# Measurement of Higgs to WW in association with a vector boson using the full Run II dataset at CMS

<u>Amandeep Kaur – Panjab University India</u>

On behalf of the CMS Collaboration





28 April 2021





# <u>Outline</u>

Introduction

**Analysis Overview** 

**Event Selection** 

Results

**Summary** 

## **Introduction**

- The large Higgs boson branching ratio to a W boson pair --> most suitable for the precision measurement of the Higgs boson production cross section.
- Direct handle on Higgs boson coupling to vector bosons.
- This analysis benefit from the data collected in Run II by the CMS experiment ; possible to probe various decay channels.
   Optimized by the cms experiment in the data collected in Run II by the CMS experiment; possible to probe various decay channels.





## Analysis Overview



- Leptonic decay of associated boson is considered. Along with inclusive measurement, the production cross sections are measured according to a simplified template cross sections framework (STXS).
- Four different final states ; WHSS and ZH3I are new channels ( were not considered in HIG-16-042 ).
- There are different challenges in each channel depending upon the dominating backgrounds, hence different approaches.
- Analysis is performed with the full Run II data collected by the CMS experiment at the center-of-mass energy 13 TeV, which corresponds to luminosity of 137 fb<sup>-1</sup>.







Major : WZ, W + jets, and Vγ (\*) Minor : WW, ZZ, VVV

- SR : (µµ, eµ) x (1j, 2j)
- CR : WZ (1j , 2j)

#### $\tilde{m}_{H}$ : Invariant mass of dijet and 2 x lepton— Proxy for Higgs mass

chosen lepton is the one closest to the di-jet (for 2j cat) or single-jet (for 1-jet cat) system.

|                                          | Preselection                                                      |                                  |         |      |  |
|------------------------------------------|-------------------------------------------------------------------|----------------------------------|---------|------|--|
| Lepton $p_{\rm T}$ (GeV)                 |                                                                   | >                                | > 25,20 |      |  |
| Third lepton veto                        |                                                                   |                                  | Yes     |      |  |
| $m_{\ell\ell}$ (GeV)                     |                                                                   |                                  | > 12    |      |  |
| $\Delta\eta_{\ell\ell}$                  | < 2.0                                                             |                                  |         |      |  |
| B jet veto                               | DeepCSV, medium WP, applied to all jets with $p_{\rm T} > 20$ GeV |                                  |         |      |  |
| $p_{\rm T}^{\rm miss}$ (GeV)             | > 30                                                              |                                  |         |      |  |
| $\tilde{m}_H$ (GeV)                      |                                                                   |                                  | > 50    |      |  |
|                                          | 1ј еµ SR                                                          | 2μ SR 2j eμ SR 1j μμ SR 2j μμ SR |         |      |  |
| Jets with $p_{\rm T} > 30$ GeV           | $==1$ $\geq 2$ $==1$ $\geq 2$                                     |                                  |         |      |  |
| <i>m<sub>ii</sub></i> (GeV)              | < 100 < 100                                                       |                                  |         |      |  |
| $ \widetilde{m}_{\ell\ell} - m_Z $ (GeV) |                                                                   |                                  | > 15    | > 15 |  |

Main uncertainties: non-prompt, statistical, background modeling



#### 28/04/2021





Major : Non-prompt (Z+jets, top) , WZ, ZZ, Vγ Minor : VVV, WW, Vγ\*

| Final state                                     | Name                             | Signal fraction |
|-------------------------------------------------|----------------------------------|-----------------|
| $(\mu/e)^{\pm} + (\mu/e)^{\mp} + (l)^{\mp}$     | opposite-sign same-flavor (OSSF) | $\sim 3/4$      |
| $(\mu/e)^{\pm} + (\mu/e)^{\pm} + (e/\mu)^{\mp}$ | same-sign same-flavor (SSSF)     | ${\sim}1/4$     |

#### • CR : WZ and Zy

• To separate signal and background : multivariate Boosted Decision Tree (BDT) is used ; fit is performed to the BDT discriminant .

|                                       | Preselection                                                     |         |         |              |
|---------------------------------------|------------------------------------------------------------------|---------|---------|--------------|
| Lepton $p_{\rm T}$ (GeV)              |                                                                  | > 25    | 5,20,15 |              |
| Fourth lepton $p_{\rm T}$ (GeV)       |                                                                  | <       | ( 10    |              |
| $ch_{\ell\ell\ell}$                   |                                                                  | :       | $\pm 1$ |              |
| $\min(m_{\ell\ell})$ (GeV)            |                                                                  | >       | · 12    |              |
| Jets with $p_{\rm T} > 30  {\rm GeV}$ | 0                                                                |         |         |              |
| B jet veto                            | DeepCSV, loose WP, applied to all jets with $p_{\rm T} > 20$ GeV |         |         |              |
|                                       | OSSF SR                                                          | SSSF SR | WZ CR   | $Z\gamma CR$ |
| OSSF lepton pair                      | Yes                                                              | No      | Yes     | Yes          |
| $ m_{\ell\ell} - m_Z $ (GeV)          | > 20 $< 20$ $< 20$                                               |         |         |              |
| $p_{\rm T}^{\rm miss}$ (GeV)          | > 40 > 45 < 40                                                   |         |         |              |
| $m_{\ell\ell\ell}$ (GeV)              |                                                                  |         | > 100   | [80, 100]    |

Main uncertainties: non-prompt, statistical, background modeling







#### 28/04/2021





Major : Non-prompt (Z+jets, top) , WZ, ZZ, V $\gamma$  Minor : VVV, WW, V $\gamma^*$ 

| Final state                                     | Name                             | Signal fraction |
|-------------------------------------------------|----------------------------------|-----------------|
| $(\mu/e)^{\pm} + (\mu/e)^{\mp} + (l)^{\mp}$     | opposite-sign same-flavor (OSSF) | $\sim 3/4$      |
| $(\mu/e)^{\pm} + (\mu/e)^{\pm} + (e/\mu)^{\mp}$ | same-sign same-flavor (SSSF)     | $\sim 1/4$      |

#### CR : WZ and Zy

•

To separate signal and background : multivariate Boosted Decision Tree (BDT) is used ; fit is performed to the BDT discriminant .

|                                        | Preselection                                               |         |          |              |  |
|----------------------------------------|------------------------------------------------------------|---------|----------|--------------|--|
| Lepton $p_{\rm T}$ (GeV)               |                                                            | > 25    | , 20, 15 |              |  |
| Fourth lepton $p_{\rm T}$ (GeV)        |                                                            | <       | : 10     |              |  |
| $ch_{\ell\ell\ell}$                    |                                                            | -       | $\pm 1$  |              |  |
| $\min(m_{\ell\ell})$ (GeV)             | > 12                                                       |         |          |              |  |
| Jets with $p_{\rm T} > 30 {\rm GeV}$   | 0                                                          |         |          |              |  |
| B jet veto                             | DeepCSV, loose WP, applied to all jets with $p_T > 20$ GeV |         |          |              |  |
|                                        | OSSF SR                                                    | SSSF SR | WZ CR    | $Z\gamma CR$ |  |
| OSSF lepton pair                       | Yes                                                        | No      | Yes      | Yes          |  |
| $ m_{\ell\ell}-m_Z $ (GeV)             | > 20 < 20 < 20                                             |         |          |              |  |
| $p_{\mathrm{T}}^{\mathrm{miss}}$ (GeV) | >40 $>45$ $<40$                                            |         |          |              |  |
| $m_{\ell\ell\ell}$ (GeV)               |                                                            |         | > 100    | [80, 100]    |  |

- Train BDT to discriminate signal from background
  - Background: WZ, ZZ,  $V\gamma^{(*)}$ , top, Drell-Yan
- Selection: OSSF and SSSF categories, without Z veto in OSSF
- Input variables:
  - MET
  - $p_T(\ell)$ ,  $\Delta \varphi(\ell, MET)$ ,  $m_T(\ell, MET)$  for each lepton
  - m(lll), p<sub>T</sub>(lll)
  - $m_T(\ell\ell\ell + MET)$ ,  $p_T(\ell\ell\ell + MET)$ ,  $\Delta \varphi(\ell\ell\ell$ , MET)
  - Minimum  $|m_{\ell\ell} m_Z|$ ,  $m_{\ell\ell}$ ,  $p_T^{\ell\ell}$ ,  $\Delta R_{\ell\ell}$  for all OSSF lepton pairs
  - b tag score of leading, subleading jets
- Separate trainings for 2016, 2017+2018



#### 28/04/2021





Major : Non-prompt (Z+jets, top) , WZ, ZZ, V $\gamma$  Minor : VVV, WW, V $\gamma^*$ 

| Final state                                     | Name                             | Signal fraction |
|-------------------------------------------------|----------------------------------|-----------------|
| $(\mu/e)^{\pm} + (\mu/e)^{\mp} + (l)^{\mp}$     | opposite-sign same-flavor (OSSF) | $\sim 3/4$      |
| $(\mu/e)^{\pm} + (\mu/e)^{\pm} + (e/\mu)^{\mp}$ | same-sign same-flavor (SSSF)     | ${\sim}1/4$     |

#### • CR : WZ and Zy

• To separate signal and background : multivariate Boosted Decision Tree (BDT) is used ; fit is performed to the BDT discriminant .

|                                       | Preselection                                                                                       |      |         |           |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------|------|---------|-----------|--|
| Lepton $p_{\rm T}$ (GeV)              |                                                                                                    | > 25 | 5,20,15 |           |  |
| Fourth lepton $p_{\rm T}$ (GeV)       |                                                                                                    | <    | ( 10    |           |  |
| $ch_{\ell\ell\ell}$                   |                                                                                                    | -    | $\pm 1$ |           |  |
| $\min(m_{\ell\ell})$ (GeV)            |                                                                                                    | >    | · 12    |           |  |
| Jets with $p_{\rm T} > 30  {\rm GeV}$ | 0                                                                                                  |      |         |           |  |
| B jet veto                            | DeepCSV, loose WP, applied to all jets with $p_{\rm T} > 20$ GeV                                   |      |         |           |  |
|                                       | $\begin{array}{ c c c c c c c }\hline OSSF SR & SSSF SR & WZ CR & Z\gamma CR \\\hline \end{array}$ |      |         |           |  |
| OSSF lepton pair                      | Yes                                                                                                | No   | Yes     | Yes       |  |
| $ m_{\ell\ell}-m_Z $ (GeV)            | > 20 < 20 < 20                                                                                     |      |         |           |  |
| $p_{\rm T}^{\rm miss}$ (GeV)          | > 40 $> 45$ $< 40$                                                                                 |      |         |           |  |
| $m_{\ell\ell\ell}$ (GeV)              |                                                                                                    |      | > 100   | [80, 100] |  |

Main uncertainties: non-prompt, statistical, background modeling







#### 28/04/2021





Major : WZ, Zγ, Non-prompt (Z+jets) Minor : ZZ, VVV, ttZ

- Events are categorized based on the number of jets in the event, hence 1j, 2j signal region.
- CR : WZ (1j , 2j)
- fit is performed to the  $m_T^H$ ; where  $m_T^H = m_T (I + MET, j(j))$

|                                                             | Preselection                                                      |          |          |           |
|-------------------------------------------------------------|-------------------------------------------------------------------|----------|----------|-----------|
| Lepton $p_{\rm T}$ (GeV)                                    |                                                                   | > 2      | 25,20,15 |           |
| Fourth lepton $p_{\rm T}$ (GeV)                             |                                                                   |          | < 10     |           |
| $ch_{\ell\ell\ell}$                                         |                                                                   |          | $\pm 1$  |           |
| $\min(m_{\ell\ell})$ (GeV)                                  | > 12                                                              |          |          |           |
| b jet veto                                                  | DeepCSV, medium WP, applied to all jets with $p_{\rm T} > 20$ GeV |          |          |           |
| $ m_{\ell\ell} - m_Z $ (GeV)                                | < 25                                                              |          |          |           |
| $ m_{\ell\ell\ell} - m_Z $ (GeV)                            |                                                                   |          | > 20     |           |
|                                                             | 1j SR 2j SR 1j WZ CR 2j WZ CR                                     |          |          |           |
| Jets with $p_{\rm T} > 30$ GeV                              | $==1$ $\geq 2$ $==1$ $\geq 2$                                     |          |          |           |
| $\Delta \varphi(\ell p_{\mathrm{T}}^{\mathrm{miss}}, j(j))$ | $<\pi/2$                                                          | $<\pi/2$ | $>\pi/2$ | $> \pi/2$ |

Main uncertainties: non-prompt, (all) background modeling



#### 28/04/2021





Major : qqZZ, ggZZMinor : WZ, WW, V $\gamma$ , top, ttV, VVV

- SR : XSF : same-flavor X lepton pair ; XDF : different-flavor X lepton pair (where X = lepton pair from the Higgs boson )
- **CR** : ZZ
- To separate signal and background : multivariate Boosted Decision Tree (BDT) is used ; fit is performed to the BDT discriminant .





Main uncertainties: QCD scale, lepton efficiencies, statistical, MET



#### 28/04/2021





Major : qqZZ, ggZZMinor : WZ, WW, V $\gamma$ , top, ttV, VVV

- SR : XSF : same-flavor X lepton pair ; XDF : different-flavor X lepton pair (where X = lepton pair from the Higgs boson )
   CR : ZZ
- To separate signal and background : multivariate Boosted Decision Tree (BDT) is used ; fit is performed to the BDT
   discriminant .

|                                    | Preselection             |                      |                                    |  |
|------------------------------------|--------------------------|----------------------|------------------------------------|--|
| Lepton $p_{\rm T}$ (GeV)           |                          | > 25, 15, 10, 10     | )                                  |  |
| Fifth lepton $p_{\rm T}$ (GeV)     |                          | < 10                 |                                    |  |
| $ch_{\ell\ell\ell\ell}$            |                          | 0                    |                                    |  |
| $\min(m_{\ell\ell})$ (GeV)         | > 12                     |                      |                                    |  |
| $ m_{\ell\ell}^Z - m_Z $ (GeV)     | < 15                     |                      |                                    |  |
| B jet veto                         | DeepCSV, loose V         | NP, applied to all j | ets with $p_{\rm T} > 20 { m GeV}$ |  |
|                                    | XSF SR                   | XDF SR               | ZZ CR                              |  |
| X pair flavor                      | Same                     | Different            |                                    |  |
| $m_{\ell\ell\ell\ell}$ (GeV)       | > 140                    |                      |                                    |  |
| $m_{\ell\ell}^X$ (GeV)             | [10,60] [10,70] [75,105] |                      |                                    |  |
| PUPPI $p_{\rm T}^{\rm miss}$ (GeV) | > 35                     | > 20                 | < 35                               |  |

- Train BDT to discriminate signal (qqZH) from background (ZZ)
- Input variables:
  - MET
  - $m_T(\ell, MET)$  for leading and trailing lepton .
  - $\Delta R$ ,  $\Delta \varphi$  between X lepton pair;  $\Delta R$  between Z lepton pair
  - $m_{\ell\ell}$  for X lepton pair
  - m<sub>T</sub>(X,MET)
- Combined training for all years



#### 28/04/2021





Major : qqZZ, ggZZMinor : WZ, WW, V $\gamma$ , top, ttV, VVV

- SR : XSF : same-flavor X lepton pair ; XDF : different-flavor X lepton pair (where X = lepton pair from the Higgs boson )
- **CR** : ZZ
- To separate signal and background : multivariate Boosted Decision Tree (BDT) is used ; fit is performed to the BDT discriminant .



|                                    | Preselection             |                      |                                     |  |
|------------------------------------|--------------------------|----------------------|-------------------------------------|--|
| Lepton $p_{\rm T}$ (GeV)           |                          | > 25, 15, 10, 10     | )                                   |  |
| Fifth lepton $p_{\rm T}$ (GeV)     |                          | < 10                 |                                     |  |
| $ch_{\ell\ell\ell\ell}$            |                          | 0                    |                                     |  |
| $\min(m_{\ell\ell})$ (GeV)         |                          | > 12                 |                                     |  |
| $ m_{\ell\ell}^Z - m_Z $ (GeV)     | < 15                     |                      |                                     |  |
| B jet veto                         | DeepCSV, loose V         | WP, applied to all j | ets with $p_{\rm T} > 20 {\rm GeV}$ |  |
|                                    | XSF SR                   | XDF SR               | ZZ CR                               |  |
| X pair flavor                      | Same                     | Different            |                                     |  |
| $m_{\ell\ell\ell\ell}$ (GeV)       | > 140                    |                      |                                     |  |
| $m_{\ell\ell}^X$ (GeV)             | [10,60] [10,70] [75,105] |                      |                                     |  |
| PUPPI $p_{\rm T}^{\rm miss}$ (GeV) | > 35                     | > 20                 | < 35                                |  |

Main uncertainties: QCD scale, lepton efficiencies, statistical, MET



#### 28/04/2021



## Results (Inclusive)



Signal strength and Significance for separate channel and combined .

| Category    | μ                                                                 | Significance                           |  |
|-------------|-------------------------------------------------------------------|----------------------------------------|--|
| WHSS        | $0.95\substack{+0.94\\-0.96}$                                     | $1.0 \sigma$ ( $1.1 \sigma$ expected ) |  |
| WH3I        | $2.20^{+0.86}_{-0.79}$                                            | 3.0 σ (1.6 σ expected )                |  |
| ZH3I        | $4.12^{+1.73}_{-1.68}$                                            | 2.5 σ (0.6 σ expected )                |  |
| ZH4I        | $1.73^{+0.75}_{-0.65}$                                            | 3.1 σ (2.1 σ expected )                |  |
| Combination | bination $1.85^{+0.47}_{-0.44}$ 4.7 $\sigma$ (2.8 $\sigma$ expect |                                        |  |

 $\hat{\mu} = 1.85^{+0.33}_{-0.32} (stat) {}^{+0.27}_{-0.25} (exp) {}^{+0.10}_{-0.07} (theo)$ 

# Simplified Template Cross Sections (STXS)



- The primary goals of the STXS framework are to maximize the sensitivity of the measurements and to minimize their theory dependence at the same time .
- Not sensitive to all bins, due to limited statistical precision --> merged , considered  $p_T{}^V<\!(\!>\!)$  150 GeV for WH and ZH .



## Definition of $p_T^V$ WHSS : • $\vec{p}_T^W = \vec{p}_T(\ell_W) + \vec{p}_T(\nu_W)$ $= \vec{p}_T(\ell_W) + \vec{E}_T^{miss} - \vec{p}_T(\nu_H)$ $\vec{p}_T(\nu_H) = \vec{p}_T(\ell_H) \times \left(\frac{125}{||\vec{p}_T(\ell_H) + \vec{p}_T(jj)||} - 1\right)$ WH31: • For W $p_T$ , $p_T(I_w)$ is used as a proxy. ZH3I, ZH4I: • Z p<sub>T</sub> is p<sub>T</sub> of OSSF lepton pair ; $m_{11} \sim m_7$

**N.B.**: The fit to extract STXS uses the same background CRs , signal region categories and signal-discriminating kinematical observables as of inclusive measurement .

#### 28/04/2021

## Results(STXS)



### Signal strength and Significance in each production mode

| Category                                                        | μ                                                               | S         | ignificance              |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------|--------------------------|--|--|--|
| WH $p_T^V$ < 150 GeV                                            | $1.5^{+1.0}_{-0.9}$                                             | 1.64 σ (  | 1.24 $\sigma$ expected ) |  |  |  |
| WH $p_T^V$ > 150 GeV                                            | $3.6^{+1.8}_{-1.6}$                                             | 2.23 σ (  | 0.83 σ expected )        |  |  |  |
| ZH $p_T^V$ < 150 GeV                                            | $3.4^{+1.1}_{-1.0}$                                             | 4.37 σ (  | 1.59 σ expected )        |  |  |  |
| $ZH p_T^V$ >150 GeV                                             | $0.8^{+1.2}_{-0.9}$                                             | 0.83 σ (2 | 1.18 σ expected )        |  |  |  |
| Signal strength and Significance combining the production modes |                                                                 |           |                          |  |  |  |
| $\hat{\mu}_{p_T^V} < 150 = 2.65^{+0.}_{-0.}$                    | $^{57}_{55}$ (stat) $^{+0.38}_{-0.32}$ (exp) $^{+0.08}_{-0.07}$ | (theo)    | 4.7σ (2.0 expected)      |  |  |  |
|                                                                 |                                                                 |           |                          |  |  |  |
| $\hat{\mu}_{p_T^V} > 150 = 1.56^{+0.00}_{-0.00}$                | $^{85}_{77}$ (stat) $^{+0.43}_{-0.40}$ (exp) $^{+0.11}_{-0.09}$ | (theo)    | 1.8o (1.5 expected       |  |  |  |



#### 28/04/2021

## **Summary**



- Presented the latest results in Higgs boson decaying to WW channel , where the associated boson is decaying leptonically is considered .
- Along with inclusive measurement, STXS measurements have been performed. The observed significance of the inclusive VH production cross section is 4.7σ, while the observed significance of the VH production cross section for p<sub>T</sub><sup>V</sup> < 150 (> 150) is 4.7σ(1.8σ).
- The combined signal strength of STXS differs from the inclusive result due to the STXS event categorization, although the two results agree within uncertainties.

# Backup



| Objects   | 2016                                                                 | 2017/2018                                    |
|-----------|----------------------------------------------------------------------|----------------------------------------------|
| Electrons | mva_90p_lso2016 + rellso +<br>*ttHMVA > 0.7                          | Fall17V1Iso_WP90 + rellso<br>+ *ttHMVA > 0.7 |
| Muons     | Tight ID + Rochester<br>corrections + dz/dxy cuts<br>+ *ttHMVA > 0.8 | Tight + dz/dxy cuts +<br>*ttHMVA > 0.8       |
| Jets      | Tight AK4 jets + lepton cleaning + loose PU ID +<br>JECs             |                                              |
| b tag     | deepCSV (medium for WHSS/ZH3I, loose for WH3I/<br>ZH4I)              |                                              |
| MET       | PuppiMET                                                             |                                              |

\* not applied in ZH4I.

## Data



#### 2016

| Data Set       | Run range       | HLT path                                              |
|----------------|-----------------|-------------------------------------------------------|
| SingleMuon     | [273158,284044] | HLT_IsoMu24_v*                                        |
|                |                 | HLT_IsoTkMu24_v*                                      |
| SingleElectron | [273158,284044] | HLT_Ele27_WPTight_Gsf_v*                              |
|                |                 | HLT_Ele25_eta2p1_WPTight_Gsf_v*                       |
| DoubleMuon     | [273158,281612] | HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_v*                   |
|                |                 | HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_v*                 |
|                | [281613,284044] | HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_v*                |
|                |                 | HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_DZ_v*              |
| DoubleEG       | [273158,284044] | HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v*          |
| MuonEG         | [273158,278272] | HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_v*    |
|                |                 | HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_v*     |
|                | [278273,284044] | HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v* |
|                |                 | HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v* |

|            |                 | 2018                                                  |
|------------|-----------------|-------------------------------------------------------|
| Data Set   | Run range       | HLT path                                              |
| SingleMuon | [315252,325175] | HLT_IsoMu24_v*                                        |
|            |                 | HLT_Mu50_v*                                           |
|            | [314859,325175] | HLT_IsoMu27_v*                                        |
| DoubleMuon | [315252,325172] | HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8_v*        |
|            |                 | HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass8_v*          |
| EGamma     | [315252,325172] | HLT_Ele32_WPTight_Gsf_v*                              |
|            |                 | HLT_Ele35_WPTight_Gsf_v*                              |
|            |                 | HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_v*             |
| MuonEG     | [315252,325172] | HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v* |
|            |                 | HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v* |

#### 2017

|                | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                                                       |
|----------------|-----------------------------------------|-------------------------------------------------------|
| Data Set       | Run range                               | HLT path                                              |
| SingleMuon     | [297020,306462]                         | HLT_IsoMu27_v*                                        |
| SingleElectron | [297020,306462]                         | HLT_Ele35_WPTight_Gsf_v*                              |
| DoubleMuon     | [297020,299329]                         | HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_v*                |
|                | [299337,306462]                         | HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass8_v*          |
| DoubleÈG       | [297020,306462]                         | HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_v*             |
| MuonEG         | [297020,306462]                         | HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v* |
|                | [297020,299329]                         | HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v* |
|                | [299337,306462]                         | HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_v*    |

## MC

| 2016 | RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1   |
|------|---------------------------------------------------------------------------------|
| 2017 | RunIIFall17NanoAODv5-PU2017_12Apr2018_Nano1June2019_102X_mc2017_realistic_v7-v1 |
| 2018 | RunIIAutumn18NanoAODv6-Nano25Oct2019_102X_upgrade2018_realistic_v20-v1          |



#### Impacts of sources of systematic uncertainty on signal strength

| Туре         | Source                                  | Impact (%) |
|--------------|-----------------------------------------|------------|
|              | Renormalization and factorization scale | 3          |
| Theoretical  | Parton distribution function            | 2          |
|              | Parton shower, underlying event         | 2          |
|              | Nonprompt                               | 9          |
|              | Sample size of simulation data          | 8          |
| Experimental | Electron                                | 3          |
|              | b tag                                   | 3          |
|              | Jet                                     | 2          |
|              | Luminosity                              | 2          |
|              | WZ normalization                        | 2          |
|              | $Z\gamma$ normalization                 | 2          |
|              | ZZ normalization                        | 1          |
|              | Muon                                    | 1          |