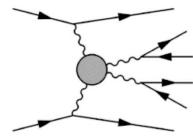
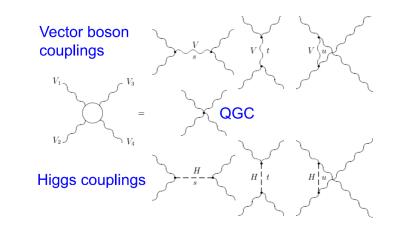
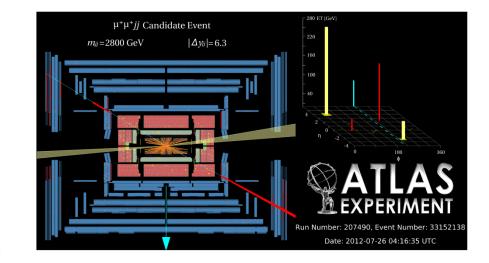
Observation of electroweak production of two jets and a Z-boson pair with the ATLAS detector at the LHC

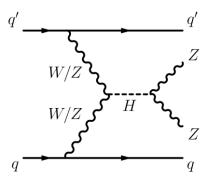


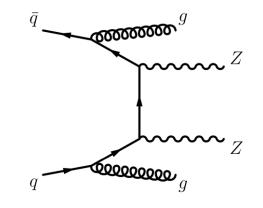

Shuzhou Zhang University of Michigan On behalf of the ATLAS Collaboration SM@LHC 2021 arXiv:2004.10612



The VBS Processes at the LHC

- Vector Boson Scattering (VBS) is a key process to probe the mechanism of electroweak symmetry breaking, and has close connection with the SM Higgs boson, which cancel the VBS cross-section divergence at TeV energy scale
- VBS processes are sensitive to new physics beyond SM:
 - Constraint on anomalous QGCs (aQGCs).
 - Probe new physics through deviations from SM.
- Experimental signatures of VBS:
 - Two intermediate vector bosons radiated from two incoming quarks.
 - Final state with two vector bosons plus two outgoing jets.
 - In general, two "tag" jets in forward region with large rapidity separation and large invariant mass.
 - EW VBS has relatively smaller cross-sections, suffer from irreducible QCD VV + 2jets events



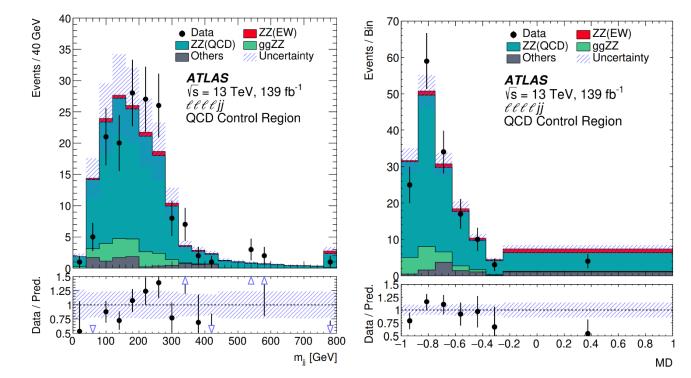

Candidate VBS event from same sign WW Phys. Rev. Lett. 113, 141803

Overview of EW ZZjj Analysis

- Full Run-II data, 139 fb^{-1} .
- Two ZZ decay channels: $ZZ \rightarrow 4l$ and $ZZ \rightarrow llvv$.
- Our analysis is a measurement EW ZZjj production, not just VBS ZZ (VBS diagrams interfere with other EW diagrams).
- 4 lepton channel:
 - Very clean experimental signature, small background contribution (~3%) from reducible backgrounds.
 - Large irreducible background from QCD ZZjj process.
 - EW/QCD is ~20% level overall, MVA is needed.
 - Large uncertainty from theoretical modeling of QCD ZZjj.
- *llvv* channel:
 - Background components are more complicated than 4l channel.
 - Backgrounds mainly come from WZ, WW+ttbar and irreducible QCD ZZjj processes.
 - Z+jets background is largely suppressed with tight cut on the METsignificance (MET significance is used to distinguish missing transverse energy arising from undetectable particles to object mis-reconstruction, finite detector resolution, or detector noise).

Object and Event Selections

	$\ell\ell\ell\ell jj$	$\ell\ell u u j j$		
Electrons	$p_{\rm T} > 7 \; {\rm GeV}, \eta < 2.47$			
	$ d_0/\sigma_{d_0} < 5$ and $ z_0 \times \sin \theta < 0.5$ mm			
Muons	$p_{\rm T} > 7 \; {\rm GeV}, \eta < 2.7$	$p_{\rm T} > 7 \; {\rm GeV}, \eta < 2.5$		
	$ d_0/\sigma_{d_0} < 3$ and $ z_0 \times \sin \theta < 0.5$ mm			
Jets	$p_{\rm T} > 30 (40)$ GeV for $ \eta < 2.4 (2.4 < \eta < 4.5)$	$p_{\rm T} > 60 (40)$ GeV for the leading (sub-leading) jet		
ZZ selection	$p_{\rm T} > 20, 20, 10$ GeV for the leading, sub-leading and third leptons	$p_{\rm T} > 30 (20)$ GeV for the leading (sub-leading) lepton		
	Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-} - m_Z + m_{\ell'^+\ell'^-} - m_Z $	One OSSF lepton pair and no third leptons		
	$m_{\ell^+\ell^-} > 10$ GeV for lepton pairs	$80 < m_{\ell^+\ell^-} < 100 \text{ GeV}$		
	$\Delta R(\ell,\ell') > 0.2$	No b-tagged jets		
	$66 < m_{\ell^+ \ell^-} < 116 \text{ GeV}$	$E_{\rm T}^{\rm miss}$ -significance > 12		
Dijet selection	Two most energetic jets with $y_{j_1} \times y_{j_2} < 0$			
	$m_{ii} > 300$ GeV and $\Delta y(jj) > 2$	$m_{jj} > 400 \text{ GeV}$ and $\Delta y(jj) > 2$		

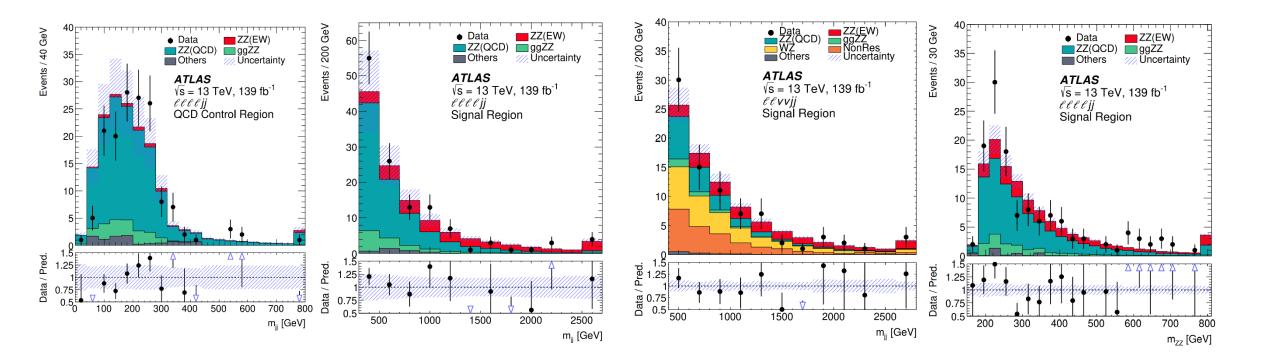


Background Estimation

- In 4 lepton channel, a QCD CR, defined by reverting the m_{jj} or dY_{jj} cut, is used to constraint the QCD ZZjj background.
- Other minor backgrounds (fakes) in 4 lepton channel (fake background) is estimated using a fake-factor method.
 - Two dedicated CRs were used to derive fake factor from Z+jets and $t\bar{t}$.
 - Bad lepton is defined by reverting the lepton quality, isolation or impact parameters.
 - Final fake background estimation: 2.3 ± 1.6 .

• In llvv channel:

- WZ background is constrained by a dedicated 31, WZ CR.
- WW, top, $Z\tau\tau$ backgrounds are estimated with events in dedicated $e\mu$ data CR.
- Z+jets background is estimated by extrapolation (with Exponential function) from data events in low MET-significance region to high METsignificance region


Data compared with predictions

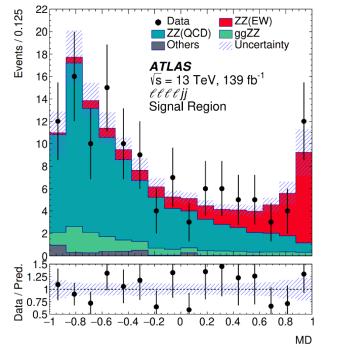
Process	llll j j	llvvjj
EW ZZjj	20.6 ± 2.5	12.3 ± 0.7
QCD ZZjj	77 ± 25	17.2 ± 3.5
QCD ggZZjj	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- <i>ll</i>	_	21.4 ± 4.8
WZ	—	22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82

Kinematic distributions: data compared to predictions

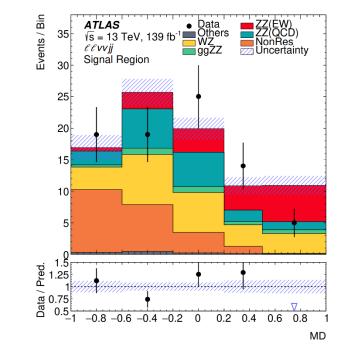
- Predictions have been scaled with μ_{EW} and μ_{QCD} from combined fit using BDTG output.
 - μ_{EW} is POI, μ_{QCD} (4l channel) is used as a free parameter in the fit to constrain QCD normalization.

Inclusive ZZjj production Cross-section Measurements

- Inclusive ZZjj production cross sections are measured for the inclusive processes, in individual 41 and llvv channels in fiducial region.
- Fiducial regions are defined closely following the detector-level event selections, except
 - 41 channel, Z window loose to [60, 120] GeV (is [66, 116] GeV for detector-level). This is to reduce migration effect and keep compatibility with the previous CMS publication.
 - llvv channel:
 - Lepton eta cuts harmonized to 2.5 for both electrons and muons.
- Generator level MET > 130 GeV instead of MET significance (difficult to define at truth level).


Measured fiducial σ [fb]Predicted fiducial σ [fb] $\ell\ell\ell\ell jj$ $1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$ $1.14 \pm 0.04(\text{stat}) \pm 0.20(\text{theo})$ $\ell\ell\nu\nu jj$ $1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$ $1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

• Uncertainties: statistic dominant.



MVA Analysis to extract EW ZZjj signal

- Gradient boost decision tree (BDTG) is used in both channels
- 41 channel trained in SR using EW vs QCD events.
- llvv channel trained in SR using EW vs all backgrounds

BDT training output score spectra

BDT training input variables

Rnk	1111	ไไบบ
1	m_{jj}	$\Delta \eta(ll)$
2	leading p_T^j	m_{ll}
3	subleading p_T^j	$\Delta \phi(ll)$
4	$p_T(ZZjj)/h_T(ZZjj)$	m_{jj}
5	$Y(j1) \times Y(j2)$	MET significance
6	$ \Delta Y(jj) $	$\Delta Y(jj)$
7	Y_{Z2}^*	$Y(j1) \times Y(j2)$
8	Y_{Z1}^*	h_T
9	p_T^{4l}	$\Delta R(ll)$
10	m_{4l}	subleading p_T^j
11	p_T^{Z1}	MET
12	p_T^{l3}	subleading p_T^l
13	-	leading p_T^l

Statistic fitting and Results

- BDT score is used as final discriminator for fitting.
- 3 regions are used in fitting: 41 SR, 41 QCD CR, llvv SR.
- μ_{EW} is POI, μ_{QCD} (41 channel) is used as a free parameter in the fit to constrain QCD normalization.
- Experimental systematic uncertainties (electrons, muons, jets, lumi, pile-up) are fully correlated.
- Theoretical systematics are uncorrelated due to different fiducial definitions.

	$\mu_{ m EW}$	$\mu_{ ext{QCD}}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
llljj	1.5 ± 0.4	0.95 ± 0.22	5.5 (3.9) <i>o</i>
<i>ℓℓνν</i> jj	0.7 ± 0.7	—	1.2 (1.8) σ
Combined	1.35 ± 0.34	0.96 ± 0.22	5.5 (4.3) <i>o</i>

EW and QCD Signal strength from fitting, and the EW ZZjj production significant

Summary

- The first observation of the EW ZZjj production with ZZjj channel with the ATLAS experiment at the LHC. The observed signal significance: 5.5σ , compared with predicted 4.3σ .
- The observation of EW ZZjj process completes the observations of weak boson scattering with same-sign WWjj, WZjj and ZZjj processes at the LHC

Thank you!

