A Novel Technique for the Static Alignment of the CLIC Beam Delivery System

Andrea Latina, FNAL

...after very inspiring discussions with Pantaleo Raimondi, INFN-LNF

CLIC BDS Tuning Meeting - June 15, 2010

Alignment Procedure

- With the multipole magnets turned OFF
	- Orbit Steering, 1-to-1
	- Target Dispersion Steering
- With the multipole magnets turned ON
	- Beam-based centering of the multipole magnets
	- Target Dispersion Steering
	- Target Beta-Beating Steering
	- Coupling Correction

Basic Equations

Given a system:

$$
y = f(x) \tag{1}
$$

its Taylor expansion around $\mathbf{x_0}, \mathbf{y_0} = \mathbf{f}(\mathbf{x_0})$ is

$$
\mathbf{y} = \mathbf{y_0} + \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{\mathbf{x_0}} (\mathbf{x} - \mathbf{x_0}) + \dots \tag{2}
$$

$$
\mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{\mathbf{x_0}}
$$
 is the Jacobian, or response matrix, of the system.

The linear approximation of eq. (1) around (x_0, y_0) is therefore:

$$
\mathbf{y} = \mathbf{y_0} + \mathbf{A} \left(\mathbf{x} - \mathbf{x_0} \right) \tag{3}
$$

Linear Approximation and Least Squares Method

This is our "model":

$$
\mathbf{y} = \mathbf{y}_0 + \mathbf{A} \left(\mathbf{x} - \mathbf{x}_0 \right)
$$

Where, in our case:

 \Rightarrow the observables we will use are: orbit, dispersion, beta-beating and coupling.

Given an arbitrary system configuration, $y = y_{Measured}$, the corresponding **correctors**, x, that match this status, can be found solving the least squares minimization of the function:

$$
\chi^2 = \ \parallel \ \mathbf{y}_{\text{Measured}} \ - \ \{ \mathbf{y_0} + \mathbf{A}(\mathbf{x}_{\text{Unknown}} - \mathbf{x_0}) \} \ \parallel^2
$$

Least Squares Method and Singular Value Decomposition

The solution, x, of the previous equation is given by $\partial \chi^{\bf 2}$ $\partial {\bf x}$ $= 0$:

$$
y_M - y_0 = A (x - x_0)
$$

Being $\mathbf{x}_0 = 0$,

$$
\mathbf{y}_\mathsf{M} - \mathbf{y_0} ~=~ \mathbf{A}\,\mathbf{x}
$$

The matrix A is likely not squared, having usually more observables than correctors \rightarrow the system is overdetermined. One way to solve overdetermined systems is to use the Singular Value Decomposition of this matrix.

The solution is:

$$
\mathbf{x}~=~\mathbf{A}^\dagger(\mathbf{y}_\mathsf{M} - \mathbf{y_0})
$$

where \mathbf{A}^{\dagger} is the pseudo-inverse of \mathbf{A} in the SVD-sense.

Beam Delivery System

In this context, the correctors, x, are called

- θ_x horizontal correctors
- θ_y vertical correctors

whereas the observables, y, are:

- \mathbf{b}_x horizontal bpm readings
- \mathbf{b}_y vertical bpm readings
- η_x horizontal dispersion at each bpm
- $\boldsymbol{\eta}_y$ vertical dispersion at each bpm
- β_x horizontal beta beating at each bpm
- $\boldsymbol{\beta}_y$ vertical beta – beating at each bpm
- C_x horizontal coupling at each bpm
- C_y vertical coupling at each bpm

How to Measure Dispersion, Coupling and Beta-Beating $(1/2)$

To measure the **dispersion**, it is necessary to use one or more *test-beams* with different energies. We used two test beams with energy difference $\delta = \pm 0.005$:

$$
\boldsymbol{\eta}=\frac{b_{+\delta}-b_{-\delta}}{2\delta}
$$

To measure the **horizontal beta-beating**, it is necessary to have the first corrector kicking in $x = \pm 1$, then measure the horizontal response of the system:

$$
\boldsymbol{\beta}_x = \frac{b_{x\mid\theta_{1,x=+1}} - b_{x\mid\theta_{1,x=-1}}}{2\Delta\theta_{1,x}}
$$

To measure the **vertical beta-beating**, it is necessary to have the first corrector kicking in $y = \pm 1$, then measure the vertical response of the system:

$$
\boldsymbol{\beta}_y=\frac{b_{y|\theta_{1,y=+1}}-b_{y|\theta_{1,y=-1}}}{2\Delta\theta_{1,y}}
$$

How to Measure Dispersion, Coupling and Beta-Beating (2/2)

To measure the **horizontal coupling**, it is necessary to have the first corrector kicking in $y = \pm 1$, then measure the horizontal response of the system:

$$
\mathbf{C}_x=\frac{b_{x\mid\theta_{1,y=+1}}-b_{x\mid\theta_{1,y=-1}}}{2\Delta\theta_{1,y}}
$$

To measure the **vertical coupling**, it is necessary to have the first corrector kicking in $x = \pm 1$, then measure the vertical response of the system:

$$
\mathbf{C}_y = \frac{b_{y\mid \theta_{1,x=+1}} - b_{y\mid \theta_{1,x=-1}}}{2\Delta\theta_{1,x}}
$$

 \Rightarrow Notice that to obtain these 6 quantities,

a total of six measurements is required.

Alignment Algorithm (1/2)

Multipoles OFF

1) Orbit correction

$$
\left(\begin{array}{c}\mathbf{b}_x\\ \mathbf{b}_y\end{array}\right)=\left(\begin{array}{cc}R_{xx}&0\\ 0&R_{yy}\end{array}\right)\left(\begin{array}{c}\boldsymbol{\theta}_x\\ \boldsymbol{\theta}_y\end{array}\right)
$$

2) Target Dispersion Steering

$$
\left(\begin{array}{c} \mathbf{b}_x \\ \mathbf{b}_y \\ \boldsymbol{\eta}_x - \boldsymbol{\eta}_{0,x} \\ \boldsymbol{\eta}_y - \boldsymbol{\eta}_{0,y} \end{array}\right) = \left(\begin{array}{cc} R_{xx} & 0 \\ 0 & R_{yy} \\ D_{xx} & 0 \\ 0 & D_{yy} \end{array}\right) \left(\begin{array}{c} \boldsymbol{\theta}_x \\ \boldsymbol{\theta}_y \end{array}\right)
$$

 \Rightarrow it requires one or two test beams, with $E = E_0 (1 \pm 0.005)$, to measure the dispersion.

Alignment Algorithm (2/2)

Multipoles ON

3) Beam-based centering of each individual multipolar elements (see later for details)

4) Coupling and Beta-Beating Steering

$$
\left(\begin{array}{c} \mathbf{b}_x \\ \mathbf{b}_y \\ \boldsymbol{\eta}_x - \boldsymbol{\eta}_{0,x} \\ \boldsymbol{\eta}_y - \boldsymbol{\eta}_{0,y} \\ \boldsymbol{\beta}_x - \boldsymbol{\beta}_{0,x} \\ \boldsymbol{\beta}_y - \boldsymbol{\beta}_{0,y} \\ \mathbf{C}_x \\ \mathbf{C}_y \end{array}\right) = \left(\begin{array}{c} R_{xx} & 0 \\ 0 & R_{yy} \\ D_{xx} & 0 \\ 0 & D_{yy} \\ B_{xx} & 0 \\ B_{yx} & 0 \\ 0 & C_{xy} \\ 0 & C_{yy} \end{array}\right) \left(\begin{array}{c} \boldsymbol{\theta}_x \\ \boldsymbol{\theta}_y \end{array}\right)
$$

 \Rightarrow it requires four shots -nominal energy- with the first corrector ON, $\Delta\theta_{1,x|y} = \pm$ small kick, to measure beta-beating and coupling.

Orbit Response Matrix

Jacobian of the system:

0
0.5-
1- 1 0.5

$$
\mathbf{R} = \frac{\partial \mathbf{b}}{\partial \theta}; \quad \mathbf{R}_{ij} = \frac{b_{i;+\Delta\theta_j} - b_{i;-\Delta\theta_j}}{2\Delta\theta_j}
$$

0 20 40 60 80 100 120

Dispersion Response Matrix

Jacobian of the system:

$$
\mathbf{D} = \frac{\partial \eta}{\partial \theta} = \frac{\eta_{i; + \Delta\theta_j} - \eta_{i; -\Delta\theta_j}}{2\Delta\theta_j} = \frac{\partial}{\partial \theta} \frac{\partial \mathbf{b}}{\partial \mathbf{E}}
$$

Target Responses:

Beta-Beating Response Matrix

Jacobian of the system:

$$
\mathbf{B}_{\mathbf{x}|\mathbf{y}} \;=\; \frac{\partial \beta}{\partial \theta} \;=\; \frac{\partial}{\partial \theta} \frac{\partial \mathbf{b}_{\mathbf{x}|\mathbf{y}}}{\partial \theta_{\mathbf{1},\mathbf{x}|\mathbf{y}}}
$$

Target Responses:

Coupling Response Matrix

Jacobian of the system:

$$
\mathbf{C}_{\mathbf{x}|\mathbf{y}} \; = \; \frac{\partial \mathbf{c}}{\partial \theta} \; = \; \frac{\partial}{\partial \theta} \frac{\partial \mathbf{b}_{\mathbf{x}|\mathbf{y}}}{\partial \theta_{\mathbf{1}, \mathbf{y}|\mathbf{x}}}
$$

The Actual Systems of Equations

For simplicity I did not mention that we have also:

- the ω -terms, ie. the weights
- the SVD-term β to control and limit the amplitude of the correctors

So the actual systems of equations are the following:

1) Target Dispersion Steering

$$
\left(\begin{array}{c} \mathbf{b} \\ \omega_1 & \cdot (\boldsymbol{\eta}-\boldsymbol{\eta_0}) \\ \mathbf{0} \end{array}\right) = \left(\begin{array}{c} \mathbf{R} \\ \omega_1 & \cdot & \mathbf{D} \\ \beta & \cdot & \mathbf{I} \end{array}\right) \left(\begin{array}{c} \boldsymbol{\theta}_x \\ \boldsymbol{\theta}_y \end{array}\right)
$$

2) Coupling and Beta-Beating Steering:

$$
\left(\begin{array}{c}\n\mathbf{b} \\
\omega_2 & (\boldsymbol{\eta} - \boldsymbol{\eta}_0) \\
\omega_3 & (\boldsymbol{\beta} - \boldsymbol{\beta}_0) \\
\omega_3 & \mathbf{C} \\
\mathbf{0}\n\end{array}\right) = \left(\begin{array}{c}\n\mathbf{R} \\
\omega_2 & \mathbf{D} \\
\omega_3 & \mathbf{B} \\
\omega_3 & \mathbf{C} \\
\boldsymbol{\beta} & \mathbf{I}\n\end{array}\right) \left(\begin{array}{c}\n\boldsymbol{\theta}_x \\
\boldsymbol{\theta}_y\n\end{array}\right)
$$

 \Rightarrow We have four degrees of freedom to tune: $|\omega_1,\,\omega_2,\,\omega_3$ and $\beta|$.

Beam-Based Centering of the Multipoles

Sextupoles, Octupoles and Decapoles can strongly deflect the beam when they are off-centered.

The kick that they induce depends on the difference between the beam position and the magnetic center of the magnet: dx, dy.

We scan, horizontally and vertically, the position of each multipole and register the change in beam position at the downstream bpm. We scan in the range $dx, dy \in [-0.5, 0.5]$ mm.

1) Sextupoles

$$
\Delta x' = -\frac{1}{2} \frac{S_N}{B \rho} (dx^2 - dy^2);
$$

$$
\Delta y' = +\frac{S_N}{B \rho} dx dy
$$

a parabolic fit in x and y gives dx and dy

Beam-Based Centering of the Multipoles

2) Octupoles

This curve is a cubic, therefore its first derivative is a parabola. A parabolic fit of its derivative, in x and y, gives dx and dy

 $10000 -$

3) Decapoles

$$
\Delta x' = -\frac{1}{24} \frac{S_N}{B \rho} (dx^4 - 6dx^2 dy^2 + dy^4);
$$
\n
$$
\Delta y' = +\frac{1}{6} \frac{S_N}{B \rho} (dx^3 dy - dxdy^3)
$$
\n
$$
\Delta y' = \frac{1}{6} \frac{S_N}{B \rho} (dx^3 dy - dxdy^3)
$$
\n
$$
\Delta y' = \frac{1}{10} \frac{S_N}{B \rho} (dx^3 dy - dxdy^3)
$$

This curve is a parabola squared. A parabolic fit of its square root, in x and y , gives dx and dy

Simulation Setup

- CLIC BDS, $L^* = 3.5$ m
- Misalignment 10 μ m RMS for:
	- quadrupoles: x and y
	- multipoles: x and y
	- bpms: x and y
- Added two BPMs:
	- one at the IP
	- one 3.5 meters downstream the IP (might this be the same used for the IP-Feedback?)
- Studied two different bpm resolutions:
	- 10 nm
	- 100 nm
- Apertures are not taken into account / synchrotron radiation emission is not taken into account
- \Rightarrow All simulations have been carried out using placet-octave

Simulation Results

Emittance growth along the CLIC BDS for 100 seeds, bpm resolution 10 nm:

 \Rightarrow Final vertical emittance is 223 nm (previous results were at 1000-10000 nm).

Simulation Results

Average RMS vertical beamsize at the IP for 1000 seeds, bpm resolution 10 nm:

 \Rightarrow Final average vertical beamsize is 8.9 nm . Success rate is 100%.

Simulation Results

Average RMS vertical beamsize at the IP for 1000 seeds, bpm resolution 10 nm:

 \Rightarrow Final average vertical beamsize is 8.9 nm. Success rate is 100%.

Simulation Summary Table

After a scan of ω_1 , ω_1 , ω_1 and β :

 \Rightarrow All results are the average of 100 seeds

Conclusions and Next Steps

A novel technique for the BBA of the CLIC BDS has been presented.

It takes into account additional observables, such as beta-beating and coupling measurements, to further improve the beam quality.

An additional step of Beam-Based Centering of the Magnetic Multipoles has been also performed, to reduce the impact of the strong multipolar fields.

 \Rightarrow The first results of this technique show an excellent performance of the algorithm, with a 100% success rate, reaching a final vertical beam size of $|7.6 \text{ nm}|$ for 10 nm bpm resolution, and $|10 \text{ nm}|$ for 100 nm bpm resolution.

Next steps,

- Study in further detail this approach and its fine tuning
- Apply Tuning Knobs at the IP
- Apply it and test it on ATF2