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Summary

e |[LC BDS tuning simulations summary.
 ATF2 EXT & FFS tuning simulations summary.

* Experimental experience tuning ATF2 EXT &
FFS so far.



ILC BDS Tuning Simulations

 Demonstrate can tune-up ILC BDS from
expected post initial survey conditions to
nominal luminosity.
— Magnet — BPM alignment.
— Beam-Based alignment using magnet movers.
— Luminosity tuning using Sextupole multi-knobs.

— Single-sided fully dynamic simulation

* A.S. Liar GM model ‘B’ + 5Hz feedback + 25nm RMS
magnet jitter

— 2-sided ‘static’ simulation.



Simulation Model

Use Matlab + Lucretia.

Beam model:

— |ILC RDR lattice

— Single bunch tracking, 80,000 macro-particles.
— Single ray used where possible.

— Beam-beam physics with GUINEA-PIG (beam-beam kick,
pair creation & lumi calculation).

5-Hz Feedback:

— 5 x- and y- sextupole BPMs + 6 correctors.
— ~50-pulse convergence gain.

Initial beam:

— Beam enters BDS on-axis with 10um/34nm
horizontal/vertical normalised emittances (6nm vertical
emittance-growth budget).



Error Parameters

Initial Quad, Sext, Oct x/y transverse alignment 200 um
Quad, Sext, Oct roll alignment 300 urad
Initial BPM-magnet field center alignment 30um
dB/B for Quad, Sext, Octs (RMS) le-4
Mover resolution (x & y) 50 nm
BPM resolutions (Quads) 1um
BPM resolutions (Sexts) 100 nm
Power supply resolution 14 - bit
FCMS: Assembly alignment 200 um / 300urad
FCMS: Relative internal magnet alignment 10um / 100 urad
FCMS: BPM-magnet initial alignment (i.e. BPM-FCMS Sext field centers) 30um
FCMS: Oct — Sext co-wound field center relative offsets and rotations 10um / 100urad
Corrector magnet field stability (x & y) 0.1%

Luminosity (pairs measurement or x/y IP sigma measurements)

1% (ATF2 SM ~5%)
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Alignment and Tuning Steps

Switch off Sextupoles and Octupoles.

Perform initial BBA using Quad movers and BPMs -> beam
through to IP.

Quadrupole BPM alignment.

Perform Quadrupole BBA (DFS).

Align Sextupole BPMs.

Move FCMS to minimize FCMS BPM readings.

Align tail-folding Octupole BPMs.

Activate and align sextupole and octupole magnets.

Rotate whole BDS about first quadrupole to pass beam through
nominal IP position.

Apply sextupole multiknobs to tune-out IP aberrations and
maximise luminosity.

5-Hz feedback system used throughout to maintain orbit whilst
tuning.



Quadrupole BPM Alignment

* Nulling Quad-Shunting technique:

— To get BPM-Quad offsets, use downstream 10
Quad BPMs for each Quad being aligned (using
ext. line BPMs for last few Quads).

— Quad dK 100-80 %, use change in downstream
BPM readouts to get Quad offset.

— Move Quad and repeat until detect zero-crossing.

— For offset measurement, use fit to downstream
BPM readings based on model transfer functions:
Xouma = Moo | $R, (L1 *RL1) + AR, (21)*R(L2) -

Quad



Alignment Results
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Sextupole/Octupole BPM Alignment

10 :
+ Sextupole (x)
+ Sextupole (y)
O Octupole (x)
E 10° O  Octupole (y) @
€
(]
=
)
< 3
n 10°% b3 )
= 10 %
v &
) %
1 2 3 4 5 6

Sextupole / Octupole Number

Use x-, y-movers on magnets and fit 2nd, 3rd order polynomials to
downstream BPM responses.

Alignment is where 1st, 2nd derivative is O from fits.
6t Octupole can only be aligned by increasing its field strength by a factor of
10, so is left with the initial alignment in the simulation.
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Beam-Based Alignment of Quads

 Use mover minimisation and DFS constraints to limit the mover motion.

* Weights used in minimisation algorithm constrain how far movers move,

this trades-off final mover positions against accuracy of BPM orbit.

AO

eResults simulation.

*RMS Quad floor
positions shown
(100 seeds).
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Beam Conditions Post-BBA
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IP beamsizes (100 seeds) after BPM alignment and BBA.

Significant aberrations present at IP- coupling, dispersion, waist + higher
order terms.

Use sextupole multi-knobs to tune these out and arrive at nominal ILC
luminosity parameters.



Sextupole Multi-Knobs

* Deliberately offsetting the beam orbit using the first
3 FFS sextupoles in an orthogonal way provides
tuning knobs for dispersion and waist-shift at the IP

through: As, , ~AxK,LB; B cos(2.4)

X,y Xy

A~ A, y).K, Lﬂxy\/ﬂxy oy SIn( #)

Orthogonal knobs are computed by inverting the
sextupole move -> |P aberration matrix formed by

scanning the sextupoles in turn and measuring the
IP terms.

The dominant IP coupling term <x’y> is tuned-out using
SQ3FF.

The 4 skew quads in the BDS coupling correction
system are iteratively scanned to remove any <xy>.



Higher-Order Sextupole Multi-Knobs

* Due to sextupole tilt and strength errors, and
due to non-linear fields as the beam passes
off-center in the sextupoles, higher-order
aberrations also exist at the IP.

* These are corrected for by iterating through
sextupoles 1-3 using the tilt dof. on the
movers to maximise luminosity after the linear
knobs have converged.

* The strengths of the 5 sextupoles are also
scanned.
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 When simulating both sides 25% of seeds fail to meet design
luminosity.
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2-beam Simulation

 Some seeds slower to
converge in 2-sided
simulation case. (450 seeds
simulated).

| ¢ In 2 beam-simulation:

— Rotate 2 beamlines to bring
beams into collision

— Added tuning iterations —
perform a tuning scan on e-,
then e+ beam —in 1-beam
simulation, effectively
colliding beam with self-
here against a larger beam-
effects pair stats.

70
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Magnet Strength Error Comparison
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ILC Simulation Work to do

* Implement new 2009 ILC lattice
— Low P parameter configuration
— Tighter IP focusing, higher chromaticity
— Expect tuning to be more difficult

e Start with 2-side sim

— Make sure give enough sim time for convergence to
be seen
* Examine slowest seeds in details to try and
understand primary aspects effecting
performance.



ATF2 Tuning Simulations

Define realistic starting conditions (100 seeds)

Standard installation errors + EXT BBA, disp
corr, coupling corr, FFS BBA

Study performance of IP tuning on 100 seeds
including dynamic errors.

Check h/w limits not exceeded at any point.

Study effect of dynamic errors on tuned
machine.



Errors

The reference ground motion model for ATF based on measured GM spectra on the DR
(also available as a standalone Matlab routine- to be provided here shortly).

Error Parameter
xMyiz Post-Survey
Raoll Post-Survey
BPM - Magnet field center alignment (initial install) (x & )
BPM - Magnet alignment (post-BEA, if BBA not simulated) (x & v)

Relative Magnetic field strength (dB/B) (systematic)

Relative Magnetic field strenath (dB/B) (random)

Magnet mover step-size (x & vy / roll)

Magnet mover LVDT-based trim tolerance (x & v f roll)
C/S - band BPM nominal resolution (x & v)

Stripline BFM nominal resolution (x & v)

IP BPM nominal resolution (x & )

IP Carbon wirescanner vertical beam size resolution

IP BSM (Shintake Monitor) vertical beam size reseolution

EXT magnet power-supply resolution

FFS magnet power-suppy resolution

Pulse - pulse random magnetic component jitter
Pulse - pulse relative energy jitter (dESE)

Pulse - pulse ring extraction jitter (x, ' w, '

Corrector magnet pulse-pulse relative field jitter

Done

Error magnitude
200 um

300 urad

30 um

10 um

le4

led

300 nm / 600 nrad
1l um /2 urad

100 nm

10 um

2 nm

2 um

use attached data

11-bit
20-bit

10 nm
le4

0.1 sigma

led

Error list on wiki

Also GM- ATF fitted
Model

Also include
measured
multipoles for final
doublet, sextupoles
and FFS bends.



Simulated Tuning Process

Use EXT correctors + BPMs (EXT FB) to get orbit through EXT.
Use FFS FB to get beam through FFS.

Correct Dy/Dy' in EXT using skew-quad sum knob.

Correct coupling in EXT using coupling correction system.
Use FFS FB for launch into FFS.

FFS Quad BPM alignment using quad shunting with movers.
FFS Quad mover-based BBA.

FFS Sext BPM alignment using Sext movers and IP BPM.

Sextupole mover tuning knobs to get final spot size

— Vertical IP dispersion and Waist

— <x'y> coupling

— Higher order terms collectively through Sext rolls + dK.
Also use EXT skew-quads to tune other coupling terms.

No attempt to model EXT BBA yet (assume 10um RMS bpm-magnet center
offset)

No attempt to model any lattice matching (Ring - EXT)



Beamsize After BBA

25
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IP Vertical Waist f um

IP waist size before sextupole FFS tuning knobs applied (100
seeds).



IPBSM Resolution

ntake Monitor Resolution / nm

3 RMS resolution at
i3 35nm goal spot size
~4nm

RMS Shi
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10 10

2
10 1?!’ Vertical Beam Size / nm

* |n results shown, scale above data by: 0.5, 1,
1.5,2,2.5,3



Median Tuned Spot Size

Median |IP Vertical Spot size / nm

Scan iteration #

=]

.. -
i
{
H
i
i
1
i
H
1

Median IP Vertical Spot size / nm

(5]

=]
]

-
i et T - T )
L] ¥

S S — -
. I
H H
_____________ b Bty
............ B T T T T T Y -
i
----------- -;.'rl'r'rll'r'rl
f
........... &
f
i
— s by H
anm ...\..;::;. ........... +
TN T T
H i S ol

e e )

- r.... - ._._T.h---*-

; ._...I-:I:."ﬂ:'“l B

e i i g

&0

80 100
Time / Hours

120

@ From 100 simulated seeds - median IP beam size at each scan

iteration point (left plot).

140 160

@ The right plot shows 50% (median), 25% and 75% C.L. for the cases
of scale factor 1 (blue points) and scale factor 3 (red points).




Median Min Tuned Beam Size / nm

Median Tuning Performance
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Success Expectation
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Post-tuning jitter effects on IP
beamsize
e Just keep beam orbit with FFS feedback

devices

* Need to periodically scan all sextupole knobs
to restore optimal beam size



‘Nominal’ Jitter Parameters

* o.1sigma x,X,yy RMS ring extraction jitter
* 13 um/2.8 urad (x/x’) 0.6 um/o.4 urad (y/y’)
* 1e-4 dE/E error
® 10 nm magnet vibration
* 1e-4 strength errors pulse-pulse on corrector magnets
* 100 nm BPM resolution

*» ATF fitted GM model

* Simulation performed with 100 random seeds
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IP Motion
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Tlrnl- .'I HI:ILII'J

20,000 pulses @ 1.56 Hz (1 seed)
[P vertical position drifts around on scales of a few 100 nm an hour.

Slow enough that this can be ‘de-trended’ using Shintake Monitor as IP
position monitor.
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Beam Size Growth
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o — Timescale Performance
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point
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ATF2 Project Goals

Experimental verification of the ILC FFS scheme
— Development of beam tuning procedures
— Goal A: focus vertical spot at IP to ~¥37nm (single bunch)

— Goal B: maintain IP vertical position with few-nm precision
(multi-bunch)

Development of ILC instrumentation

— BPMs, movers, Fast feedback (FONT), Laserwire,

— beam size monitor, HA-PS, fast pulser, SC-FD etc.

— See talk by N. Terunuma this afternoon

Education of young generation for future linear
colliders

— Active participation of graduate students and post-docs.



ATF Schedule

GDE TF Request | 2010 | 2011 | 2012 | 4013 | 2014 2015

Low emittance (1pm)
DR BPM upgnlde not funde

Multi Bunch Stabilization | LINAC/DR Improvements tolbe reviewed

v

&

Fast Kicker R&D Short term Steadly Operation

. . beam tests
(Multi bunch Extraction)

ATF2 35nm beam size | IP-BSMR&D
(Single Bunch) Beam tuning 35nm steady opfiration

ATF2 2nm
Stabilization
(Multi Bunch)

R&D (2nmBPM, Fast FB)

2nm Operation

Install

ATF2 SCFD-Q | Omsin | wiieRmal_ S0 oo | Sssniestantez

Cryogenics system (KEK) ‘




ATF2 Facility Layout

ATF2 beam line (Jan.2009~)
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ATF2 Facility Layout

Focal Point Damping

(ATF24p) - |d Final Focus (FF) System - Extraction beamline @ Ring

o,~37nm ¢,~10pm
".II Straightness Monitor Intra-train feedback ([FONT)

Laser Interference Fringe Monitor
IP- ﬁPHffutum}

Wire Scanners

Fm ! \
—am— C-band BPM C-band BPM \ OTRs | c-band BPM s .
/ \ Eaa;jh:ﬁﬂ :fﬂ: Pulsed Laser Wire st Hh:k.
Wire Scanner  Final Doublet d onitar e e .y
5-band BPM IP-BPM q_,.;-""ﬁ i
Final Focus System (FFS) Extraction Line (EXT)
Scale test of ILC FFS optics *Extract beam from DR

*Correct for coupling and dispersion errors
*Correctly match beam into final focus
system.
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Scale Test of ILC FFS Optics

e Scaled design of ILC
local-chromaticity
correction style
optics.

* Same chromaticity
as ILC optics.

 Atlower beam
energy, this
corresponds to goal
~37nm IP vertical
beam waist.

Typical DR Parameters
g,/ € =1.3nm/ 8-
10pm

E=1.282 GeV

ATF2 IP parameters
B,/ By =4cm / 0.1mm

GX/Gy =6um /37nm

Rep. Rate=T1.56 Hz



ATF2 Operations

* |nitial commissioning started Dec 2008
e 2009 Operations based on “R&D” mode

— ~50% of shifts allocated to ATF2 commissioning tasks
— 2-3 weeks operations per month Jan-Jun Oct-Dec

— Concentrate on isolated hardware and software
commissioning items (e.g. cavity BPM system)

— Test of individual tuning tasks (e.g. correction of EXT
dispersion, coupling).
* First “continuous operations” run in May 2010
— Last week, one dedicated week just for ATF2 tuning
— First merging of full EXT and FFS tuning procedures



High-Level Controls for Commissioning
and Tuning

* Main system used = VSYSTEM + SAD online model

— Mainstay for accelerator operations, tested,
maintained and stable.

Alternate system developed based on EPICS+
Matlab + Lucretia beam dynamics code: ATF2
“flight-simulator”

— Portable for offsite code development and testing

— Same software runs either in production or simulation
mode using simulation mode of low-level EPICS
controls.

— Can interface to other code through tcp/ip socket
layer or EPICS DB interface.



Example Flight Simulator Tuning Tools
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Tuning Procedure (week May 17 — 21)

DR tuning
— COD, dispersion, coupling, E match ...

EXT + FFS steering, setup
— Cav. BPM cal, BBA, steering, background reduction

EXT tuning
— Dispersion, coupling correction.
— Matching into FFS

FFS tuning
— Check match conditions at IP
— “Coarse” IP matching (beta, alpha, dispersion)
* e.g. “Irwin Knobs”, MAD/SAD rematching

— Fine tuning of IP aberrations with “multiknobs” and IPBSM “Shintake
Monitor”.
* Waist, dispersion, coupling, sensitive second-order terms.
» Sextupole mover-based multiknobs, FD roll scans, EXT skew-quad scans...



ATF2 Optics

e Difficulty in tuning (length of tuning time, probability of
tuning close to design IP spot size) is related to the
magnitude of chromaticity in the final focus optics.

* Currently running with 10 x nominal beta functions at
IP (40cm / 1mm).

— Min vertical beam size with this configuration @ 12pm
emittance is ¥110nm.

* Background levels at IPBSM become larger at lower IP
beta sizes (with increasing beam divergence).

— Last week, tested with ~0.5mm vertical beta and beam size
measurements still possible.



Extracted Emittance

(DR emit_y = 10pm)

sigt sigd sigw  sig

Vertical emittance parameaters at MWOX

energy = 1.2817 Galf

emit = 117381+ 22822 pm

emitn = 2844ZT7 +- 57485 nm
emiin*bmag = 422018 +-  1.9205 nm

bmag = 14334+ 0.2480 [ 1.0000)
bmag cos = 0.0448 +- 0.0000 [ 0.0000)
brmag_sin = -0.7150+- 0.0000 [ 0.0000)
beta = 126951+ 20753m [ 84774)
alpha = 35809+ 04295 [ 3.0756)

chisg™ = 7.9155
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EXT Dispersion Correction
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* Dispersion propogation to IP corrected <1mm x/y

e Residual vertical dispersion fine-tuned with FFS Sextupole
multiknobs
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IP Tuning with FFS Sextupole

Multiknobs
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* |terative use of various knobs to

etaylau)

oring down |P

spot size by scanning with IPBSM.




IP Tuning Results During Continuous
Operations Week
startup
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* Tuning from initial setup of 850nm down to 300nm during 2
consecutive shifts last Thursday.

 Beam size cross-checked on IPBSM 8-degree & 30-degree mode.

* Trouble reducing beam size past 300nm in 30-degree mode as do
not have the resolution to scan higher beam sizes.



Data vs. Simulation
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* Initial tune up in mid-range expected from Monte Carlo simulations.

e Convergence time slower than simulated as tuning software not yet
fully automated.

* This will be essential to be able to achieve goal beam size ~<1
operations week



Work to Do

ATF2 tuning experience will be very useful showing how well BDS
tuning simulations map to reality.

— Can push IP parameters from ILC-like to more CLIC-like (increasing
chromaticity) and see how tuning performance scales.

ATF2 tuning speed most critical (1.5 Hz beam rate, complicated IP
size measurement procedure).

Initial priority based around understanding limitations to ATF2
tuning performance and speed in simulations and
comparison/useage in ATF2 experiment.

Experience can then be applied to ILC tuning simulation
environment and assesed.
Need to understand slowest/worst seeds
— Destruction of optics config between FFS Sexts? How to restore?
— Any particular error parameters that dominate? Think not.

— Try amalgamation of different tuning ideas in addition to sext
multiknobs...



