Syst.	Best-fit	Stat.	Syst.	Best-fit	Stat.	Syst.	Best-fit	Stat.	Syst.	Best-fit	Stat.	Syst.
$\mathrm{H} \to bb$	$2.45 \begin{array}{c} +2.53 \\ -2.35 \end{array}$	$+2.04 \\ -2.01$	$+1.51 \\ -1.22$		_		$1.27 \ {}^{+0.42}_{-0.40}$	$+0.32 \\ -0.31$	$^{+0.27}_{-0.25}$	$0.93 \ {}^{+0.33}_{-0.31}$	$^{+0.27}_{-0.26}$	$^{+0.19}_{-0.17}$	$1.13 \ {}^{+0.33}_{-0.30}$	$^{+0.16}_{-0.16}$	$^{+0.29}_{-0.25}$
	$\binom{+2.11}{-1.95}$	$\left(^{+1.92}_{-1.91}\right)$	$\left(^{+0.86}_{-0.34}\right)$		_		$\binom{+0.42}{-0.41}$	$\left(^{+0.33}_{-0.32}\right)$	$\left(^{+0.27}_{-0.26}\right)$	$\binom{+0.32}{-0.31}$) $\binom{+0.26}{-0.26}$	$\left(^{+0.19}_{-0.17}\right)$	$\binom{+0.32}{-0.30}$) $\binom{+0.16}{-0.16}$	$\left(^{+0.28}_{-0.25}\right)$
$\mathrm{H} \to \tau \tau$	$0.39 \ {}^{+0.38}_{-0.39}$	$^{+0.16}_{-0.16}$	$+0.35 \\ -0.35$	$1.05 \ {}^{+0.30}_{-0.29}$	$^{+0.25}_{-0.24}$	$^{+0.18}_{-0.17}$	$3.01 \begin{array}{c} +1.65 \\ -1.51 \end{array}$	$+1.37 \\ -1.27$	$^{+0.92}_{-0.81}$	$1.53 \ ^{+1.60}_{-1.37}$	$^{+1.41}_{-1.25}$	$+0.75 \\ -0.55$	$0.81 \ {}^{+0.74}_{-0.67}$	$+0.57 \\ -0.53$	$^{+0.46}_{-0.40}$
	$\binom{+0.39}{-0.36}$	$\left(^{+0.16}_{-0.16}\right)$	$\left(^{+0.36}_{-0.33}\right)$	$\binom{+0.31}{-0.30}$	$\binom{+0.25}{-0.25}$	$\left(^{+0.18}_{-0.17}\right)$	$\binom{+1.52}{-1.40}$	$\binom{+1.27}{-1.16}$	$\left(^{+0.82}_{-0.78}\right)$	$\binom{+1.45}{-1.25}$	$) \begin{pmatrix} +1.32 \\ -1.17 \end{pmatrix}$	$\left(^{+0.59}_{-0.46}\right)$	$\binom{+0.72}{-0.64}$	$\binom{+0.57}{-0.53}$	$\left(^{+0.43}_{-0.36}\right)$
$\mathrm{H} \to \mathrm{W}\mathrm{W}$	$1.28 \ {}^{+0.20}_{-0.19}$	$^{+0.11}_{-0.11}$	$^{+0.17}_{-0.15}$	$0.63 \ \ {}^{+0.65}_{-0.61}$	$^{+0.58}_{-0.54}$	$^{+0.30}_{-0.29}$	$2.85 \begin{array}{c} +2.11 \\ -1.87 \end{array}$	$+1.78 \\ -1.60$	$^{+1.13}_{-0.96}$	$0.90 \begin{array}{c} +1.77 \\ -1.43 \end{array}$	$^{+1.70}_{-1.41}$	$+0.50 \\ -0.24$	$0.93 \ {}^{+0.48}_{-0.45}$	$+0.37 \\ -0.36$	$+0.30 \\ -0.26$
	$\binom{+0.17}{-0.16}$	$\left(^{+0.11}_{-0.10}\right)$	$\left(^{+0.14}_{-0.12}\right)$	$\binom{+0.61}{-0.58}$	$\binom{+0.55}{-0.52}$	$\binom{+0.27}{-0.26}$	$\binom{+1.48}{-1.20}$	$\binom{+1.33}{-1.09}$	$\left(^{+0.64}_{-0.51}\right)$	$\binom{+1.67}{-1.37}$	$) \begin{pmatrix} +1.61 \\ -1.36 \end{pmatrix}$	$(^{+0.43}_{-0.21})$	$\binom{+0.45}{-0.41}$	$) \begin{pmatrix} +0.35 \\ -0.35 \end{pmatrix}$	$(^{+0.27}_{-0.22})$
$\mathrm{H} \to \mathrm{ZZ}$	$0.98 \ {}^{+0.12}_{-0.11}$	$+0.09 \\ -0.09$	$+0.08 \\ -0.07$	$0.57 \begin{array}{c} +0.46 \\ -0.36 \end{array}$	$^{+0.44}_{-0.35}$	$+0.15 \\ -0.09$		1.10	$^{+0.96}_{-0.74}$	$\begin{array}{rrr} +0.94 & +0.19 \\ -0.74 & -0.10 \end{array}$			$0.25 \begin{array}{c} +1.03 \\ -0.25 \end{array}$	$^{+1.00}_{-0.25}$	$^{+0.21}_{-0.00}$
	$\binom{+0.13}{-0.12}$	$\left(^{+0.10}_{-0.09}\right)$	$\left(^{+0.08}_{-0.07}\right)$	$\binom{+0.57}{-0.47}$	$\binom{+0.52}{-0.44}$	$(^{+0.23}_{-0.14})$			$\left(^{+0.99}_{-0.73}\right)$	$\begin{pmatrix} +0.96 \\ -0.72 \end{pmatrix} \begin{pmatrix} +0.21 \\ -0.11 \end{pmatrix}$)		$\binom{+1.12}{-0.67}$	$) \begin{pmatrix} +1.10 \\ -0.67 \end{pmatrix}$	$\left(^{+0.22}_{-0.06}\right)$
${\rm H} \to \gamma \gamma$	$1.09 \ {}^{+0.15}_{-0.14}$	$^{+0.11}_{-0.11}$	$^{+0.10}_{-0.08}$	$0.77 \ \ {}^{+0.37}_{-0.29}$	$^{+0.32}_{-0.27}$	$^{+0.18}_{-0.09}$		_			_		$1.62 \ {}^{+0.52}_{-0.43}$	$^{+0.44}_{-0.40}$	$^{+0.27}_{-0.14}$
	$\binom{+0.14}{-0.13}$	$\left(^{+0.11}_{-0.11}\right)$	$(^{+0.09}_{-0.07})$	$\binom{+0.41}{-0.36}$	$\binom{+0.33}{-0.32}$	$(^{+0.25}_{-0.18})$			_		$\binom{+0.41}{-0.35}$	$) \begin{pmatrix} +0.39 \\ -0.35 \end{pmatrix}$	$\left(^{+0.15}_{-0.07}\right)$		
$\mathrm{H} \to \mu \mu$	$0.31 \ {}^{+1.82}_{-1.81}$	$^{+1.80}_{-1.80}$	$^{+0.22}_{-0.22}$	$3.18 \begin{array}{c} +8.22 \\ -7.93 \end{array}$	$+7.99 \\ -7.90$	$^{+1.93}_{-0.76}$	-			_			_		
	$\binom{+1.78}{-1.79}$	$\binom{+1.76}{-1.79}$	$\left(^{+0.28}_{-0.07}\right)$	$\binom{+8.13}{-7.95}$	$\binom{+8.01}{-7.88}$	$\left(^{+1.41}_{-1.05}\right)$		_			_			-	

Examples: Differential XS

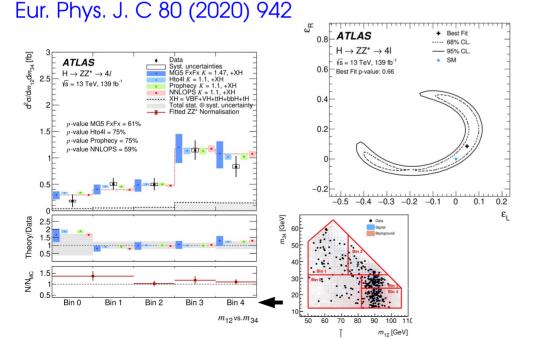
ATLAS H→4I :


2D differential XS in (p_1^{4l}, N_{jets}) , (p_1^{4l}, y^{4l}) , (m_{12}, m_{34}) ...

Eur. Phys. J. C 79 (2019) 969

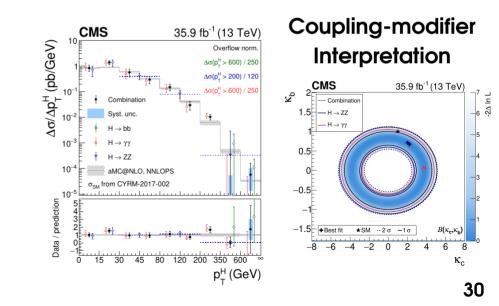
CMS Inclusive $pp \rightarrow \gamma + jets$:

3D diff. XS in $(p_T^{\gamma}, \eta_{\gamma}, \eta_{i})$ (18×4×4 bins)


Eur. Phys. J. C 80 (2020) 942

Combinations and reinterpretations : fid/dif XS

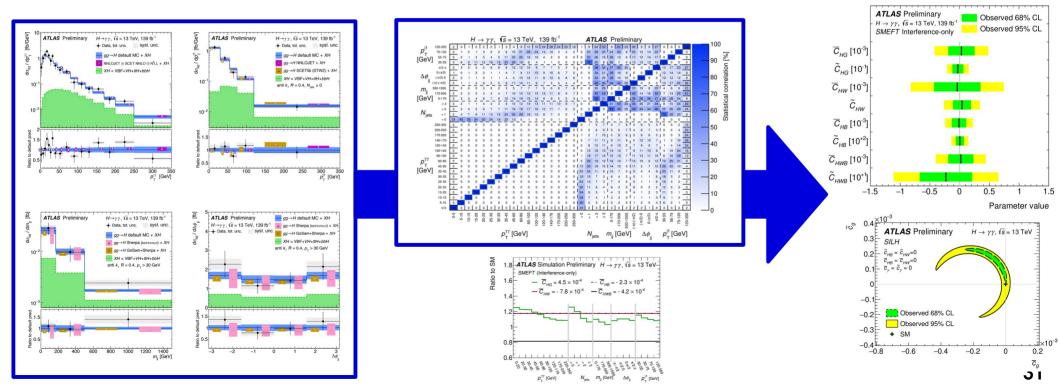
- Combining information from multiple sources typically improves BSM sensitivity
- Combining multiple modes/experiments : main difficulty is properly correlating systematics
- fid/dif measurements typically 1 or 2 variables at a time


ATLAS H→4I :

PO interpretation of m_{12} vs. m_{34} 2D distribution

$CMS H \rightarrow \gamma \gamma + H \rightarrow 4I + H \rightarrow bb$

Couplings interpretation of p_T^H distribution PLB 792 (2019) 369

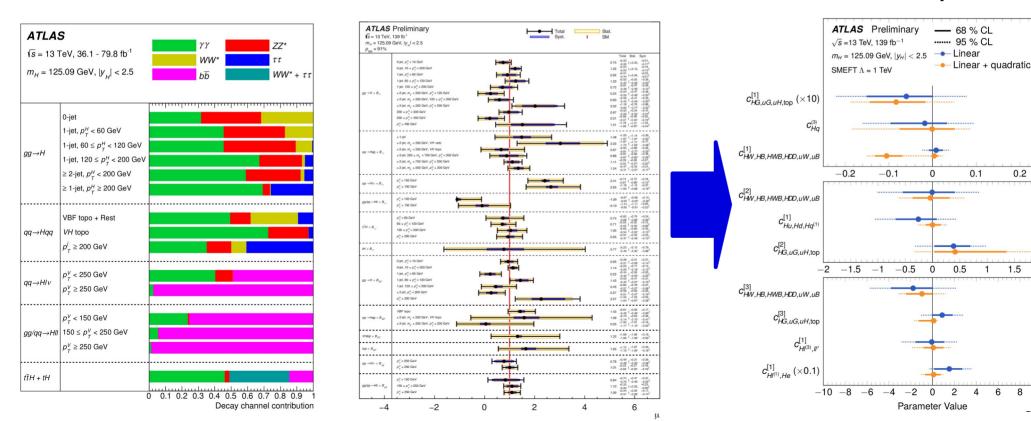

Combinations and reinterpretations : fid/dif XS

- Combining information from multiple sources typically improves BSM sensitivity
- Combining multiple modes/experiments : main difficulty is properly correlating systematics

Н→үү

- Large backgrounds \Rightarrow can measure correlations in data using resampling
- **SMEFT Interpretation**

• Implement correlations using Gaussian assumptions



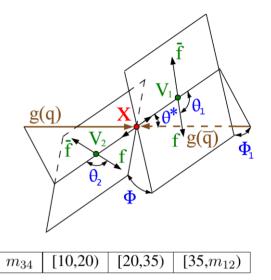
Combinations and reinterpretations : STXS

Phys. Rev. D 101 (2020) 012002

SMEFT Interpretation

- Combining information from multiple sources typically improves BSM sensitivity
- Combining multiple modes/experiments : main difficulty is properly correlating systematics
- STXS : independent measurements along multiple variables by construction
- Multiple modes contribute to various sectors

STXS in decays


STXS defined for production in $|y_H| < 2.5$, but can bin *decay* kinematics, in particular for $H \rightarrow 4I$:

- \rightarrow Access information in final-state dynamics
- → Decrease model-dependence of experimental acceptance

"Stage 0" : provide fiducial definitions for $H \rightarrow ff$, $H \rightarrow ZZ$, $H \rightarrow Z\gamma$, $H \rightarrow \gamma\gamma$... :

- a) allows reliable computation of BR predictions
- b) can be implemented in MC tools
- c) matches the experimental definitions

"Stage 1" : kinematic splits relevant for BSM tests (e.g. m₃₄)

Table 2: Bin definitions for $H \to 4\ell$

More details in the <u>draft document</u> and <u>M. Dührssen's presentation</u> @ LHCHWG

Needs input on experimental side (matching truth selection to experiments, Rivet implementation...) \Rightarrow Contributions welcome!