Measurement of the vector-boson transverse momentum distributions with ATLAS

<u>Dennis Pudzha (PNPI – NRC KI)</u> on behalf of the ATLAS Collaboration

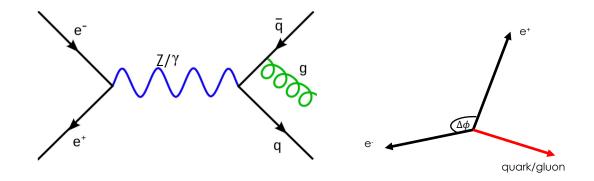
Standard Model at the LHC 2021

Introduction

Precision measurements of p_T^Z is important to:

- Test and tune QCD models:
 - □ Analytical calculations (resummations)
 - □ Different Monte-Carlo approaches
 - Validate and tune MC event generators
- Constraint on p_T^W spectrum important for W-boson mass measurement
- Important input to the background predictions from MC simulations used in many analyses (SM and BSM)

This talk will cover:


• Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (<u>Eur. Phys. J.</u> C 80 (2020) 616)

ϕ_{η}^* definition

- Measurements of p_T^{ll} require a precise understanding of the transverse momentum p_T calibration and resolution of the final-state leptons
- Associated systematic uncertainties affect the resolution in p_T^{ll} and limit the ultimate precision of the measurements, particularly in the low- p_T domain
- New variable was introduced which depends exclusively on the directions of the two leptons, which are more precisely measured than their momenta.

$$\phi_{\eta}^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right) * \sin\left(\theta_{\eta}^*\right)$$
$$\theta_{\eta}^* = \arccos\left(\tanh\left(\frac{\eta^- - \eta^+}{2}\right)\right)$$

Approximate relationship:

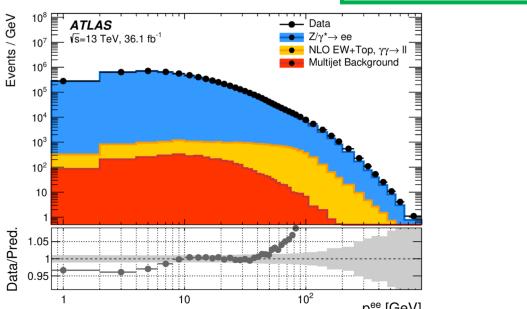
$$\sqrt{2}m_Z\phi_\eta^* \approx p_T^{ll}$$

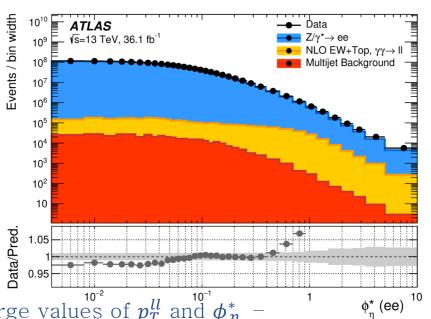
p_T of Drell-Yan lepton pairs at 13 TeV

Data

2015 and 2016 dataset (36.1 fb⁻¹) at 13 TeV is used.

Signal

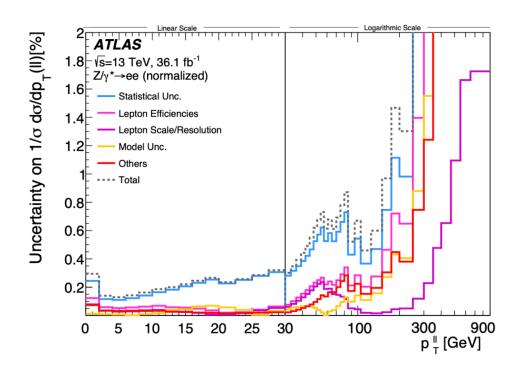

Powheg+Pythia8

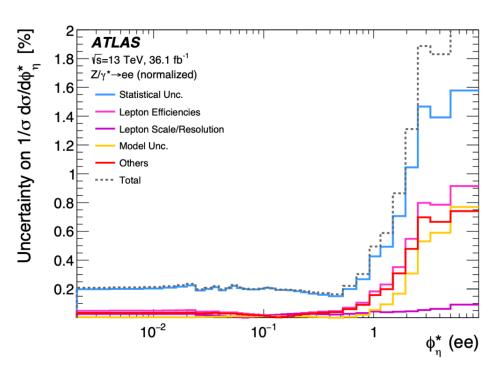

Background

- EW, top, γγ from MC
 - Multijet data-driven

Selection

Single lepton trigger, Isolated leptons, $p_T > 27~GeV$, $|\eta_e| < 2.47$, excluding $1.37 < |\eta_e| < 1.52$ $|\eta_\mu| < 2.5$, $66 < m_{ll} < 116~GeV$

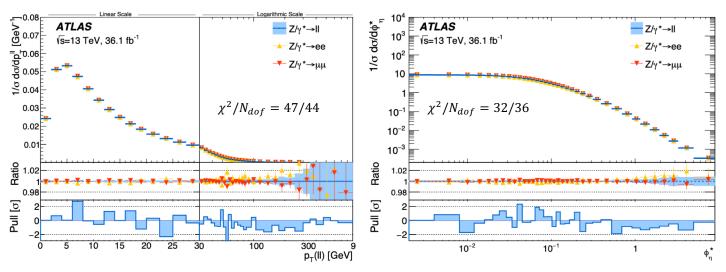



Powheg+Pythia8 is effectively a computation at LO in α_s for large values of p_T^{ll} and ϕ_η^* — ϕ_η^* (ee) disagreement is expected.

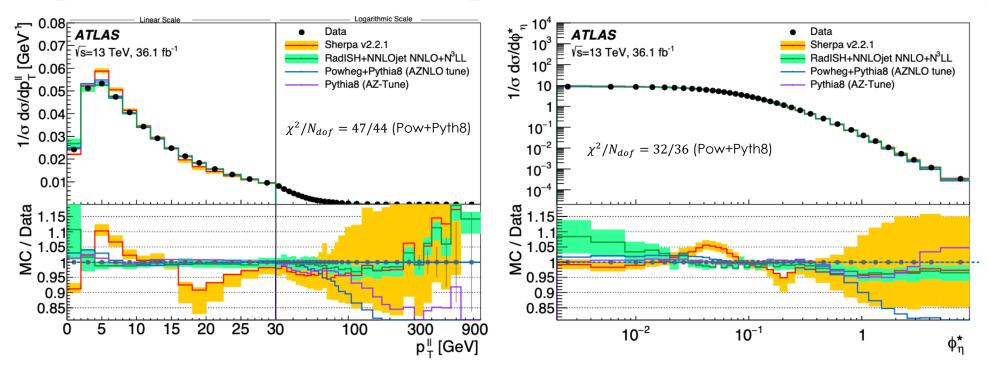
Uncertainties: $p_T^{ll}(ee)$ and $\phi_{\eta}^*(ee)$

• Differential distributions within the fiducial volume are corrected for detector effects and bin-to-bin migrations using an iterative Bayesian unfolding method

$$p_T^l > 27 \text{ GeV}, |\eta_l| < 2.5, 66 < m_{ll} < 116 \text{ GeV}$$

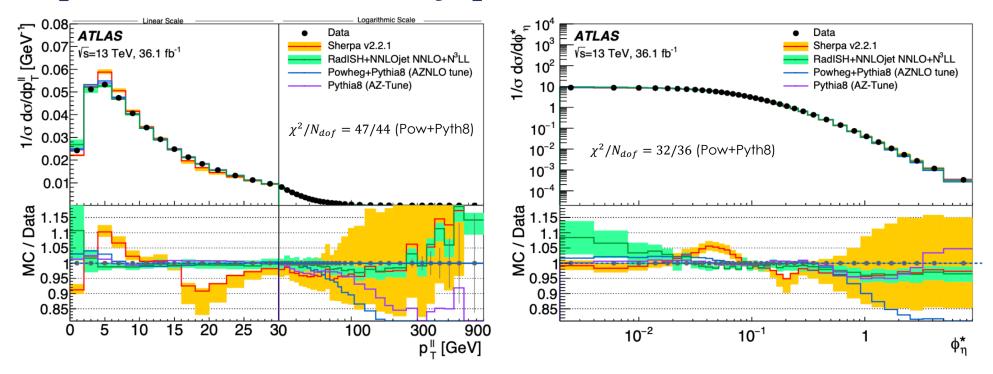


- Statistical uncertainties are dominant source
- High values of ϕ_{η}^* have smaller impact if compared to the high p_T^{ll} values

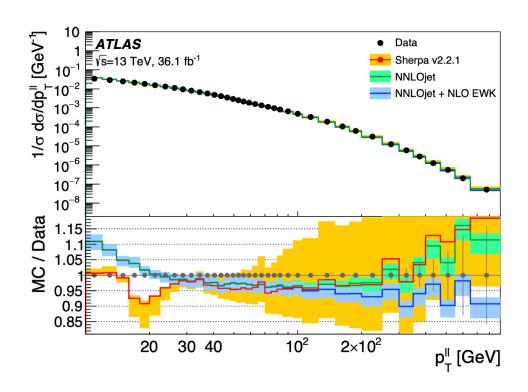

Combination of results

- Measurements performed separately in the electron and muon decay channels
- Results unfolded at born and dressed levels
- Two channels are combined (at born level) using χ^2 minimization, following the best linear unbiased estimator (BLUE) prescription
- Good agreement between channels
- Results on dressed level are about 2.4% lower compared to the Born level definition

Channel	Measured cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell\ell)$	Predicted cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell\ell)$
	(value \pm stat. \pm syst. \pm lumi.)	(value \pm PDF $\pm \alpha_S \pm$ scale \pm intrinsic)
$Z/\gamma^* \to ee$	$738.3 \pm 0.2 \pm 7.7 \pm 1$	
$Z/\gamma^* o \mu \mu$	$731.7 \pm 0.2 \pm 11.3 \pm 1$	arXiv:1612.03636
$Z/\gamma^* o \ell\ell$	$736.2 \pm 0.2 \pm 6.4 \pm 1$	703 ⁺¹⁹ ₋₂₄ +6 +4 +5 pb



Comparison with theory predictions


- Pythia 8 with ME at LO supplemented with a PS with AZ set of tuned parameters (optimized for 7 TeV data)
- Powheg+Pythia8 using NLO ME and PS with AZNLO tune (optimized for 7 TeV data)
- Sherpa v2.2.1 NLO-accurate ME for up to two partons and LO-accurate ME for up to four partons
- RadISH combines a fixed-order NNLO prediction of Z+ jet production from NNLOJET with resummation of $\log(m_{ll}/p_T^{ll})$ terms at N³LL accuracy

Comparison with theory predictions

- The predictions based on the Pythia8 are found to describe the 13 TeV data well at low p_T and ϕ_η^*
- The Sherpa prediction gives good description of the data at high p_T (about 4%)
- RadISH NNLO+ N³LL prediction agrees with data for the full spectrum

Comparison with theory predictions

- NNLOjet: order α_s^3 , expected to describe well data only from $p_T > 15$ GeV, overprediction at high p_T
- NNLOjet+ NLO EWK: EW corrections lead to a suppression at high p_T
- Both discrepancies are within uncertainties on the measurement

Summary

- Cross-sections differential in the transverse momentum of Z boson were measured covering up to TeV-range
- Relative precision is better than 0.2% (combined result, $p_T < 30 \text{ GeV}$)
- Important information for validation/tuning of MC generators and measurements of W mass
- Pythia8 PS with parameters tuned to 7 TeV ATLAS data found to describe the 13 TeV data well at low p_T and ϕ_η^*

Thank you for your attention