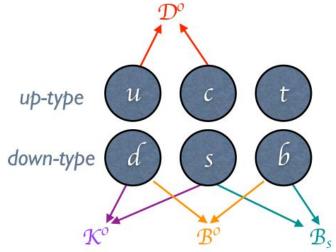
Standard Model at LHC

Search for CPV in $D^0 \rightarrow K_s^0 K_s^0$ decays at LHCb

<u>Giulia Tuci</u>, on behalf of the LHCb collaboration giulia.tuci@cern.ch

28/04/2021



Istituto Nazionale di Fisica Nucleare

CPV in charm

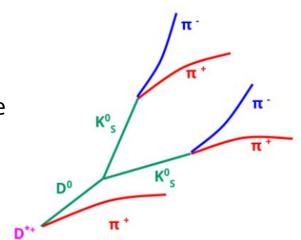
- Charm transitions are a unique portal for obtaining a novel access to flavor dynamics
 - > complementarity with K^0 and $B^0_{(S)}$
 - ➤ expected CPV in charm $\leq 10^{-3} \rightarrow$ difficult to observe it experimentally

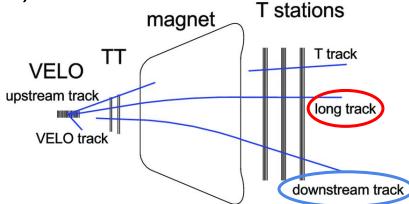
- Finally CPV in charm has been observed!
 PRL 122 (2019) 211803
- It's the moment to start a systematic exploration of all the charm hadrons decay channels to do a quantitative study of CPV
- * $D^0 \rightarrow K_s^0 K_s^0$ decay channel is a perfect candidate due to the significant size of the expected effect

$A^{CP} \text{ in } D^0 {\longrightarrow} K_S^{\ 0} K_S^{\ 0}$

• In $D^0 \rightarrow K_s^0 K_s^0$ decay channel **A^{CP} could be as large as ~1%**

Brod et al. 2011, Nierste & Schacht 2015, Buccella et al. 2019, Cheng & Chiang 2019


Previous measurements


${\cal A}^{CP}(K^0_{ m s}K^0_{ m s})~(\%)$	Yield	Collaboration	
$-23. \pm 19.$	65 ± 14	CLEO	PRD 63 (2001) 071101
$-2.9 \pm 5.2 \pm 2.2$	635 ± 74	LHCb Run 1	JHEP 10 (2015) 055
$-0.02 \pm 1.53 \pm 0.17$	5399 ± 87	Belle	PRL 119(2017)171801
$4.3 \pm 3.4 \pm 1.0$	1067 ± 41	LHCb $2015 + 2016$	JHEP 11 (2018) 048

$D^0 \rightarrow K_S^{\ 0} K_S^{\ 0}$ (CHCb

- K_s⁰ are difficult to select at trigger level
 - > $\tau(K_{S}^{0}) = 0.9 \times 10^{-10} \text{ s}$, <βγ>~80→ βγcτ ~ 120 cm
 - \succ K_s⁰ decays often outside vertex detector acceptance

- Data samples collected in 2015-2018 (~6fb⁻¹)
 - LL sample: both K_s⁰ reconstructed from
 Long tracks
 - LD sample: one K_S⁰ is Long and the other one is Downstream
 - DD sample: both K_s⁰ reconstructed from
 Downstream tracks

Methodology

Time-integrated measurement. Quantity to be measured:

$$\mathcal{A}^{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to f)}{\Gamma(D \to f) + \Gamma(\bar{D} \to f)}$$

Experimentally

$$\mathcal{A}^{raw} \equiv \frac{N_{D^0} - N_{\overline{D}^0}}{N_{D^0} + N_{\overline{D}^0}}$$

Production asymmetry: initial state pp is not CP symmetric

$$N(D^{0} \to K^{0}_{s}K^{0}_{s}) \propto \sigma(D^{*+}) \epsilon(\pi^{+}) \Gamma(D^{0} \to K^{0}_{s}K^{0}_{s})$$

$$\stackrel{\neq}{\neq} \epsilon(\pi^{-}) \Gamma(\overline{D}^{0} \to K^{0}_{s}K^{0}_{s})$$

$$\stackrel{(\overline{D}^{0} \to K^{0}_{s}K^{0}_{s}) \propto \sigma(D^{*-}) \epsilon(\pi^{-}) \Gamma(\overline{D}^{0} \to K^{0}_{s}K^{0}_{s})$$

Asymmetric detector acceptance + material interaction different for particles/antiparticles

K⁰.

π '

D⁰

Kº,

Giulia Tuci, 28/04/2021

π

π

RICH-

Methodology (2)

- $D^0 \rightarrow K^+K^-$ is used as a calibration channel
 - ➢ CP asymmetry known with high precision (O(10⁻³)) PLB 767 (2017) 177
- To remove production and detection asymmetries, each signal candidate is weighted by:

$$w^{\pm}(\vec{p}_{0}) = \frac{n_{C}^{+}(\vec{p}_{0}) + n_{C}^{-}(\vec{p}_{0})}{2n_{C}^{\pm}(\vec{p}_{0})} \left[1 \pm \mathcal{A}^{CP}(K^{+}K^{-})\right]$$

$$D^{0} \text{ momentum} \qquad \uparrow$$

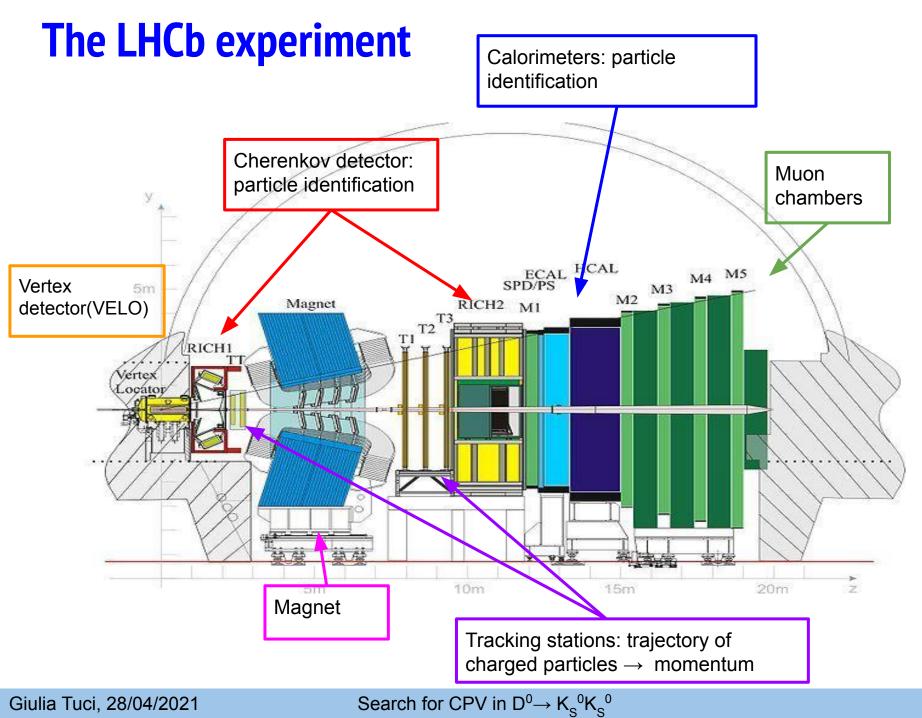
$$\text{Local density of } D^{0}/\overline{D}^{0} \to K^{+}K^{-} \text{ events (estimated via multivariate classifier)}}$$

• A^{CP} extracted via a multidimensional weighted fit to $\Delta m = m(D^{*+})-m(D^{0})$ and the two $m(K_{s}^{0})$ distributions

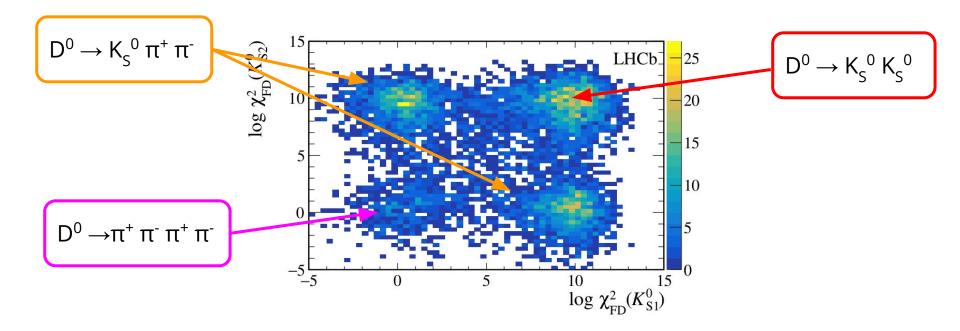
Results

- $A^{CP}(D^0 \rightarrow K_S^0 K_S^0)_{Run2} = (-3.1 \pm 1.2 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.2 \text{ (ext.)})\%$
- Yields: 8102 ± 136

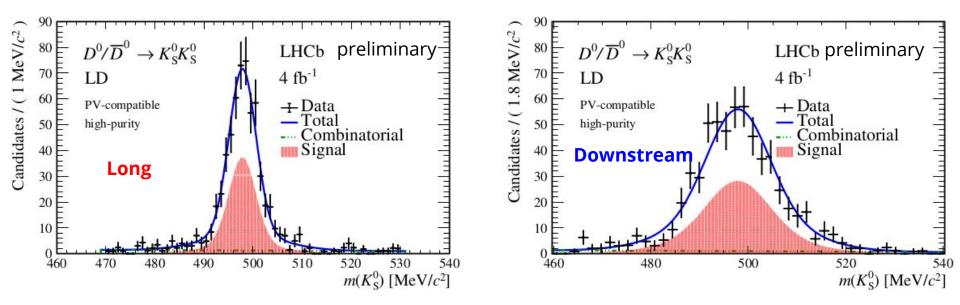
LHCb-PAPER-2020-047, in preparation


Prospects with future runs

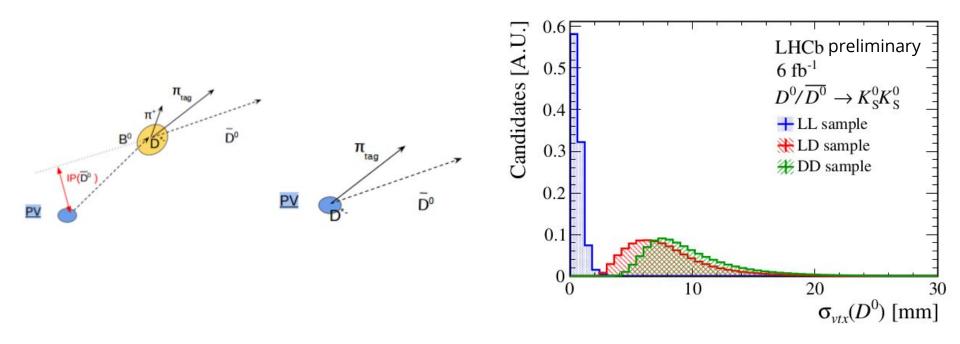
- New data will arrive in 2022 with an almost completely new detector and trigger system
 - > Instantaneous luminosity will increase by $5x (2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1})$
- Effort is being made to keep high efficiency for K_s⁰ reconstruction despite the higher luminosity
- As an example, R&D work to realize a dedicated downstream tracking unit that can be integrated in the DAQ architecture and act as an "embedded track-detector" CERN-LHCC-2017-003


LHCb has the potential to further improve this measurement in the years to come \rightarrow Stay tuned!

Backup slides


Background

- Peaking background reduced with cut based selection, e.g.
 - \succ D⁰ $\rightarrow K_s^{0} \pi^+ \pi^-$, reduced performing selections on flight distance


Combinatorial background reduced using kNN classifier

K⁰ mass distributions

Secondary decays

- D^{*+} could originate from a b-hadron decay
 - Same CP asymmetry, but different production asymmetry

- Standard approach: remove them using information on D⁰ vertex displacement
 - > Not effective in the $D^0 \rightarrow K_s^0 K_s^0$ decay channel
 - Unlike in 2015-16 measurement, secondary decays are treated as signal and their different production asymmetry is corrected for

Results

Sample	$2015 + 2016 (2 \text{ fb}^{-1})$		$2017 + 2018 (4 \text{ fb}^{-1})$	
	Yield	\mathcal{A}^{CP} $[\%]$	Yield	\mathcal{A}^{CP} $[\%]$
LL PV-comp.	1388 ± 41	$0.3 \pm 2.5 \pm 0.6$	4056 ± 77	$-4.3 \pm 1.6 \pm 0.4$
LL PV-incomp.	178 ± 31	$-11 \pm 17 \pm 2$	430 ± 41	$-3.0 \pm 7.9 \pm 1.1$
LD PV-comp.	411 ± 25	$-7.2 \pm 5.8 \pm 1.1$	1145 ± 49	$-2.9 \pm 3.8 \pm 0.7$
LD PV-incomp.	58 ± 18	$-10 \pm 31 \pm 4$	349 ± 64	$-5 \pm 17 \pm 2$
DD	_	-	87 ± 28	$-35 \pm 47 \pm 6$

Sample split into different categories:

- LL,LD, DD samples;
- output of kNN classifier (2 categories);
- \succ compatibility of the D^{*+} with coming from the primary pp vertex (PV);
- ➤ 2015-2016 vs. 2017-2018