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Alignment Procedure

e With the multipole magnets turned OFF
- Orbit Steering, 1-to-1

- Target Dispersion Steering

e With the multipole magnets turned ON

- Beam-based centering of the multipole magnets
- Target Dispersion Steering
- Target Beta-Beating Steering

- Coupling Correction



Basic Equations

Given a system:

y =1f(x)
its Taylor expansion around xg,yo = f(xg) is

of

y=Yo+—| (X—Xg)+...
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is the Jacobian, or response matrix, of the system.

The linear approximation of eq. (1) around (xg, yo) is therefore:

y =yo+ A (x — Xg)



Linear Approximation and Least Squares Method

This is our “model’:

Y =Yo+A(X—xXp)

Where, in our case:

X : is the vector of the correctors
y: is the vector of the observables
A is the response matrix

Xg,Yo : Iis the central point :
correctors to zero — observables for the reference trajectory

= the observables we will use are: orbit, dispersion, beta-beating and coupling.

Given an arbitrary system configuration, ¥ = yMeasured, the corresponding correctors, x, that match
this status, can be found solving the least squares minimization of the function:

2 2

X = || YMeasured — {YO"’A(XUnknown_XO)} ||



Least Squares Method and Singular Value Decomposition
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The solution, x, of the previous equation is given by i = 0:

ox

YM — Yo — A(X—Xo)
BeingX():O,
ymM—Yo = AX

The matrix A is likely not squared, having usually more observables than correctors — the system is
overdetermined. One way to solve overdetermined systems is to use the Singular Value Decomposition
of this matrix.

The solution is:

X = AT(YM —YO)

where 1AJr is the pseudo-inverse of A in the SVD-sense.



Beam Delivery System

In this context, the correctors, x, are called

whereas the observables, y, are:

0, horizontal correctors
¢, vertical correctors

horizontal bpm readings
vertical bpm readings

horizontal dispersion at each bpm
vertical dispersion at each bpm

horizontal beta — beating at each bpm
vertical beta — beating at each bpm

horizontal coupling at each bpm
vertical coupling at each bpm



How to Measure Dispersion, Coupling and Beta-Beating (1/2)

To measure the dispersion, it is necessary to use one or more test-beams with different energies.
We used two test beams with energy difference 6 = £0.005:
bys—bs
20

To measure the horizontal beta-beating, it is necessary to have the first corrector kicking in

x = +1, then measure the horizontal response of the system:

bl‘|91,x:+1 — b$!91,x:—1

B = 2N,

To measure the vertical beta-beating, it is necessary to have the first corrector kicking in y = =+1,

then measure the vertical response of the system:
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How to Measure Dispersion, Coupling and Beta-Beating (2/2)

To measure the horizontal coupling, it is necessary to have the first corrector kicking in y = =1,

then measure the horizontal response of the system:

b$\91,y:+1 - bx\el,y=—1
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To measure the vertical coupling, it is necessary to have the first corrector kicking in x = 41, then

measure the vertical response of the system:

b

Yoy g=r1 — by\91,x:—1
C,=

N

= Notice that to obtain these 6 quantities,

Y, 9 $7C$7 7CD
MMy, 8,,C,

0=40.5% La=+1  6; -1y

a total of six measurements is required.



Alignment Algorithm (1/2)

Multipoles OFF

1) Orbit correction

()= (% s, ) (80)

2) Target Dispersion Steering

b, | o Ry ( 0, )
Ne — Moz Dx:c 0 Qy
Ny — Moy 0 Dy,

= it requires one or two test beams, with £ = Ej (1 4+ 0.005), to measure the dispersion.



Alignment Algorithm (2/2)

Multipoles ON

3) Beam-based centering of each individual multipolar elements (see later for details)

4) Coupling and Beta-Beating Steering
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= it requires four shots -nominal energy- with the first corrector ON, A@wa = +small kick, to
measure beta-beating and coupling.



Orbit Response Matrix

Jacobian of the system:
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Dispersion Response Matrix

Jacobian of the system:
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300 J \L 0.;
100 7 < -O.g
1

0 20 40 60 80 100 120 0 20 40 60 80 100



Beta-Beating Response Matrix

Jacobian of the system:
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Coupling Response Matrix

Jacobian of the system:
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The Actual Systems of Equations

For simplicity | did not mention that we have also:
- the w-terms, ie. the weights

- the SVD-term [ to control and limit the amplitude of the correctors

So the actual systems of equations are the following:

1) Target Dispersion Steering
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2) Coupling and Beta-Beating Steering:

b R
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wy - (B=PBy) | =] ws - B ( ex )
wsg - C wsg - C Y
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= We have four degrees of freedom to tune: |wq, wo, w3 and (.




Beam-Based Centering of the Multipoles
Sextupoles, Octupoles and Decapoles can strongly deflect the beam when they are off-centered.

The kick that they induce depends on the difference between the beam position and the magnetic
center of the magnet: dx, dy.

We scan, horizontally and vertically, the position of each multipole and register the change in beam
position at the downstream bpm. We scan in the range dx,dy € [—0.5,0.5] mm.

1) Sextupoles

AX = —%]S?)—l; (dx2 — dy2);

SN
Ay = +—dxd
y +Bp xay

a parabolic fit in  and y gives dx and dy



Beam-Based Centering of the Multipoles

2) Octupoles

1000 ——r——
1 S X**3
Ax' = _EB_N (dx® — 3dx dy?); 500 -
P
O L -
1SN -500 | .
Ay = —=— (dx*dy — dy?
6By ( ) -1000 L——1

-:10 -5 0 5 10

This curve is a cubic, therefore its first derivative is a parabola. A parabolic fit of its derivative, in
x and y, gives dx and dy

3) Decapoles
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This curve is a parabola squared. A parabolic fit of its square root, in x and y, gives dx and dy



Simulation Setup

e CLICBDS, L*=35m

e Misalignment 10 um RMS for:
- quadrupoles: = and y
- multipoles: x and y

- bpms: x and y

e Added two BPMs:
- one at the IP

- one 3.5 meters downstream the IP (might this be the same used for the IP-Feedback?)

e Studied two different bpm resolutions:

- 10 nm
- 100 nm

- Apertures are not taken into account / synchrotron radiation emission is not taken into account

= All simulations have been carried out using placet-octave



Simulation Results

Emittance growth along the CLIC BDS for 100 seeds, bpm resolution 10 nm:
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= Final vertical emittance is 223 nm (previous results were at 1000-10000 nm).



Simulation Results

Average RMS vertical beamsize at the IP for 1000 seeds, bpm resolution 10 nm:
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= Final average vertical beamsize is [8.9 nm|. Success rate is |100%|.




Simulation Results

Average RMS vertical beamsize at the IP for 1000 seeds, bpm resolution 10 nm:
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= Final average vertical beamsize is [8.9 nm|. Success rate is

100%|.




Simulation Summary Table

After a scan of the weights w1, wy and w3, having fixed 3:

B | bpmres. [nm]| w; | ws | w3 | vertical beam size @ IP [nm]
0 10 0.04 |1.64|10.0 9.9
1 10 0.15 | 1.97 | 4.88
0 100 0.002 1 0.62 | 24.2 20.3
1 100 0.018 | 1.80 | 15.7 16.3

After a scan of wy, wi, wy and 3:

B | bpmres. [nm]| wy | ws | wg | vertical beam size @ IP [nm]

0.85 10 0.1411.95| 1.85 7.6

5.25 100 3.9510.65 | 140.0 10.0

= All results are the average of 100 seeds



Conclusions and Next Steps
A novel technique for the BBA of the CLIC BDS has been presented.

It takes into account additional observables, such as beta-beating and coupling measurements, to
further improve the beam quality.

An additional step of Beam-Based Centering of the Magnetic Multipoles has been also performed,
to reduce the impact of the strong multipolar fields.

= The first results of this technique show an performance of the algorithm, with a
100% success rate|, reaching a final vertical beam size of for 10 nm bpm resolution,

and for 100 nm bpm resolution.

Next steps,

e Study in further detail this approach and its fine tuning
e Apply Tuning Knobs at the IP
e Apply it and test it on ATF2



