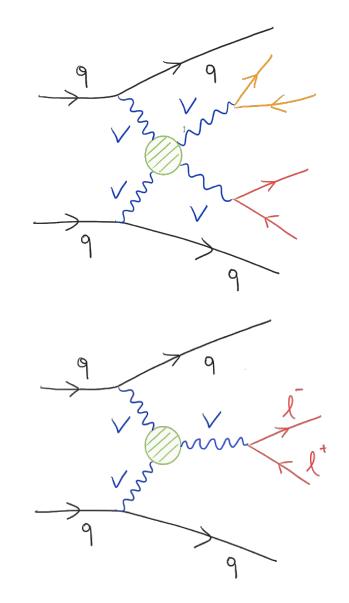
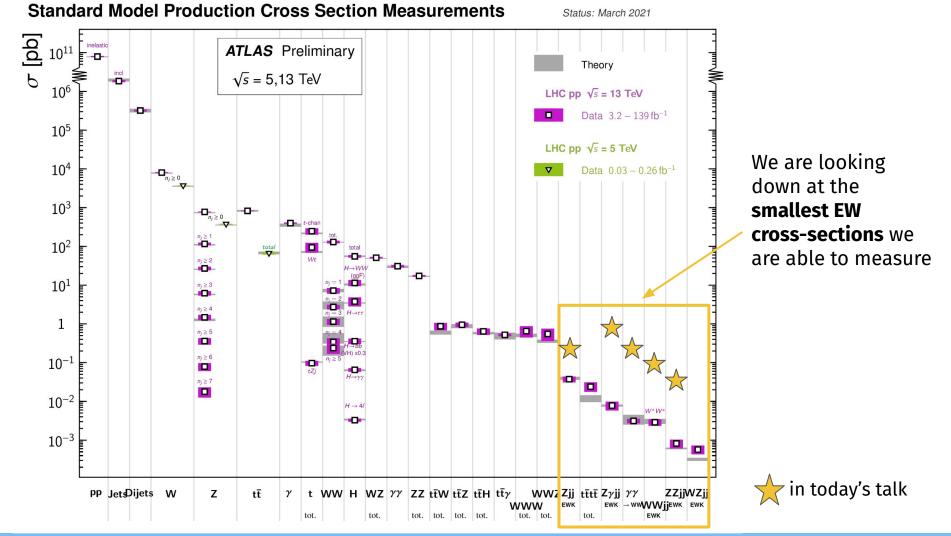


Recent results in VBS and VBF @ LHC

SM@LHC 2021

Davide Valsecchi on behalf of the CMS and ATLAS collaborations


INFN & Università degli Studi di Milano-Bicocca CERN



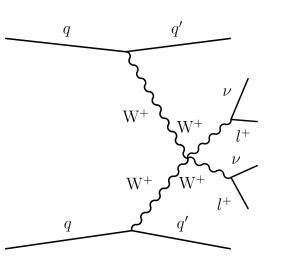
- → LHC can be used as a Vector Bosons collider
- **W production** via Vector Boson Scattering:
 - can proceed by pure EWK interactions at tree level
 - o directly linked to EW symmetry breaking mechanism → deviations == New Physics ?
 - Many channels accessible at LHC
- Precise EW V production measurements crucial for SM and BSM analyses
 - differential cross-section measurements
 - stringent limits on dim-6 operators

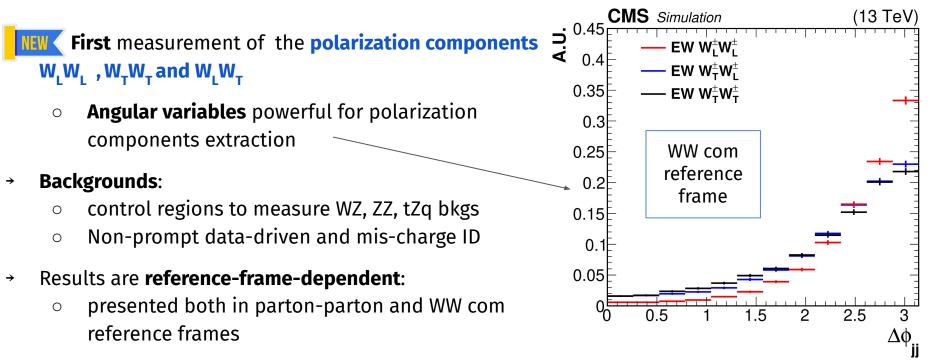
VBS and VBF processes

- → With Full Run2 data going **from search to precise measurements**
 - challenging experimental final states: forward jets and PU contamination
 - Sophisticated signal extraction and data-driven bkg estimations

Published results

Recent review arXiv:2102.10991

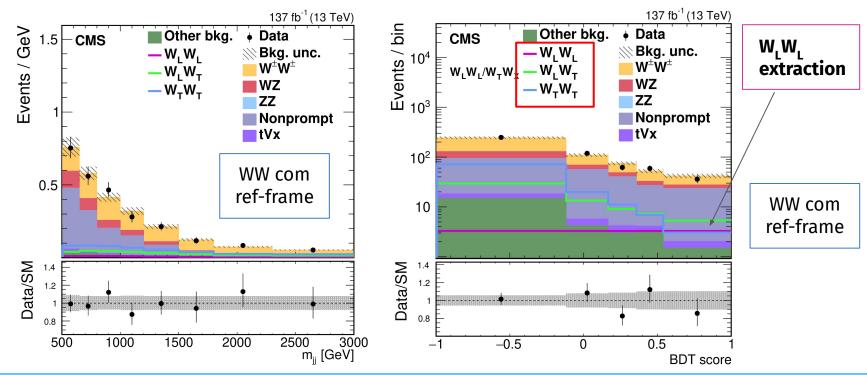



		Energy, dataset	Results	Reference
VBF	₩±jj	13 TeV, 36/fb	Inclusive XS + aTGC limits	<u>Eur. Phys. J. C 80 (2020) 43</u>
	Zjj	13 TeV, 36/fb	Inclusive XS + aTGC limits	<u>Eur. Phys. J. C 78 (2018) 589</u>
VBS	W [±] W [±] jj	13 TeV, 137/fb	Recent W _L W _L measurement	Phys. Lett B 812 (2020) 136018
	WZ jj + W [±] W [±] jj	13 TeV, 137/fb	6.8 (5.3) σ. Differential XS.	Phys. Lett. B 809(2020) 135710
CMS	W [±] γ jj	13 TeV, 36/fb	5.3 (4.8) σ	<u>Phys. Lett. B 811 (2020) 135988</u>
	Zγ jj	13 TeV, 137/fb	>5 σ, Differential XS + EFT limits	CMS-PAS-SMP-20-016
	ZZ jj	13 TeV, 137/fb	4.0 (3.5) σ + EFT limits	Phys. Lett. B 812 (2021) 135992
	γγWW excl. prod.	7,8 TeV, 5,20/fb	-	
	VV jj semilep	13 TeV, 36/fb	BSM + strong aQGC limit	Phys. Lett. B 798 (2019) 134985
VBF	W⁺jj	7,8 TeV. 5,20/fb	> 5 σ, Differential XS	<u>Eur. Phys. J C 77 (2017) 474</u>
	Zjj	13 TeV, 139/fb	Differential XS + EFT limits	Eur. Phys. J. C 81 (2021) 163
VBS	W [±] W [±] jj	13 TeV, 36/fb	6.5 (4.4) σ	Phys. Lett. B 123 (2019) 161801
	WZ jj	13 TeV, 36/fb	5.3 (3.2) σ, Differential XS	<u>Phys. Lett. B 123 (2019) 469</u>
	W [±] γ jj	-	-	
EXPERIMENT	Ζγ јј	13 TeV, 36/fb	4.1 (4.1) σ	<u>Phys. Lett. B 803 (2020) 135341</u>
	ZZ jj	13 TeV, 139/fb	5.5 (4.3) σ	arXiv:2004:10612
	γγWW excl. prod.	13 TeV, 139/fb	>> 5 σ	Phys. Lett. B 816 (2021) 136190
	VV jj semilep	13 TeV, 36/fb	2.7 (2.5) σ	<u>Phys. Rev. D 100 (2019) 032007</u>

Next step for W[±]W[±] VBS

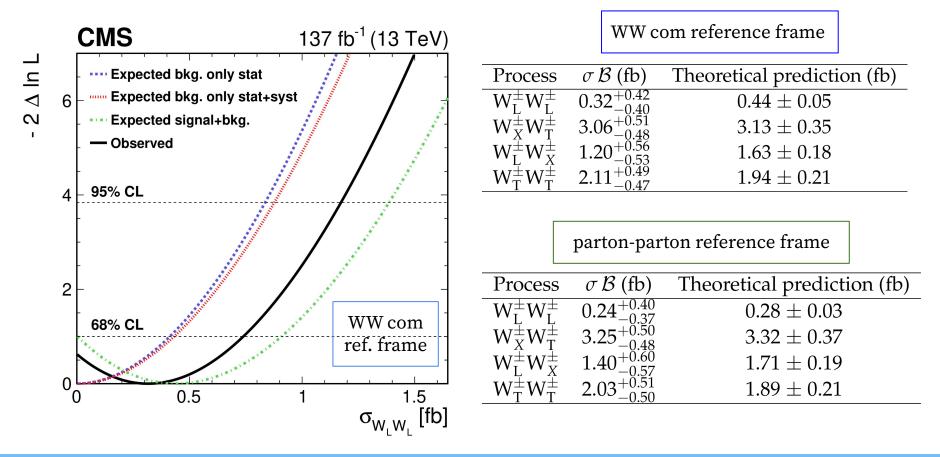
Same-sign WW VBS : Golden VBS channel

- EWK production > QCD one
- First observation with 2016 data → with full Run 2 data going towards precise measurements
- Two same sign, same flavour, tight leptons. Two tag jets with VBS selections (M_{ii} > 500 GeV, $|\Delta \eta_{ii}|$ > 2.5)



PLB 812 (2020) 136018

- → **Two steps** strategy:
 - inclusive BDT to extract WW same-sign signal
 - specific signal BDT for $(W_L W_L vs W_X W_T)$ and $(W_T W_T vs W_X W_L)$
- → and separate likelihood **fits** (repeated and re-optimized for different reference frames)
 - **W_LW_L** and **W_TW_x** components
 - $\circ \quad \mathbf{W_T}\mathbf{W_T} \text{ and } \mathbf{W_L}\mathbf{W_X} \text{ components}$
- → Fit M_{ii} in the control regions with 4 bins
- → 2D fit in signal region → inclusive BDT (5 bins), specific signal BDT (5 bins)

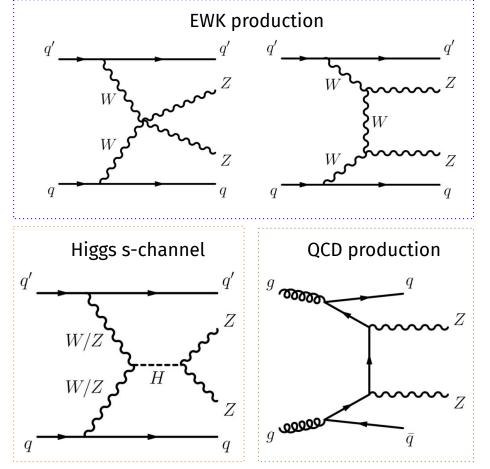


→ The significance of the measured $W_L W_X$ yield is 3.1 σ expected, **2.3** σ observed

PLB 812 (2020) 136018

INFN

- → Exclude > ~2 x SM W₁W₁ production at 95% confidence-level
- → Fiducial cross-sections extracted for all the polarizations → agrees with SM within uncertainties



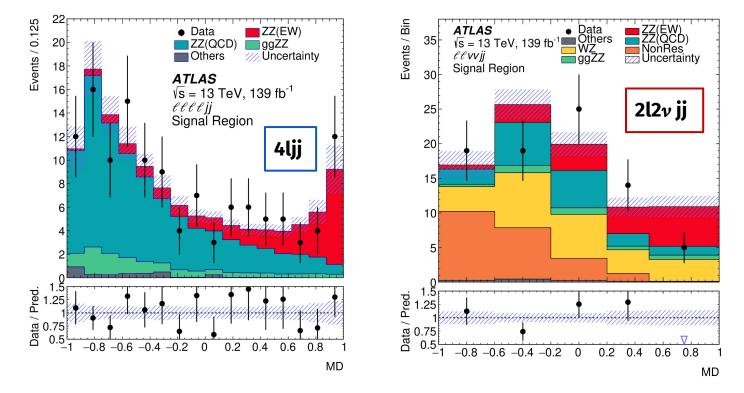
ZZ + 2 jets ATLAS

arXiv:2004.10612

- → One of the **rarest SM processes** observed to date
 - Clean fully leptonic channel with small experimental background
 - Full polarization available \rightarrow important for future studies with more data
 - Progress in theory precision: **NLO corrections** available
- → 2 fully-leptonic channels:
 - 4l+jj channel: 2 pairs of opposite sign, same flavour charged leptons
 - 2l2v+jj channel: 1 l⁺l⁻ pair only + MET with high significance.
- Multivariate discriminator for signal extraction using 12 variables:
 - \circ M_{jj} , Δy_{jj} , jet p_{T} and η , etc.
- → Main background QCD ZZ production
 - controlled in dedicated region defined inverting Z boson centrality requirement, M_{jj} and Δy_{jj} cuts

8

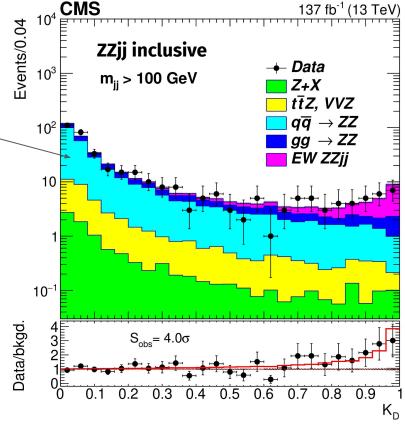
ZZ + 2 jets ATLAS - Results


arXiv:2004.10612

- → Combined fit in 4ljj and 2l2 ν jj channels → **observation**!
- → BDT variables used in the fit
- → Fiducial XS in agreement with SM expectation

	$\mu_{ m EW}$	$\mu_{ m QCD}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.5 ± 0.4	0.95 ± 0.22	5.5 (3.9) σ
$\ell\ell u ujj$	0.7 ± 0.7	_	1.2 (1.8) σ
Combined	1.35 ± 0.34	0.96 ± 0.22	5.5 (4.3) σ

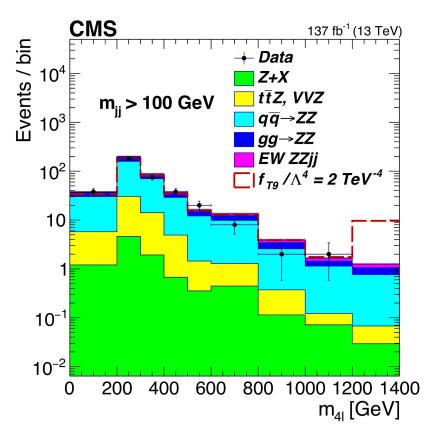
	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj$	$1.27 \pm 0.12 (\text{stat}) \pm 0.02 (\text{theo}) \pm 0.07 (\text{exp}) \pm 0.01 (\text{bkg}) \pm 0.03 (\text{lumi})$	$1.14 \pm 0.04 (\text{stat}) \pm 0.20 (\text{theo})$
$\ell\ell u ujj$	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01 (\text{stat}) \pm 0.12 (\text{theo})$



ZZ + 2 jets CMS

PLB 812 (2021) 135992

- → 4l jj final state only, 137/fb dataset
- Evidence of EW ZZjj production at 4σ using matrix element discriminant K_p
- → 3 regions for fiducial cross-sections: inclusive, loose VBS and tight VBS
 - EW and EW+QCD measurements
 - In **agreement** with SM prediction
- → Main background:
 - QCD ZZjj production constrained in the bkg dominated region of the discriminator


	Perturbative order	SM σ (fb)	Measured σ (fb)			
ZZjj inclusive						
EW	LO	0.275 ± 0.021	0.22 ± 0.11 (at a t) ± 0.04 (area t)			
EVV	NLO QCD	0.278 ± 0.017	$0.33^{+0.11}_{-0.10}({ m stat})^{+0.04}_{-0.03}({ m syst})$			
EW+QCD		5.35 ± 0.51	$5.29^{+0.31}_{-0.30}(ext{stat})\pm 0.46(ext{syst})$			
VBS-enriched (loose)						
TIAT	LO	0.186 ± 0.015	0.200 ± 0.078 (, ,) ±0.023 ()			
EW	NLO QCD	0.197 ± 0.013	$0.200^{+0.078}_{-0.067}({ m stat})^{+0.023}_{-0.013}({ m syst})$			
EW+QCD		1.21 ± 0.09	$1.00^{+0.12}_{-0.11}(m stat)^{+0.06}_{-0.05}(m syst)$			
VBS-enriched (tight)						
E147	LO	0.104 ± 0.008	$0.00^{\pm0.04}$ (at a t) ± 0.02 (areat)			
EW	NLO QCD	0.108 ± 0.007	$0.09^{+0.04}_{-0.03}({ m stat})\pm 0.02({ m syst})$			
EW+QCD	-	0.221 ± 0.014	$0.20^{+0.05}_{-0.04}({ m stat})\pm 0.02({ m syst})$			

ZZ + 2 jets CMS - aQGC

PLB 812 (2021) 135992

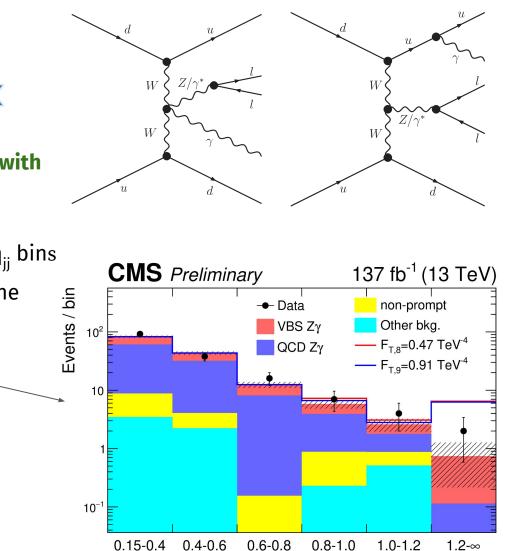
- → Limits on **dim-8 EFT** operators at 95% CL
 - charged-current operators: T0, T1, and T2
 - neutral current operators: T8 and T9
- → M₄₁ observable used for the fit
- → The most stringent limit to date on neutral current operator T8
 - The recent CMS Zyjj analysis **improves** the T9 operator limit to ± 0.91

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$	-0.37	0.35	-0.24	0.22	2.4
$f_{\mathrm{T1}}/\Lambda^4$	-0.49	0.49	-0.31	0.31	2.6
$f_{\rm T2}/\Lambda^4$	-0.98	0.95		0.59	2.5
$f_{\rm T8}/\Lambda^4$	-0.68	0.68	-0.43	0.43	1.8
$f_{\rm T9}/\Lambda^4$	-1.5	1.5	-0.92	0.92	1.8

units in TeV⁻⁴

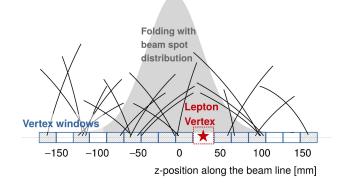
Zy + 2 jets

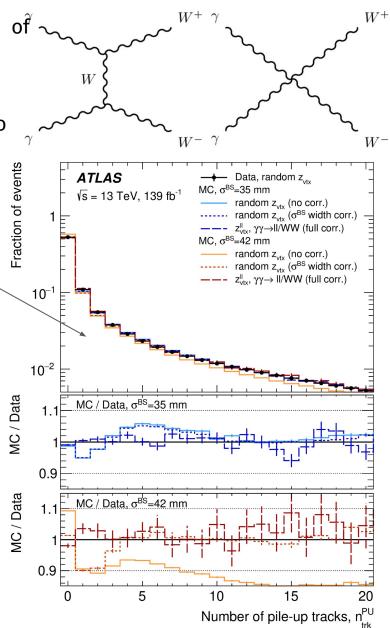
CMS-PAS-SMP-20-016



INFN

- → Observation of the process
 - **Differential** XS measurement
 - **EFT dim-8** operators limits
- → Measured fiducial inclusive EWK and EWK+QCD cross-section → agreement with SM
- → Differential unfolded XS in lepton and photon p_{T} , leading jet p_{T} , Mjj and $\Delta \eta_{ii}$ bins
- The most stringent limits to date on the dim-8 operator T9:


 \circ -0.91 < F_{T_9}/Λ^4 < 0.91

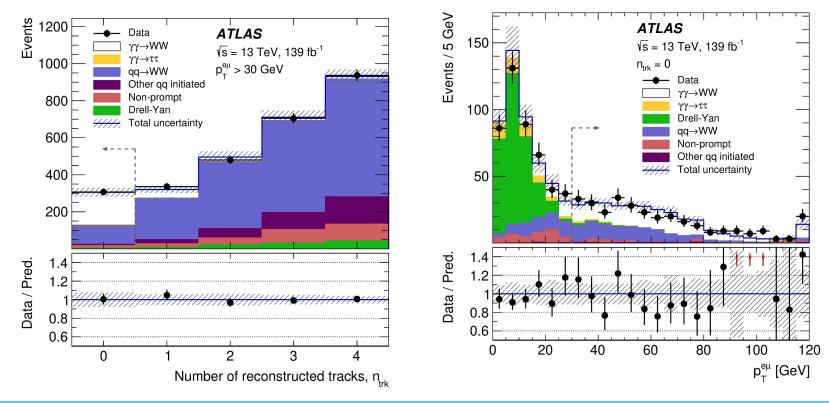

More info in the dedicated <u>talk</u> from Ying An (Peking Univ.)

m_{zγ} [TeV]

- Observation of photon-induced exclusive production
 W boson pairs with the ATLAS detector and full Run 2
 dataset 137/fb
- Direct test of SU(2)XU(1) structure of SM and sensitive to anomalous gauge-bosons interactions
- Signal extraction: 0 additional charged particle tracks
- → Background modelling quite complex
 - **pileup tracks** contribution corrected from data
 - Modeling of hadronic activity is constrained using Drell-Yan events in data
 - Unfold N_{charged} to N_{tot} tracks after background subtraction and PU corrections

INFN

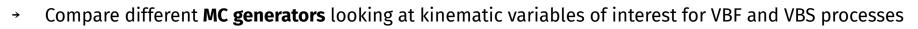
PLB 816 (2021) 136190

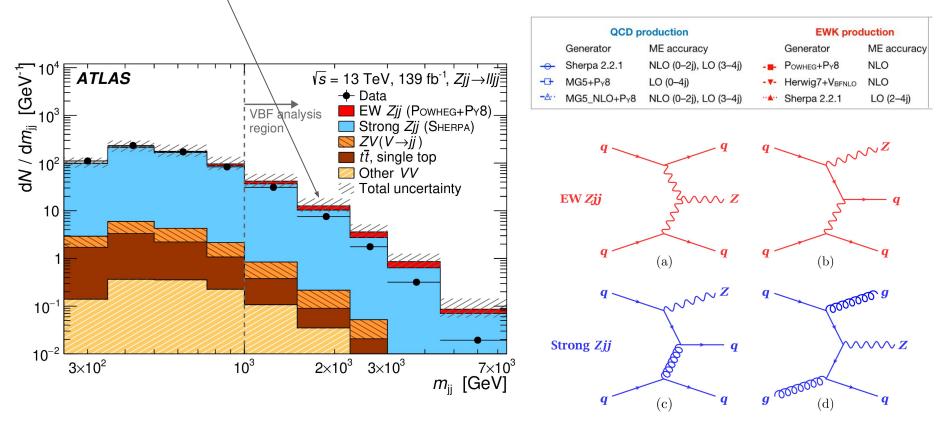

$yy \rightarrow WW$: results

PLB 816 (2021) 136190

FN CERNY AND A LONG AN

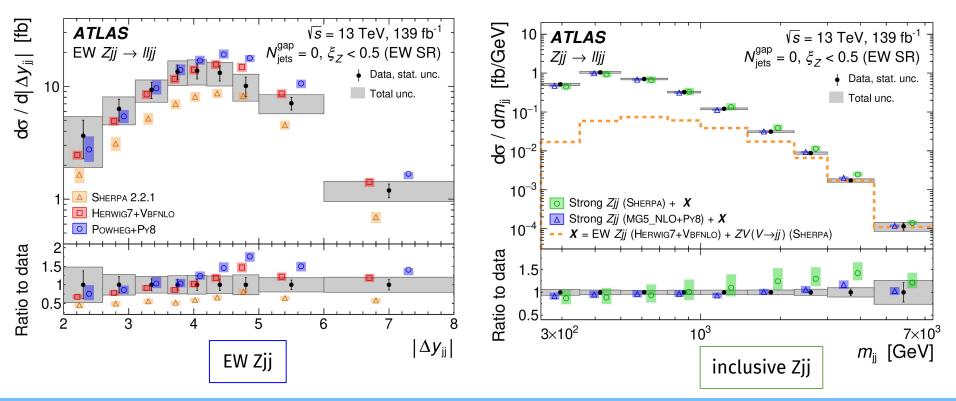
- → Data driven DY background correction in M_{ll} CR with N_{track} = 5
- → Fit event yields in the **4 categories** :
 - 1 signal region with $N_{track} = 0$ and $p_T^{l} > 30$ GeV and
 - 3 orthogonal control regions
- → Bkg-only hypothesis rejected at **8.4** σ (>5 exp.)


- σ_{fid} = 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb σ_{theo} = 2.34 ± 0.27 fb
- → Fiducial XS measured and in **agreement with SM** calculation


EWK Z + 2 jets

Eur. Phys. J. C 81 (2021) 163

→ **Differential XS** measurement for EW production of Z + 2 jets with 139/fb



- → 3 MC samples for EW Zjj and 3 for QCD Zjj (main background)
- → Limits on **dimension 6** EFT operators: CP-even and CP-odd
- → Large QCD background mis-modeling: extract it in a data-driven way from 3 control regions

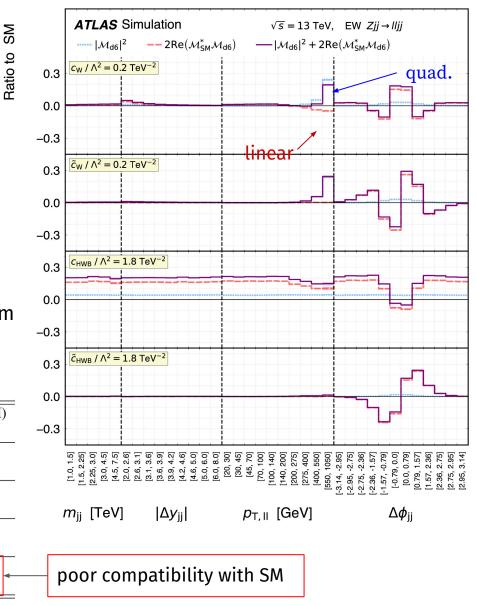
- → EW and EW+QCD Zjj differential cross-section **unfolded**: p_T^{ll} , M_{jj} , $|\Delta y_{jj}|$, $\Delta \phi_{jj}$
- → Main systematic uncertainty from QCD Zjj modelling in the EW component extraction
- Herwig7+VBFNLO found to be the most compatible with data for EW production

 σ_{EW}^{fid} = 37.4 ± 3.5 (stat.) ± 5.5 (syst.) fb σ_{Herwig}^{fid} = 39.5 ± 3.4 (scale) ± 1.2 (PDF) fb

Davide Valsecchi

EWK Z + 2 jets: EFT limits

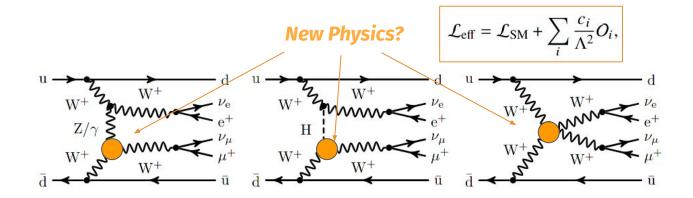
Eur. Phys. J. C 81 (2021) 163



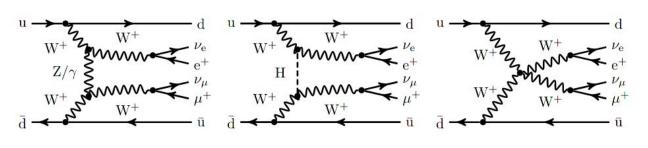
- Limits on dim-6 EFT operators producing anomalous WWZ interactions
- Derived with/without <u>pure dim-6</u> terms included in the theoretical prediction (SMEFT Madgraph)

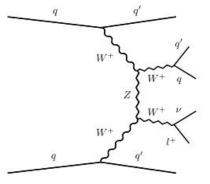
 $|\mathcal{M}|^2 = |\mathcal{M}_{\text{SM}}|^2 + 2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{d6}}) + |\mathcal{M}_{\text{d6}}|^2,$

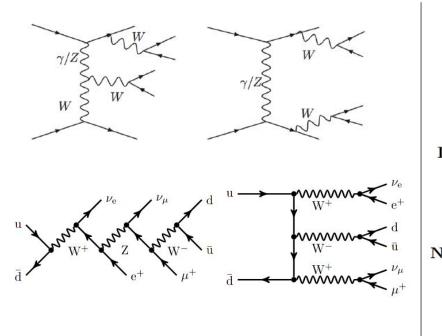
- Δφ_{jj} most sensitive observable → used for Wilson coefficient fit
 - parity odd observable → test of CP invariance
- Strongest limits when pure dim-6 excluded from theoretical prediction → interference term dominates

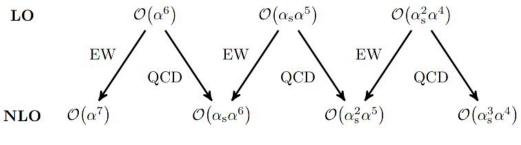

Wilson	Includes	95% confidence	e interval [TeV ⁻²]	<i>p</i> -value (SM)
coefficient	$ \mathcal{M}_{\mathrm{d6}} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

Summary

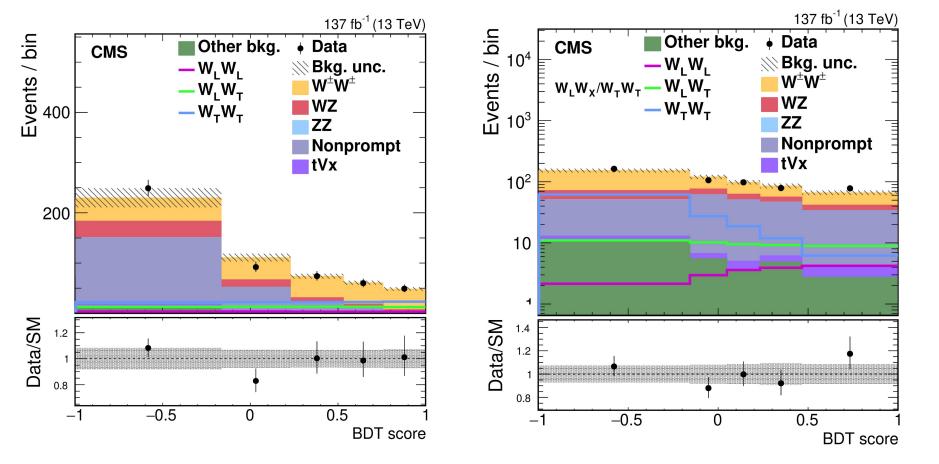

- Inclusive and differential XS measurements available for many important processes
 - Theory calculation compared to experiment with higher precision in more and more channels
- → Many VBS new results (and more coming soon!) with Full Run 2 ~140/fb dataset:
 - **SM-like** properties demonstrated (*for the moment..*)
 - For precision measurements, better control of the backgrounds and sophisticated analyses techniques are being implemented
- → VBS/VBF powerful enough to put **stringent limits to EFT operators** of dimension 6 and 8
 - Privileged handle on EW-higgs sectors interaction
 - Many new analyses under implementation keeping a **global EFT** fit in mind




Thanks for your attention!



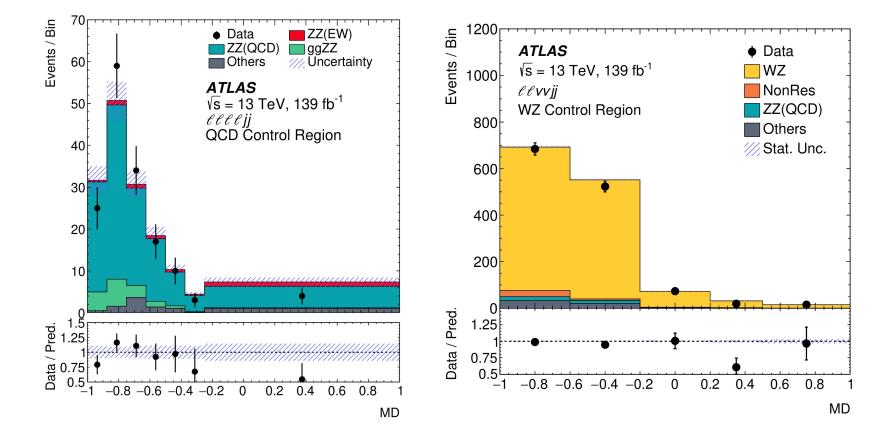
EW non-scattering contributions reduced by kinematic selections



QCD component can be separated from EW one with a good approximation only for LO calculation

Distribution of the output score of the inclusive BDT in the W[±]W[±] signal region

BDT used for $W_L^{\pm}W_X^{\pm}$ and $W_T^{\pm}W_T^{\pm}$ measurement

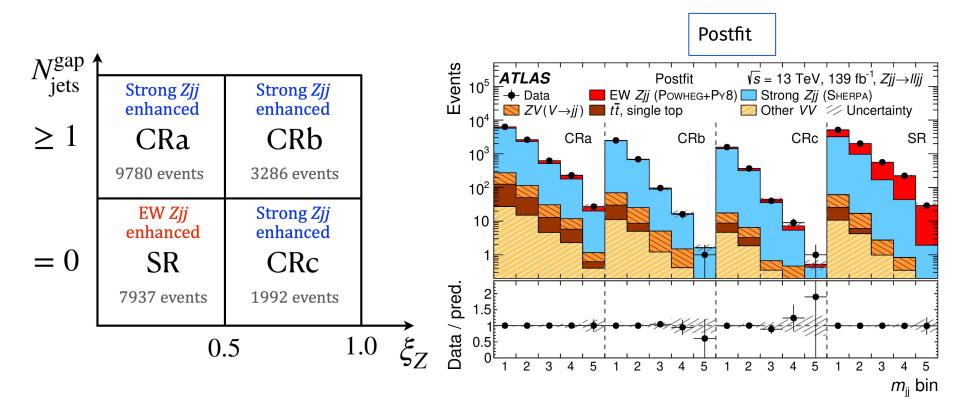


ZZ +2 jets ATLAS

22

Multivariate discriminant distributions after the fit in the QCD CR for 4ljj channel

Multivariate discriminant distributions after the fit in the WZ CR for $2l2\nu jj$ channel

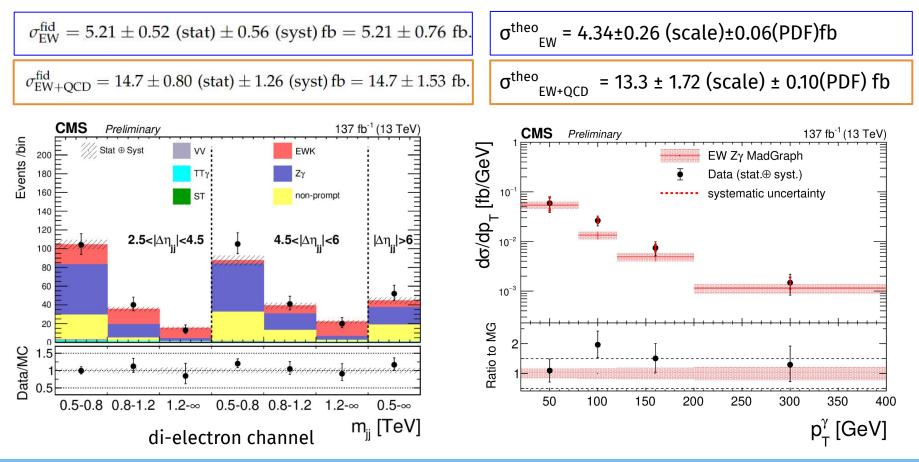


EWK Z + 2 jets (ATLAS)

- Poor data-MC agreement: data-driven method constrain shape and normalisation of the strong *Z*jj bkg to extract EW Zjj event yield

arXiv:2006.15458

- 4 regions defines using uncorrelated ξ_z and multiplicity of jets in the rapidity interval between the leading and subleading jets
- 5 bins in M_{ii} variables used to extract correction factors in each region in a likelihood fit
- EW component in SR extracted using 3 different QCD Zjj models: get envelope + uncertainty



Zy + 2 jets: results

- → 2D fit in the signal region: M_{ii} and $\Delta \eta_{ii}$ bins
- → Fit M_{ii} with 3 bins in the control region
- → EWK signal significance well **over 5** σ
- → Fiducial inclusive EWK and EWK+QCD cross-section → agreement with SM
- → Differential unfolded XS in lepton and photon p_T , leading jet p_T , Mjj and $\Delta \eta_{ii}$ bins

CMS-PAS-SMP-20-016

CINFN

