

MARIA UBIALI UNIVERSITY OF CAMBRIDGE

PDF AND (SM)EFT INTERPLAY

SM@LHC2021 - VIRTUAL CONFERENCE 30TH APRIL 2021

OUTLINE

- Introduction:
 - → PDF and SMEFT fits
 - Time to study interplay between SMEFT and PDF fits

- PDFs in the SMEFT from high-mass Drell-Yan tails
 - Analysis settings
 - Oblique operators: constraints from Run I and Run II data
 - → Oblique operators: projections at the HL-LHC
 - → Flavour specific four-fermion operator

Conclusions and outlook

INTRODUCTION

THEORETICAL PREDICTIONS AT THE LHC

Parton
Distribution
Functions

Hard
Scattering:
Perturbative
QCD + EW

$$d\sigma^{pp \to ab} = \sum_{i,j} f_i \otimes f_j \otimes d\hat{\sigma}^{ij \to ab} + \dots$$

PARTON DISTRIBUTION FUNCTIONS

High scale: input to the LHC

PDF FITS

PDF fits:

Extract universal parton distribution functions from data and propagate data uncertainty in PDF uncertainty

$$\chi^{2} = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} (D_{i} - T_{i}) (\text{cov}^{-1})_{ij} (D_{j} - T_{j})$$

$$T_{i}(\{\theta_{k}\})$$

SMEFT FITS

$d\sigma^{pp\to ab} = \sum_{i,j} f_i \otimes f_j \otimes d\hat{\sigma}^{ij\to ab} + \dots$

Assume SM PDFs

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \cdots$$

SMEFT fits:

Treat the Standard Model as the low energy, IR limit of some UV complete theory and extract bounds on Wilson coefficients c_i from data

$$\chi^{2} = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} (D_{i} - T_{i}) (\text{cov}^{-1})_{ij} (D_{j} - T_{j})$$

$$T_{i}(\{c_{k}\})$$

Fit of Wilson Coefficients {c_k}

PDF AND SMEFT INTERPLAY

- PDFs are low-scale quantities extracted from experimental data, without considering any potential high-scale contamination due to new physics.
- Model-independent parametrisation of new physics are performed by assuming a priori that PDFs are SM-like.
- In principle low-scale physics is separable from high-scale physics, BUT the complexity of the LHC environment might well intertwine them.

$$d\sigma^{pp o ab}_{f_i(\{ heta_k\})} = \sum_{i,j} f_i \otimes f_j \otimes d\hat{\sigma}^{ij o ab} + ...$$

PDF AND SMEFT INTERPLAY

A FEW COMPELLING QUESTIONS

- From the point of view of PDF fits:
 - → How to make sure that new physics effects are not inadvertently fitted away in a PDF fit?
- From the point of view of SMEFT fits:
 - → Should I make sure I am using a clean set of PDFs in a SMEFT analysis? How to define it? Is it enough?
 - → How would the bounds change if I was consistently using PDFs that include in the fit the same operators that I am fitting?

$$T \qquad d\sigma^{pp \to ab} = \sum_{i,j} f_i \otimes f_j \otimes d\hat{\sigma}^{ij \to ab} + \dots \qquad \text{Simultaneous fits can shed light on their interplay}$$

$$T(\{\theta_k\}, \{c_i\}) \qquad \qquad T(\{\theta_k\}, \{c_i\})$$

$$f(\{\theta_k\}) \qquad \mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \cdots$$

CASE-STUDY: DEEP INELASTIC SCATTERING

- First study of interplay in case of DIS data [Carrazza, Degrande, Iranipour, Rojo, MU, Phys.Rev.Lett. 123 (2019) 13, 132001]
- Simple scenario, only right-handed 4F operators, lepton flavour blind, quark flavours split to evade strong LEP constraints
- PDF fits based on DIS only data (Q ≤ 200 GeV for HERA data)

$$egin{aligned} \mathcal{O}_{lu} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{u}_R \gamma_\mu u_R
ight) \ \mathcal{O}_{lc} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{c}_R \gamma_\mu c_R
ight) \ \mathcal{O}_{ld} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{d}_R \gamma_\mu d_R
ight) \ \mathcal{O}_{ls} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{s}_R \gamma_\mu s_R
ight) \end{aligned}$$

Only gluon affected by the presence of non-zero coefficients, but distortion of PDFs leads to a deterioration of data-theory agreement that scales with energy

=> A fit based on DIS data is only moderately affected by interplay and the effects of new physics can be disentangled

HIGH-MASS DRELL-YAN TAILS

W&Y INTERPRETATION OF HIGH-ENERGY DRELL-YAN MEASUREMENTS

- Case study at higher energy: EW oblique corrections in high-mass NC and CC Drell-Yan tails.
- They parametrise the self-energy of gauge bosons and are powerful probes of quark-lepton contact interactions that produce effects that grow with energy [Torre et al, 2008.12978]

$$\mathcal{L}_{\text{SMEFT}} \supset -\frac{\hat{W}}{4m_W^2} (D_{\rho} W_{\mu\nu}^a)^2 - \frac{\hat{Y}}{4m_W^2} (\partial_{\rho} B_{\mu\nu})^2$$

ANALYSIS SETTINGS

 We performed a similar analysis as in Torre et al, now with emphasis on PDF and their interplay with bounds on oblique operators [Greljo, Iranipour, Kassabov, Madigan, Moore, Rojo, MU, Voisey: 2104.02723]

• Settings:

- → PDF fit based on DIS (~3000 data points), Drell-Yan on-shell and low-mass data from ATLAS, CMS and LHCb (~600 data points)
- → + Run I and II ATLAS and CMS high mass NC Drell-Yan data (~300 data points)
- SM predictions at NNLO QCD + NLO EW and SMEFT corrections added via local K-factors

Total						270 (313)	
CMS (*)	13	[119]	5.1	$e^-e^+,\mu^-\mu^+\\\ell^-\ell^+$	1D	43, 43 43	[1.5, 3.0]
CMS CMS (*)	7 8	[118] [84]	9.3 19.7	$\mu^-\mu^+ \ \ell^-\ell^+$	2D 1D	127 41	[0.2, 1.5] $[1.5, 2.0]$
ATLAS (*)	7 8	[117] [83]	4.9 20.3	$e^-e^+ \ \ell^-\ell^+$	1D 2D	13 46	$[1.0, 1.5] \\ [0.5, 1.5]$
Exp.	$\sqrt{s} \; (\text{TeV})$	Ref.	\mathcal{L} (fb ⁻¹)	Channel	1D/2D	$n_{ m dat}$	$m_{\ell\ell}^{ m max}$ (TeV)

 $^{10^2}m_{\mu^+\mu^-}$ [GeV]

 10^{3}

INPUT PDFS @ RUN I AND RUN II

- High mass Drell-Yan data have a pull on light quark and anti-quark PDFs compared to a fit that does not include them
- PDF uncertainties much reduced as compared to DIS-only fit
- Light quark and antiquark uncertainties further reduced by inclusion of high-mass Drell-Yan data

ANALYSIS METHODOLOGY

 We performed a similar analysis as in Torre et al, now with emphasis on PDF and their interplay with bounds on oblique operators [Greljo, Iranipour, Kassabov, Madigan, Moore, Rojo, MU, Voisey: 2104.02723]

$$\chi^{2} = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} (D_{i} - T_{i}) (\text{cov}^{-1})_{ij} (D_{j} - T_{j})$$

- 1. Take data, make theoretical predictions accounting for operator in partonic cross section with fixed SM PDFs.
- 2. Compute chi2 as a function of WCs (Wilson Coefficients)
- 3. Minimise chi2 and find best-fit and C.L.s of WCs
- 4. Extract bounds

$$T = f_{1,SM} \otimes f_{2,SM} \otimes \hat{\sigma}_{BSM}$$

- 1. Take data, make theoretical predictions accounting for operator in partonic cross section and PDFs.
- 2. Compute chi2 as a function of WCs (Wilson Coefficients)
- 3. Minimise chi2 and find best-fit and C.L.s of WCs
- 4. Extract bounds

$$T = f_{1,BSM} \otimes f_{2,BSM} \otimes \hat{\sigma}_{BSM}$$

ANALYSIS METHODOLOGY

- We performed a similar analysis as in Torre et al, now with emphasis on PDF and their interplay with bounds on oblique operators [Greljo, Iranipour, Kassabov, Madigan, Moore, Rojo, MU, Voisey: 2104.02723]
- Methodology for simultaneous fit is similar to the one adopted in fits of α_S from a global fit of PDFs

$$\chi^{2} = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} (D_{i} - T_{i}) (\text{cov}^{-1})_{ij} (D_{j} - T_{j})$$

- Compute chi2 as a function of WCs (Wilson Coefficients)
- Minimise chi2 and find best-fit and C.L.s of WCs
- Extract bounds

$$T = f_{1,SM} \otimes f_{2,SM} \otimes \hat{\sigma}_{BSM}$$

- 1. Take data, make theoretical predictions accounting for operator in partonic cross section and PDFs.
- Compute chi2 as a function of WCs (Wilson Coefficients)
- Minimise chi2 and find best-fit and C.L.s of WCs
- 4. Extract bounds

$$T = f_{1,BSM} \otimes f_{2,BSM} \otimes \hat{\sigma}_{BSM}$$

ANALYSIS METHODOLOGY

- We performed a similar analysis as in Torre et al, now with emphasis on PDF and their interplay with bounds on oblique operators [Greljo, Iranipour, Kassabov, Madigan, Moore, Rojo, MU, Voisey: 2104.02723]
- Methodology for simultaneous fit is similar to the one adopted in fits of α_{S} from a global fit of PDFs

$$\chi^{2} = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} (D_{i} - T_{i}) (\text{cov}^{-1})_{ij} (D_{j} - T_{j})$$

- 1. Take data, make theoretical predictions accounting for operator in partonic cross section with fixed SM PDFs.
- 2. Compute chi2 as a function of WCs (Wilson Coefficients)
- 3. Minimise chi2 and find best-fit and C.L.s of WCs
- 4. Extract bounds

$$T = f_{1,SM} \otimes f_{2,SM} \otimes \hat{\sigma}_{BSM}$$

Greljo et al, 2104.02723

- 1. Take data, make theoretical predictions accounting for operator in partonic cross section and PDFs.
- 2. Compute chi2 as a function of WCs (Wilson Coefficients)
- 3. Minimise chi2 and find best-fit and C.L.s of WCs
- 4. Extract bounds

$$T = f_{1,BSM} \otimes f_{2,BSM} \otimes \hat{\sigma}_{BSM}$$

INTERPLAY @ RUN I AND RUN II

- Broadening of individual bounds on W and Y once SMEFT PDFs are used (i.e. PDFs that have been fitted with consistent values of W and Y) is not negligible, but still within PDF uncertainties
- If SMEFT PDFs are used in determining bounds from ATLAS search same mild broadening (larger than PDF uncertainties)

INPUT PDF @ HL-LHC

Add HL-LHC projections for both NC and CC in PDF fit

$$\sigma_i^{
m hllhc} \equiv \sigma_i^{
m th} \left(1 + \lambda \delta_{\mathcal{L}}^{
m exp} + r_i \delta_{{
m tot},i}^{
m exp} \right) , \qquad i = 1, \dots, n_{
m bin}$$
 $\delta_{{
m tot},i}^{
m exp} = \left(\left(\delta_i^{
m stat} \right)^2 + \sum_{j=1}^{n_{
m sys}} \left(f_{{
m red},j} \delta_{i,j}^{
m sys} \right)^2 \right)^{1/2}$

+ same for muon channel

INPUT PDF @ HL-LHC

Add HL-LHC projections for both NC and CC in PDF fit

$$\sigma_i^{
m hllhc} \equiv \sigma_i^{
m th} \left(1 + \lambda \delta_{\mathcal{L}}^{
m exp} + r_i \delta_{{
m tot},i}^{
m exp} \right) \,, \qquad i = 1, \dots, n_{
m bin}$$
 $\delta_{{
m tot},i}^{
m exp} = \left(\left(\delta_i^{
m stat} \right)^2 + \sum_{j=1}^{n_{
m sys}} \left(f_{{
m red},j} \delta_{i,j}^{
m sys} \right)^2
ight)^{1/2}$

- Compare Wilson coefficients bounds from HL-LHC projections assuming SM PDFs (that include NC+CC data) to the bounds on the same Wilson coefficients obtained from a simultaneous fit of PDFs and Wilson coefficients
- Not accounting for interplay (using PDFs as a black box) leads to over-constrained bounds

	SM PDFs	SMEFT PDFs	best-fit shift	broadening
$\hat{W} \times 10^5 \ (68\% \ \mathrm{CL})$	[-0.7, 0.5]	[-4.5, 6.9]	1.3	850%
W X 10 (00% CL)	[-1.0, 0.9]	[-4.0,0.9]	1.3	500%
1ÎZ > 105 (0507 OI)	[-1.0, 0.8]		1.4	940%
$\hat{W} \times 10^5 \ (95\% \ \text{CL})$	[-1.4, 1.2]	[-8.1, 10.6]	1.4	620%
$\hat{Y} \times 10^5 \; (68\% \; \mathrm{CL})$	[-1.8, 3.2]	[-6.4, 8.0]	0.1	190%
1 × 10 (0070 CL)	[-3.7, 4.7]	[-0.4, 0.0]	0.3	70%
$\hat{Y} \times 10^5 \; (95\% \; \mathrm{CL})$	[-3.4, 4.7]	[11 1 19 6]	0.1	190%
1 × 10 (90% CL)	[-5.3, 6.3]	[-11.1, 12.6]	0.3	110%

- Compare Wilson coefficients bounds from HL-LHC projections assuming SM PDFs (that include NC+CC data) to the bounds on the same Wilson coefficients obtained from a simultaneous fit of PDFs and Wilson coefficients
- Not accounting for interplay (using PDFs as a black box) leads to over-constrained bounds
- PDFs do absorb effect of new physics in this case!

- Compare Wilson coefficients bounds from HL-LHC projections assuming SM PDFs (that include NC+CC data) to the bounds on the same Wilson coefficients obtained from a simultaneous fit of PDFs and Wilson coefficients
- Not accounting for interplay (using PDFs as a black box) leads to over-constrained bounds
- PDFs do absorb effect of new physics in this case!
- What if we use a clean or "conservative" set of PDFs that does not include any high-mass Drell-Yan data?

- Compare Wilson coefficients bounds from HL-LHC projections assuming SM PDFs (that include NC+CC data) to the bounds on the same Wilson coefficients obtained from a simultaneous fit of PDFs and Wilson coefficients
- Not accounting for interplay (using PDFs as a black box) leads to over-constrained bounds
- PDFs do absorb effect of new physics in this case!
- What if we use a clean or "conservative" set of PDFs that does not include any high-mass Drell-Yan data?

Note that HL-LHC projections based on pseudo-data. If new physics was there, simultaneous fits of SMEFT and PDFs could point to a different minimum, and not only to larger uncertainties!

FLAVOUR-SPECIFIC 4-FERMIONS OPERATORS COUPLING MUONS AND B-QUARKS

- Consider a scenario with a single non-zero WC among gauge invariant four-fermion operators built from the SM quark and lepton SU(2)_L doublets
- If the observed deviations in $R(K^{(*)})$ due to new physics, generically expect $|C^{D\mu_{33}}| \approx 0.001$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{\mathbf{C}_{33}^{D\mu}}{v^2} (\bar{d}_L^3 \gamma_\mu d_L^3) (\bar{\mu}_L \gamma^\mu \mu_L)$$

	SM PDFs	SMEFT PDFs	best-fit shift	broadening
$\mathbf{C}_{33}^{D\mu} \times 10^2 \ (68\% \ \mathrm{CL})$	[-0.1, 1.1]	[-0.3, 1.2]	0.06	25%
$\mathbf{C}_{33}^{D\mu} \times 10^2 \ (95\% \ \mathrm{CL})$	[-1.0, 1.2]	[-1.2, 1.4]	0.06	18%

- From PDF point of view, new physics only in Drell-Yan muon data and PDF constrained by Drell-Yan electron data
- Measurements in separate leptonic final states is of utmost importance to test BSM scenarios that account for violations of Lepton Flavour Universality.

CONCLUSIONS AND OUTLOOK

- Time to study the interplay between indirect new physics searches via EFT fits and PDFs
- Current status:
 - Comparing results of simultaneous fit and of fits assuming SM PDFs starts shedding some lights on the issue
 - > Run I and Run II high-energy Drell-Yan data: the effect of the interplay is visible but is still within PDF uncertainties
 - Search data: bounds broaden compared to SM PDFs (beyond PDF uncertainties)
 - → HL-LHC: Not accounting for interplay (using PDFs as a black box) leads to over-constrained bounds
 - → HL-LHC: Conservative PDFs still yield stronger bounds than simultaneous fit
- The way ahead:
 - ightharpoonup The preferred avenue ahead is to be able to perform simultaneous fits (like for PDFs and $lpha_{
 m s}$)
 - Current methodology not devised to deal with many operators
 - → More powerful methodology is work in progress
 - → In parallel a more careful investigation of definition of conservative PDF sets & account for PDF uncertainties
 - → Also, would be important to disentangle large-x from high-energy / low-energy (LHCb) as well as scaling behaviour (ratios at different centre of mass energies?)

THANK YOU FOR YOUR ATTENTION!

EXTRA MATERIAL

SIMULTANEOUS FITS

- → PDFs and α_s strongly correlated (PDF evolution with the scale and hard cross sections)
- → Cleanest determinations of α_s from processes that do not require knowledge of the PDFs
- ightharpoonup A determination of α_s jointly with the PDFs has advantage that it is driven by the combination of many experimental measurements from several different processes.

NNPDF2.1 NNLO Global

Ball et al, 1110.2483

- ightharpoonup Early determinations involve a scan over α_s and ignored PDF and α_s correlation in the fit
- Recent simultaneous determination of PDF and α_s using correlated replica method
- → Many determination of α_s from analyses of specific LHC processes have been published recently (from tt~, Z and W production, jets)
- \rightarrow How reliable are such partial determination of α_s ?

Ball, Carrazza, Del Debbio, Forte, Kassabov, Rojo, Slade, MU 1802.03398

SIMULTANEOUS FITS

- In the lowever note that at the current level of precision, the determination of the strong coupling constant from the precise measurement of a process at the LHC might be problematic
- Given the strong correlation between PDFs of the proton and α_s , only simultaneous determination of α_s along with the PDFs gives reliable result [Forte, Kassabov 2001.04986]

These results point towards the need of new generation of global fits, in which all ingredients that enter theoretical predictions are treated consistently.