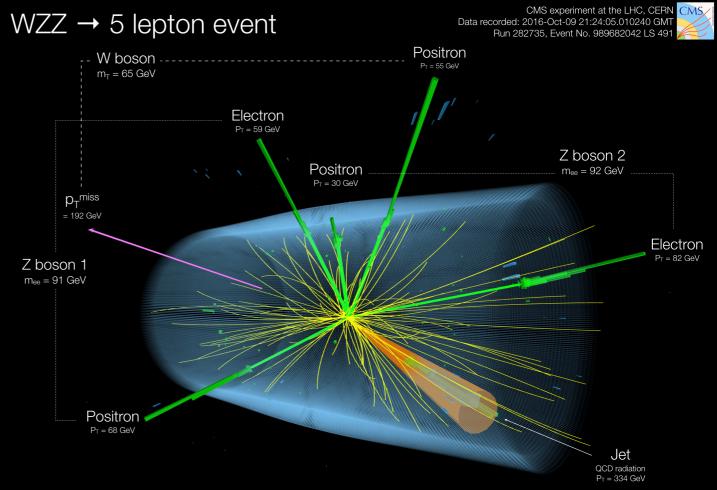
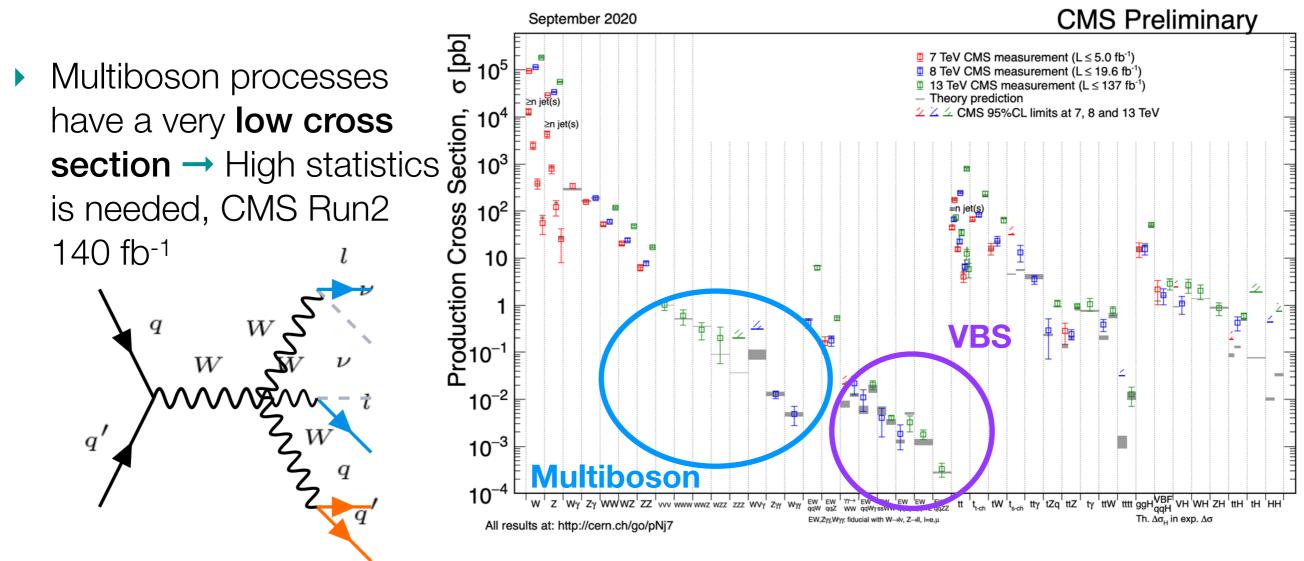


TRIBOSON MEASUREMENTS IN CMS


Alessandro Da Rold, on behalf of the CMS Collaboration



INTRODUCTION AND MOTIVATION

- Non-abelian gauge structure of the SM allows for vector boson self interactions → Triple (TGC) and Quartic Gauge Couplings (QGC)
- Multiboson final states important test of the electro-weak sector of the Standard Model → Precise measurement of the coupling values
- Probing the strength of the couplings is an indirect search for new physics
- Two main groups of processes: QCD production and Vector Boson Scattering (VBS)

EXPERIMENTAL CHALLENGES

Complex final state → High particle multiplicity

- ► High precision needed in the measurements → Small deviations can be linked to the presence of new physics, EFT interpretation
- Measurement of inclusive cross sections and evidence/observation of processes never measured before

13 TeV 137 fb⁻¹

CMS-PAS-SMP-19-014

Measure both inclusive and single channel cross sections

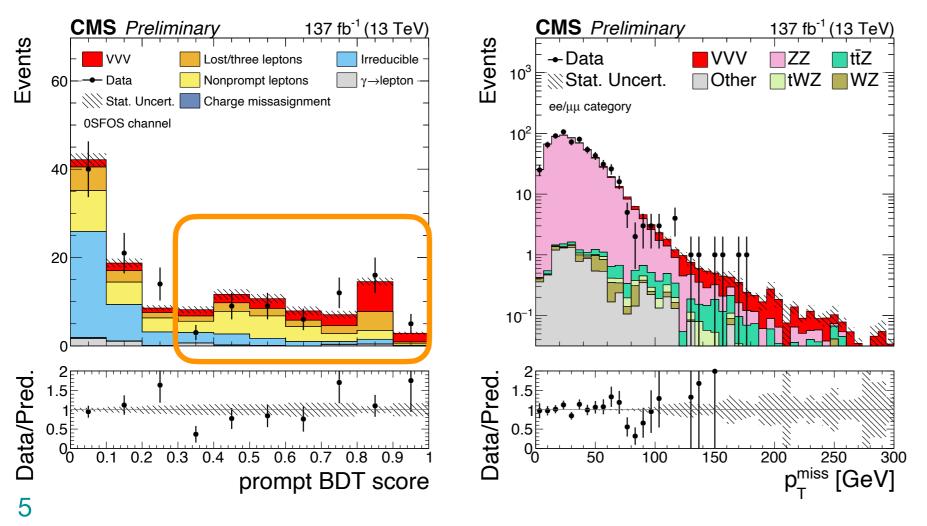
WWW→I±I± 2v qq'

- ▶ 2 same sign (SS) leptons, \ge 1 jets
- 9 categories: lepton flavour (ee, eµ, µµ), 1 jet and 2 jets with 65 < m_{jj} < 95 GeV and outside
- Backgrounds: lost lepton, SS leptons
 + jets, nonprompt

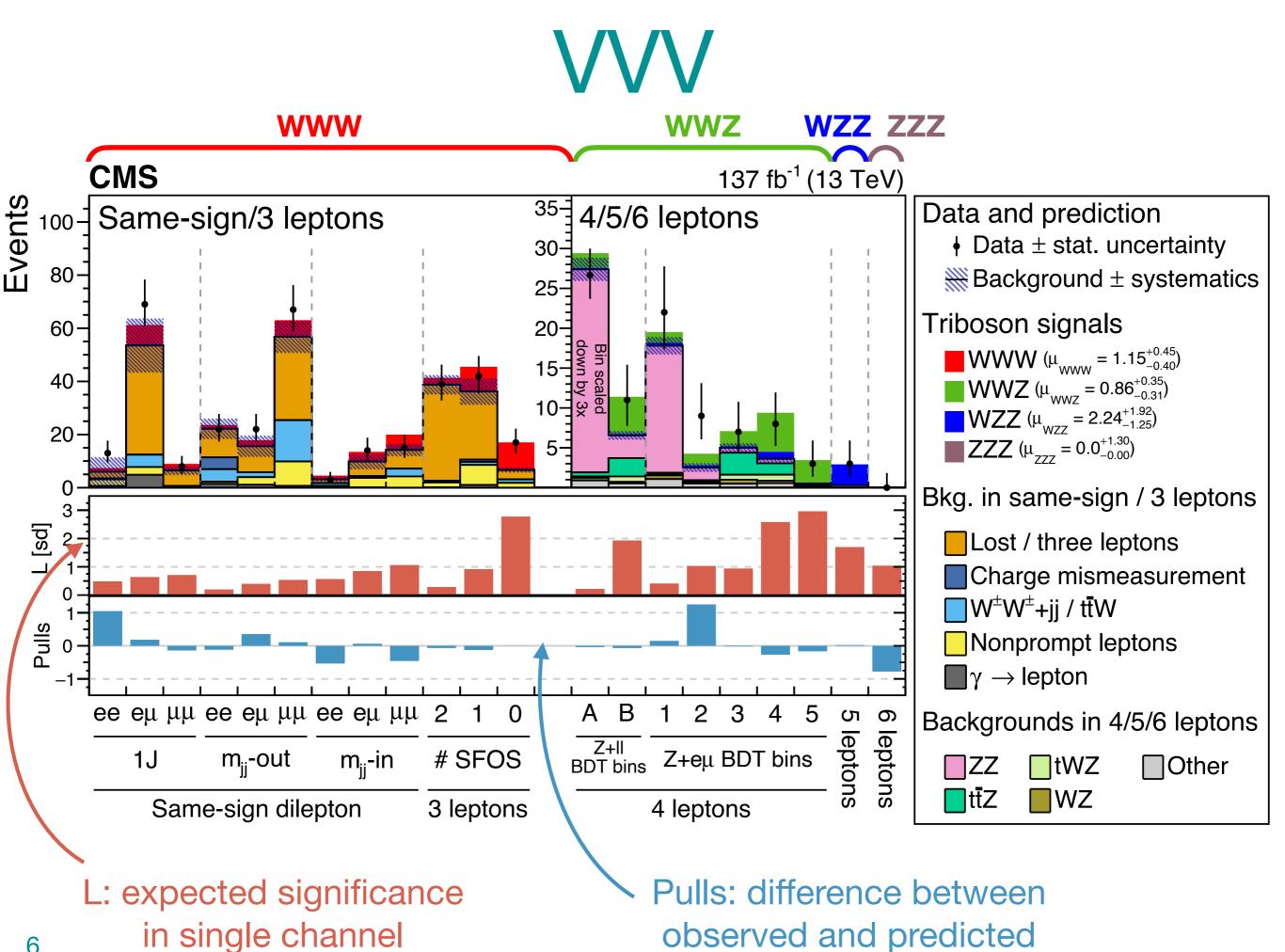
WWW→I±I±I∓ 3v

- 0, 1 or 2 same-flavour opposite charge lepton pairs (SFOS)
- ▶ m_{II} incompatible with M_Z
- Backgrounds: lost lepton, SS leptons
 + jets, nonprompt

 $W^{\pm}W^{\mp}Z \rightarrow I^{\pm}I^{\mp} 2\nu (I^{\pm}I^{\mp})$

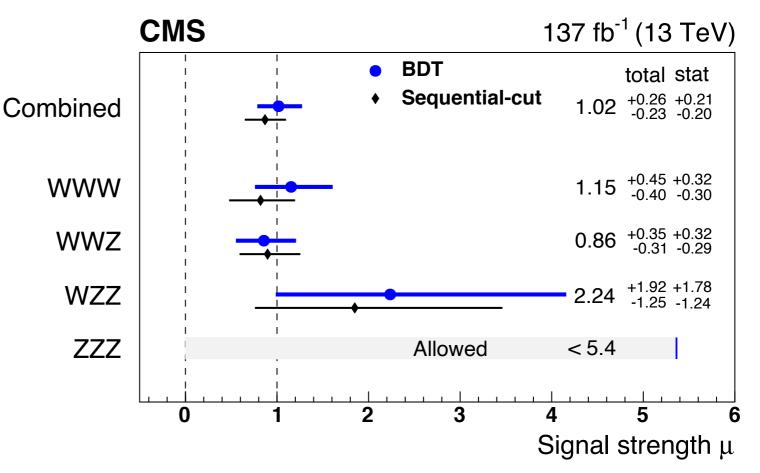

- SFOS lepton pair with mll within
 10 GeV of M_Z
- Dominant background from ZZ production

 $WZZ \rightarrow |v (|\pm|\mp) (|\pm|\mp)$ $ZZZ \rightarrow (|\pm|\mp) (|\pm|\mp) (|\pm|\mp)$


- Very small cross sections and BR
- 5I: must have 2 SFOS close to M_Z, p_T^{miss} > 50 GeV, backgrounds from ZZ and nonprompt leptons
- 6I: 3 SFOS pairs, very small background from ttH and ZZ

VVV

- Non-prompt lepton background estimated form data exploiting isolation variables
- Boosted Decision Tree trained with simulated background and signal
 - Two BDT applied in sequence for channels with more than one background categories (for WWW: nonprompt and others)
- 4I WWZ category main background contribution from $ZZ \rightarrow p_T^{miss}$ cut


- Systematic uncertainties
 - Limited statistic in control regions 5-25%
 - Nonprompt bkg estimation up to 50%
 - Higher order corrections and PDFs 3-15%

VVV

- Measured signal strength in agreement with SM prediction
- Discrimination of signal and background enhanced with BDT approach

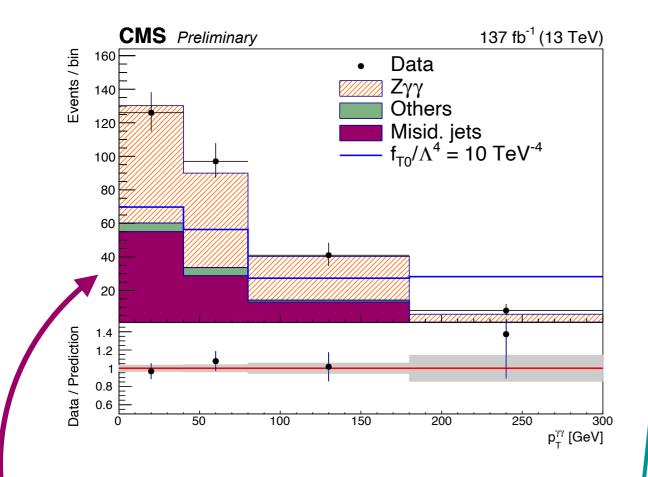
Channel	Cross section (fb)			
Higgs boson contributions as signal				
VVV	$1010^{+210}_{-200}{}^{+150}_{-120}$			
WWW	$590^{+\bar{1}\check{6}\check{0}}_{-150}{}^{+\bar{1}\check{6}\check{0}}_{-130}$			
WWZ	300^{+120}_{-100} $^{+50}_{-40}$			
WZZ	200^{+160}_{-110} $^{+70}_{-20}$			
ZZZ	<200			
Higgs boson contributions as background				
VVV	$370^{+140}_{-130}{}^{+80}_{-60}$			
WWW	190^{+110}_{-100}			
WWZ	$100 \begin{array}{r} -100 \\ +80 \\ -70 \\ -30 \end{array}$			
WZZ	110^{+100}_{-70}			
ZZZ	<80			

Observed (expected) significances

Channel	Cut-and-count	BDT
WWW *	2.5 (2.9)	3.3 (3.1)
WWZ	3.5 (3.6)	3.4 (4.1)
WZZ	1.6 (0.7)	1.7 (0.7)
ZZZ	0.0 (0.9)	0.0 (0.9)

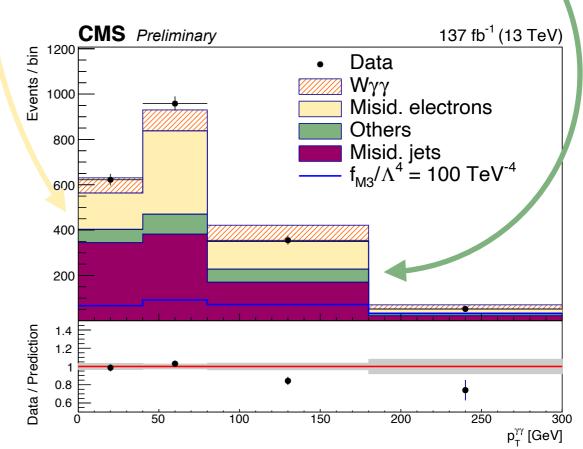
* 2016 only (35.9 fb⁻¹) result: 0.60 (1.78) 7

13 TeV 137 fb⁻¹


q

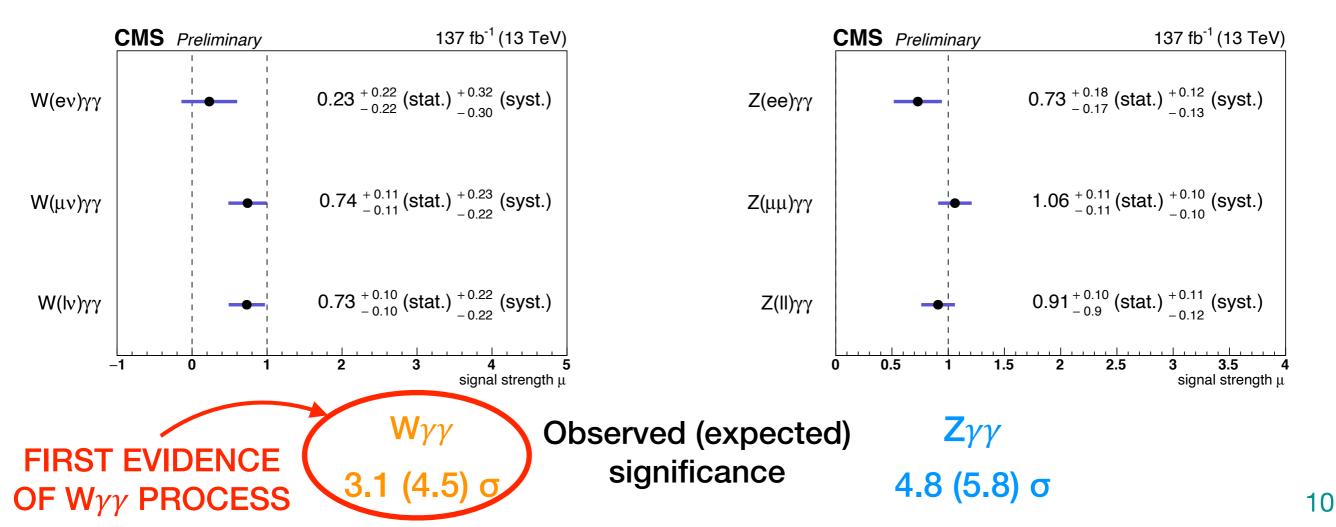
 \overline{q}

<u>CMS-PAS-SMP-19-013</u>


- Selection
 - W → One isolated electron (muon) with p_T > 35 (30) GeV
 - Z → Two oppositesign same-flavour electrons (muons) with p_T^{lead} > 35 (30) GeV
 - Two photons with $p_T > 20 \text{ GeV},$ $|M_{e+\gamma(\gamma)} - M_Z| > 5 \text{ GeV},$ isolated from e and μ
- Study of the non-abelian structure of the electroweak sector of the SM
 - Sensitive to the presence of many different aQGC
 - Possible background of VH measurements $(H \rightarrow \gamma \gamma)$

Backgrounds

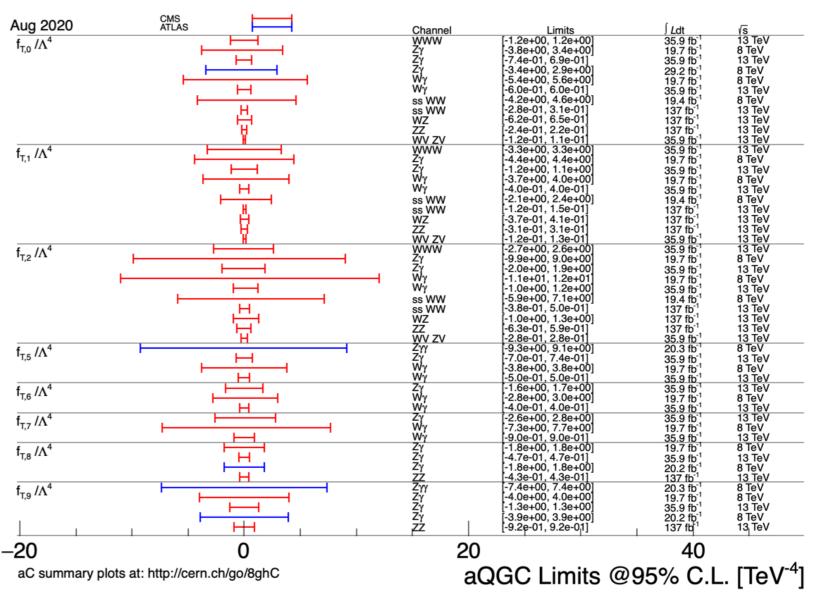
 Jet-photon misidentification
 Data driven estimate from single photons events by exploiting isolation properties and then extrapolated to the di-photon signal region


- Electron-photon misidentification (mainly W(ev)γγ channel) → Exploit
 e+γ Z-like events to correct the Zγ simulation
- Other irreducible backgrounds from events with true photons

Vγγ

- Inclusive cross sections measured for the electron, muon channels separately and then combined
- $\sigma_{W\gamma\gamma} = 13.63^{+1.93}_{-1.89} (\text{stat})^{+4.04}_{-4.02} (\text{syst}) \pm 0.08 (\text{PDF} + \text{scale}) \text{ fb}$
- $\sigma_{Z\gamma\gamma} = 5.41^{+0.58}_{-0.54} (\text{stat})^{+0.64}_{-0.70} (\text{syst}) \pm 0.06 (\text{PDF} + \text{scale}) \text{ fb}$
 - Results in agreement with SM prediction

- Systematic uncertainties
 - Data-driven jet-photon misidentification
 background estimation (Wγγ 21%, Zγγ 6%)
 - Photon scale factors ($W\gamma\gamma$ 12%, $Z\gamma\gamma$ 5%)


 $V\gamma\gamma$

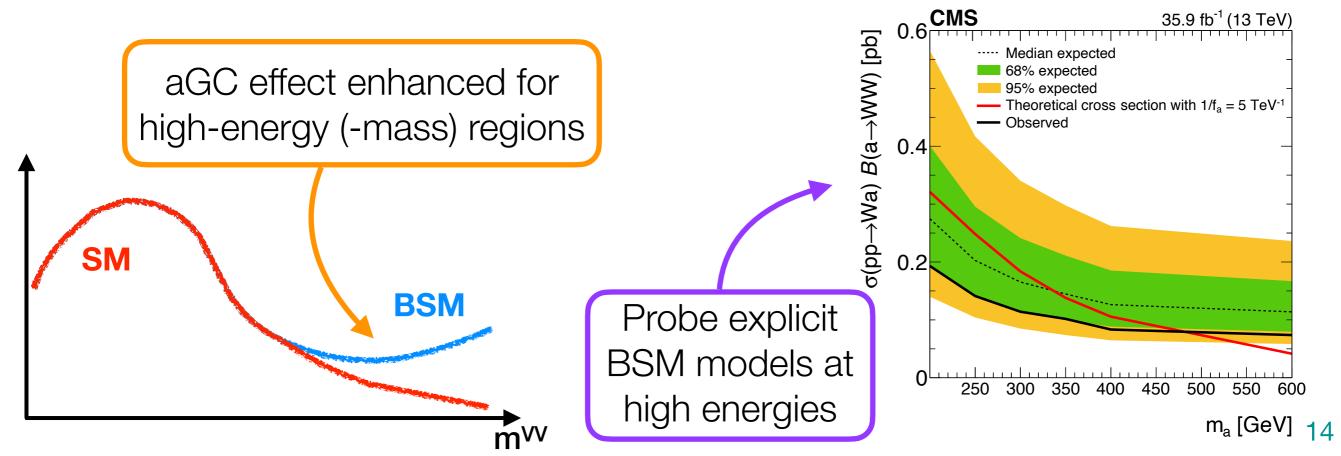
- Di-photon distribution exploited for limits computation
- High $p_T^{\gamma\gamma}$ region most sensitive to the presence of aQGC

		$W\gamma\gamma$ (]	ΓeV^{-4})	$Z\gamma\gamma$ (]		
	Parameter	Expected	Observed	Expected	Observed	
	$f_{M,2}/\Lambda^4$	[-57.3, 57.1]	[-39.9, 39.5]	-	-	
	$f_{M,3}/\Lambda^4$	[-91.8, 92.6]	[-63.8, 65.0]	-	- F	irst time ever
	$f_{T,0}/\Lambda^4$	[-1.86, 1.86]	[-1.30, 1.30]	[-4.86, 4.66]	[-5.70, 5.46]	with $Z\gamma\gamma$
	$f_{T,1}/\Lambda^4$	[-2.38, 2.38]	[-1.70, 1.66]	[-4.86, 4.66]	[-5.70, 5.46]	channel
	$f_{T,2}/\Lambda^4$	[-5.16, 5.16]	[-3.64, 3.64]	[-9.72, 9.32]	[-11.4, 10.9]	
Competitive	$f_{T,5}/\Lambda^4$	[-0.76, 0.84]	[-0.52, 0.60]	[-2.44, 2.52]	[-2.92, 2.92]	
results	$f_{T,6}/\Lambda^4$	[-0.92, 1.00]	[-0.60, 0.68]	[-3.24, 3.24]	[-3.80, 3.88]	
	$f_{T,7}/\Lambda^4$	[-1.64, 1.72]	[-1.16, 1.16]	[-6.68, 6.60]	[-7.88, 7.72]	
	$f_{T.8}/\Lambda^4$	-	-	[-0.90, 0.94]	[-1.06, 1.10]	
	$f_{T,9}/\Lambda^4$	-	-	[-1.54, 1.54]	[-1.82, 1.82]	
	W(Ιν) γγ	f _{T,5}		Z(II)γ [-7.0e-0	1, 6.0e-01] 137 fb ⁻¹ 1, 7.5e-01] 35.9 fb ⁻¹	13 TeV 13 TeV
				W(lv)γγ [-6.0e-0	1, 5.0e-01] 35.9 fb ⁻¹ 1, 6.8e-01] 137 fb ⁻¹ 10, 1.7e+00] 35.9 fb ⁻¹	13 TeV 13 TeV 13 TeV
	MS results	т _{т,6}		Wγ [-4.0e-0	$1, 4.0e-01$ 35.9 fb^{-1} $1, 4.2e+00$ 137 fb^{-1}	13 TeV 13 TeV 13 TeV
		f _{T,7}		Z(II)γ [-2.6e+0	0, 2.8e+00] 35.9 fb ⁻¹ 1, 9.0e-01] 35.9 fb ⁻¹	13 TeV 13 TeV
		-5	0	5	10	15
				aQGC L	imits @95% C.L	. [TeV ⁻⁴] 11

SUMMARY

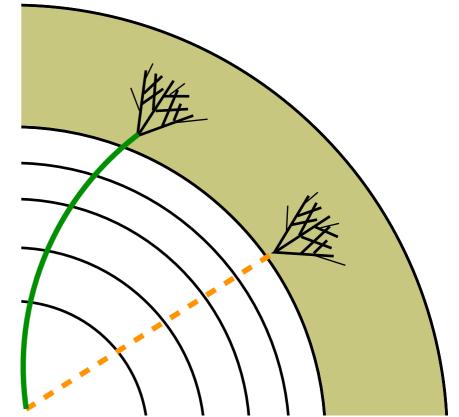
- With LHC Run 2 data, multi-boson processes accessible
- Cross sections measured for many different processes

- Limits on anomalous couplings more and more stringent, increased sensitivity on new physics processes
- First observation of massive triboson processes @ 13TeV
- First evidence of $W_{\gamma\gamma}$, observation of $Z_{\gamma\gamma}$ @ 13TeV


RESULTS INTERPRETATION

Presence of effects beyond the SM (BSM) can change the value of the couplings
 Anomalous Gauge Couplings

• Effective Field Theories (EFT) provide a model-independent extension of the SM


$$\mathscr{L}_{aQGC} = \mathscr{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^{d-4}} O_i + \dots$$

 Λ is the energy scale of the new physics, d is the dimension of the operator, f_i is the strength of the coupling

ELECTRON-PHOTON MISID

- An electron that does not leave a track in the tracker, but only an energy deposit in the electromagnetic calorimeter
- Simulation of the process in the Drell-Yan samples is not perfect → Correct in a datadriven way

- Procedure:
 - Extract "fake" Z mass e+y in differential region of photon momentum and pseudorapidity in data and Monte Carlo
 - ▶ Fit distribution with template + background model → Systematics from analytical fit with double Crystal-Ball shape
 - Obtain a correction factor by comparing the number of events in the Z peak in data and simulation
 - Correct the simulated photons that match a generated electron for the correction factor obtained in this way

JET-PHOTON MISID

- A jet initiated by a neutral particle (for example a π⁰) that releases energy in the electromagnetic calorimeter has the same signature of a photon
- Use shower shape distributions of photons in a control region (no isolation requirement, enhance contribution of jets) in the MC to estimate the contribution of the jet-photon misid

Use a variable that can discriminate photons form jets: isolation

Categorise both data and simulation in signal (Tight) and control (Loose) regions

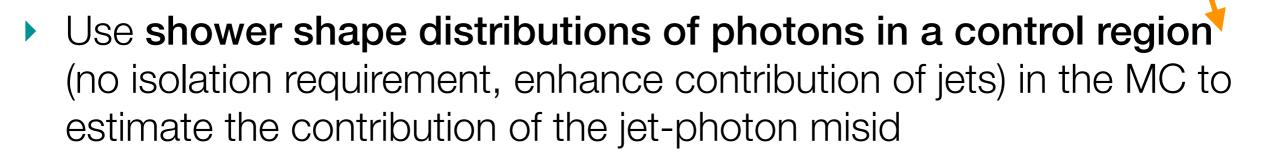
Estrapolate the background fraction to two-photon control region

Exploit single-photon control region to compute isolation probabilities ϵ and f

JET-PHOTON MISID

- A jet initiated by a neutral particle (for example a π⁰) that releases energy in the electromagnetic calorimeter has the same signature of a photon
- Use shower shape distributions of photons in a control region (no isolation requirement, enhance contribution of jets) in the MC to estimate the contribution of the jet-photon misid

Probabilities for a photon to be isolated in single photon control region


Composition of the di-photon region in terms of "true" events and jet-photon misid ones

$$\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{pmatrix} \varepsilon_1 \varepsilon_2 & \varepsilon_1 f_2 & f_1 \varepsilon_2 & f_1 f_2 \\ \varepsilon_1 (1 - \varepsilon_2) & \varepsilon_1 (1 - f_2) & f_1 (1 - \varepsilon_2) & f_1 (1 - f_2) \\ (1 - \varepsilon_1) \varepsilon_2 & (1 - \varepsilon_1) f_2 & (1 - f_1) \varepsilon_2 & (1 - f_1) f_2 \\ (1 - \varepsilon_1) (1 - \varepsilon_2) & (1 - \varepsilon_1) (1 - f_2) & (1 - f_1) (1 - \varepsilon_2) & (1 - f_1) (1 - f_2) \end{pmatrix} \begin{pmatrix} N_{\gamma \gamma} \\ N_{\gamma j} \\ N_{j \gamma} \\ N_{j j} \end{pmatrix}$$

Number of events with two photons categorised by isolation in data

JET-PHOTON MISID

 A jet initiated by a neutral particle (for example a π⁰) that releases energy in the electromagnetic calorimeter has the same signature of a photon

Probabilities for a photon to be isolated in single photon control region

Composition of the di-photon region in terms of "true" events and jet-photon misid ones

$$\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{pmatrix} \varepsilon_1 \varepsilon_2 & \varepsilon_1 f_2 & f_1 \varepsilon_2 & f_1 f_2 \\ \varepsilon_1 (1 - \varepsilon_2) & \varepsilon_1 (1 - f_2) & f_1 (1 - \varepsilon_2) & f_1 (1 - f_2) \\ (1 - \varepsilon_1) \varepsilon_2 & (1 - \varepsilon_1) f_2 & (1 - f_1) \varepsilon_2 & (1 - f_1) f_2 \\ (1 - \varepsilon_1) (1 - \varepsilon_2) & (1 - \varepsilon_1) (1 - f_2) & (1 - f_1) (1 - \varepsilon_2) & (1 - f_1) (1 - f_2) \end{pmatrix} \cdot \begin{pmatrix} N_{\gamma \gamma} \\ N_{\gamma j} \\ N_{\gamma j} \\ N_{j \gamma} \\ N_{j j} \end{pmatrix}$$

Number of events with two photons categorised by isolation in data

Invert and extract composition of the signal region

Systematic uncertainties

Table 1: Summary of the systematic uncertainties (in %) for the W $\gamma\gamma$ and the Z $\gamma\gamma$ cross section measurements. The numbers indicate the impact of each systematic uncertainty on the value of the measured cross section in the corresponding channel.

	-	~				
Systematic source	$e\nu_e\gamma\gamma$	$\mu \nu_{\mu} \gamma \gamma$	$l \nu \gamma \gamma$	$ee\gamma\gamma$	μμγγ	$11\gamma\gamma$
Luminosity	< 1	2	2	3	1	3
Pile-up	2	< 1	< 1	2	< 1	1
Electron SF	4	< 1	< 1	3	< 1	1
Muon SF	1	< 1	< 1	2	< 1	1
Photon SF	18	13	12	6	5	5
Jet-photon misid.	25	22	21	6	5	6
Electron-photon misid.	4	< 1	< 1	-	-	-
$W\gamma$ theoretical cross section	3	3	3	< 1	< 1	< 1
$Z\gamma$ theoretical cross section	4	< 1	< 1	7	5	6
Other bkgs theoretical cross section	5	2	2	< 1	< 1	< 1
Monte Carlo statistics	18	7	8	7	3	4