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Alignment Procedure

• With the multipole magnets turned OFF

- Orbit Steering, 1-to-1

- Target Dispersion Steering

• With the multipole magnets turned ON

- Beam-based centering of the multipole magnets

- Target Dispersion Steering

- Target Beta-Beating Steering

- Coupling Correction



Basic Equations

Given a system:

y = f (x) (1)

its Taylor expansion around x0,y0 = f(x0) is

y = y0 +
∂f

∂x

∣∣∣∣
x0

(x− x0) + . . . (2)

A =
∂f

∂x

∣∣∣∣
x0

is the Jacobian, or response matrix, of the system.

The linear approximation of eq. (1) around (x0,y0) is therefore:

y = y0 + A (x− x0) (3)



Linear Approximation and Least Squares Method

This is our “model”:

y = y0 + A (x− x0)

Where, in our case:

x : is the vector of the correctors
y : is the vector of the observables
A : is the response matrix
x0,y0 : is the central point :

correctors to zero → observables for the reference trajectory

⇒ the observables we will use are: orbit, dispersion, beta-beating and coupling.

Given an arbitrary system configuration, y = yMeasured, the corresponding correctors, x, that match

this status, can be found solving the least squares minimization of the function:

χ2 = ‖ yMeasured − {y0 + A(xUnknown − x0)} ‖ 2



Least Squares Method and Singular Value Decomposition

The solution, x, of the previous equation is given by
∂χ2

∂x
= 0:

yM − y0 = A (x− x0)

Being x0 = 0,

yM − y0 = Ax

The matrix A is likely not squared, having usually more observables than correctors → the system is
overdetermined. One way to solve overdetermined systems is to use the Singular Value Decomposition
of this matrix.

The solution is:

x = A†(yM − y0)

where A†
is the pseudo-inverse of A in the SVD-sense.



Beam Delivery System

In this context, the correctors, x, are called

θx horizontal correctors
θy vertical correctors

whereas the observables, y, are:

bx horizontal bpm readings
by vertical bpm readings

ηx horizontal dispersion at each bpm
ηy vertical dispersion at each bpm

βx horizontal beta− beating at each bpm
βy vertical beta− beating at each bpm

Cx horizontal coupling at each bpm
Cy vertical coupling at each bpm



How to Measure Dispersion, Coupling and Beta-Beating (1/2)

To measure the dispersion, it is necessary to use one or more test-beams with different energies.

We used two test beams with energy difference δ = ±0.005:

η =
b+δ − b−δ

2δ

To measure the horizontal beta-beating, it is necessary to have the first corrector kicking in

x = ±1, then measure the horizontal response of the system:

βx =
bx|θ1,x=+1

− bx|θ1,x=−1

2∆θ1,x

To measure the vertical beta-beating, it is necessary to have the first corrector kicking in y = ±1,

then measure the vertical response of the system:

βy =
by|θ1,y=+1

− by|θ1,y=−1

2∆θ1,y



How to Measure Dispersion, Coupling and Beta-Beating (2/2)

To measure the horizontal coupling, it is necessary to have the first corrector kicking in y = ±1,

then measure the horizontal response of the system:

Cx =
bx|θ1,y=+1

− bx|θ1,y=−1

2∆θ1,y

To measure the vertical coupling, it is necessary to have the first corrector kicking in x = ±1, then

measure the vertical response of the system:

Cy =
by|θ1,x=+1

− by|θ1,x=−1

2∆θ1,x

⇒ Notice that to obtain these 6 quantities,

ηx, ηy︸ ︷︷ ︸
δ=±0.5%

, βx,Cx︸ ︷︷ ︸
θ1,x=±1

, βy,Cy︸ ︷︷ ︸
θ1,y=±1

,

a total of six measurements is required.



Alignment Algorithm (1/2)

Multipoles OFF

1) Orbit correction (
bx

by

)
=

(
Rxx 0
0 Ryy

) (
θx

θy

)

2) Target Dispersion Steering
bx

by

ηx − η0,x

ηy − η0,y

 =


Rxx 0
0 Ryy

Dxx 0
0 Dyy

 (
θx

θy

)

⇒ it requires one or two test beams, with E = E0 (1± 0.005), to measure the dispersion.



Alignment Algorithm (2/2)

Multipoles ON

3) Beam-based centering of each individual multipolar elements (see later for details)

4) Coupling and Beta-Beating Steering

bx

by

ηx − η0,x

ηy − η0,y

βx − β0,x

βy − β0,y

Cx

Cy


=



Rxx 0
0 Ryy

Dxx 0
0 Dyy

Bxx 0
Byx 0
0 Cxy

0 Cyy


(

θx

θy

)

⇒ it requires four shots -nominal energy- with the first corrector ON, ∆θ1,x|y = ±small kick, to
measure beta-beating and coupling.



Orbit Response Matrix

Jacobian of the system:

R =
∂b

∂θ
; Rij =

bi;+∆θj
− bi;−∆θj

2∆θj

Response matrices: Rxx, Ryy

Target Responses:

-1
-0.5

 0
 0.5

 1

 0  20  40  60  80  100  120
-1

-0.5
 0

 0.5
 1

 0  20  40  60  80  100  120



Dispersion Response Matrix

Jacobian of the system:

D =
∂η

∂θ
=

ηi;+∆θj
− ηi;−∆θj

2∆θj
=

∂

∂θ

∂b

∂E

Response matrices: Dxx, Dyy

Target Responses:
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Beta-Beating Response Matrix

Jacobian of the system:

Bx|y =
∂β

∂θ
=

∂

∂θ

∂bx|y

∂θ1,x|y

Response matrices: Bxx, Byx

Target Responses:
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Coupling Response Matrix

Jacobian of the system:

Cx|y =
∂c

∂θ
=

∂

∂θ

∂bx|y

∂θ1,y|x

Response matrices: Cxy, Cyy

Target Responses:
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The Actual Systems of Equations

For simplicity I did not mention that we have also:

- the ω-terms, ie. the weights

- the SVD-term β to control and limit the amplitude of the correctors

So the actual systems of equations are the following:

1) Target Dispersion Steering b
ω1 · (η − η0)

0

 =

 R
ω1 · D
β · I

 (
θx

θy

)

2) Coupling and Beta-Beating Steering:
b

ω2 · (η − η0)
ω3 · (β − β0)
ω3 · C

0

 =


R

ω2 · D
ω3 · B
ω3 · C
β · I


(

θx

θy

)

⇒ We have four degrees of freedom to tune: ω1, ω2, ω3 and β .



Beam-Based Centering of the Multipoles

Sextupoles, Octupoles and Decapoles can strongly deflect the beam when they are off-centered.

The kick that they induce depends on the difference between the beam position and the magnetic
center of the magnet: dx, dy.

We scan, horizontally and vertically, the position of each multipole and register the change in beam
position at the downstream bpm. We scan in the range dx, dy ∈ [−0.5, 0.5] mm.

1) Sextupoles

∆x′ = −1

2

SN

Bρ

(
dx2 − dy2);

∆y′ = +
SN

Bρ
dx dy

a parabolic fit in x and y gives dx and dy



Beam-Based Centering of the Multipoles

2) Octupoles

∆x′ = −1

6

SN

Bρ

(
dx3 − 3dx dy2);

∆y′ = −1

6

SN

Bρ

(
dx2dy − dy3)
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This curve is a cubic, therefore its first derivative is a parabola. A parabolic fit of its derivative, in
x and y, gives dx and dy

3) Decapoles

∆x′ = − 1

24
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Bρ

(
dx4 − 6dx2dy2 + dy4);

∆y′ = +
1

6

SN

Bρ

(
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This curve is a parabola squared. A parabolic fit of its square root, in x and y, gives dx and dy



Simulation Setup

• CLIC BDS, L∗ = 3.5 m

• Misalignment 10 µm RMS for:

- quadrupoles: x and y

- multipoles: x and y

- bpms: x and y

• Added two BPMs:

- one at the IP

- one 3.5 meters downstream the IP (might this be the same used for the IP-Feedback?)

• Studied two different bpm resolutions:

- 10 nm

- 100 nm

- Apertures are not taken into account / synchrotron radiation emission is not taken into account

⇒ All simulations have been carried out using placet-octave



Simulation Results

Emittance growth along the CLIC BDS for 100 seeds, bpm resolution 10 nm:

 10

 100

 1000

 10000

 100000

 0  500  1000  1500  2000  2500  3000

ε y
 [n

m
]

s [m]

Orbit Correction
Full Alignment Procedure

previous results

⇒ Final vertical emittance is 223 nm (previous results were at 1000-10000 nm).



Simulation Results

Average RMS vertical beamsize at the IP for 1000 seeds, bpm resolution 10 nm:
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⇒ Final average vertical beamsize is 8.9 nm . Success rate is 100% .



Simulation Results

Average RMS vertical beamsize at the IP for 1000 seeds, bpm resolution 10 nm:

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5  10  15  20  25  30  35  40

C
ou

nt
s 

[#
]

σy [nm]

Full Alignment Procedure

⇒ Final average vertical beamsize is 8.9 nm . Success rate is 100% .



Simulation Summary Table

After a scan of the weights ω1, ω2 and ω3, having fixed β:

β bpm res. [nm] ω1 ω2 ω3 vertical beam size @ IP [nm]

0 10 0.04 1.64 10.0 9.9

1 10 0.15 1.97 4.88 7.8

0 100 0.002 0.62 24.2 20.3

1 100 0.018 1.80 15.7 16.3

After a scan of ω1, ω1, ω1 and β:

β bpm res. [nm] ω1 ω2 ω3 vertical beam size @ IP [nm]

0.85 10 0.14 1.95 1.85 7.6

5.25 100 3.95 0.65 140.0 10.0

⇒ All results are the average of 100 seeds



Conclusions and Next Steps

A novel technique for the BBA of the CLIC BDS has been presented.

It takes into account additional observables, such as beta-beating and coupling measurements, to
further improve the beam quality.

An additional step of Beam-Based Centering of the Magnetic Multipoles has been also performed,
to reduce the impact of the strong multipolar fields.

⇒ The first results of this technique show an excellent performance of the algorithm, with a
100% success rate , reaching a final vertical beam size of 7.6 nm for 10 nm bpm resolution,
and 10 nm for 100 nm bpm resolution.

Next steps,

• Study in further detail this approach and its fine tuning

• Apply Tuning Knobs at the IP

• Apply it and test it on ATF2


