
Preparing to run your first calibration

 2

Download the software
… compile your own version of Ph2ACF
• If you would like to set-up your computer to develop and run Ph2ACF natively then please follow the

instructions in the README[1] for installing Ph2ACF on centos7

• Clone the Github branch for the school
• git clone —single-branch —branch daqSchool2021 https://:@gitlab.cern.ch:8443/cms_tk_ph2/Ph2_ACF.git

• Create the build directory and compile the code : source setup.sh; cd build; cmake ..; cd../; make -C build -j4
• Stay in the Ph2_ACF directory for the remainder of the exercise

[1] https://gitlab.cern.ch/cms_tk_ph2/Ph2_ACF/

https://:@gitlab.cern.ch:8443/cms_tk_ph2/Ph2_ACF.git

 3

Download the software
… run the software inside a docker container
• If you would like to use docker to run the software then follow the instructions for installing docker and

generating an access token from [2] then :
• log-in to the gitlab registry to obtain access to the images [docker login --username $username gitlab-

registry.cern.ch]
• pull the image with the pre-compiled software branch prepared for the school [docker pull gitlab-

registry.cern.ch/cms_tk_ph2/docker_exploration:cmstkph2-school-2021]
• launch a docker container [docker run --detach --name cmstkph2-school -t -i --privileged -e

DISPLAY=$ip:0 -v /tmp/.X11-unix:/tmp/.X11-unix -v /dev:/dev -v $(pwd):/home/cmsTkUser/local gitlab-
registry.cern.ch/cms_tk_ph2/docker_exploration:cmstkph2-school-2021]

• refer to README[2] for instructions on how to forward X11 to host
• connect to the container to complete the exercise [docker exec -it cmstkph2-school /bin/bash]

[2] https://gitlab.cern.ch/cms_tk_ph2/docker_exploration/-/blob/master/README.md

systemtest run from inside docker container

http://gitlab-registry.cern.ch
http://gitlab-registry.cern.ch
http://gitlab-registry.cern.ch/cms_tk_ph2/docker_exploration:cmstkph2-school
http://gitlab-registry.cern.ch/cms_tk_ph2/docker_exploration:cmstkph2-school
http://gitlab-registry.cern.ch/cms_tk_ph2/docker_exploration:cmstkph2-school
http://gitlab-registry.cern.ch/cms_tk_ph2/docker_exploration:cmstkph2-school

 4

Connecting the software to your front-end object
… modify the hardware description xml
• First, modify the connection id in the hardware description xml to point to your FC7 :

• host-address : address of the computer physically connected to the ethernet port of the FC7
• fc7-address : ip address of the FC7 physically connected to your front-end object

Example hardware description files for OT hardware be found in Ph2_ACF/settings/D19cDescription*

• Verify that you can communicate with the FC7 using the FPGA configuration binary provided by Ph2ACF
• make sure that you have set-up the environment [source setup.sh]
• list the images available on the sd-card in your FC7 [fpgaconfig -c $hardware_description_xml -l]

You will only see the files that have been loaded on-to our sd-card…
So expect to see only GoldemImage.bin if this is a freshly configured card!!

 5

Connecting the software to your front-end object
… load the correct firmware for your flavour of test system
• Download the image for your test system from either the website https://udtc-ot-firmware.web.cern.ch or

the school indico page if the above link is un-available :
• 2cbc3_dio5 : for reading out a 2CBC3 hybrid/module
• 8cbc3 : for reading out an 8CBC3 hybrid
• dio5_opto_2h_cic1 : for reading out a 2S skeleton/module with CIC1
• dio5_opto_2h_cic2 : for reading out a 2S skeleton/module with CIC2
• cic1_2s_none : for reading out a 2S FEH prototype [with CIC1] using a 2S SEH test card v0
• cic2_2s_none : for reading out a 2S FEH prototype [with CIC2] using a 2S SEH test card v0
• cic1_2s_crate : for reading out a 2S FEH prototype [with CIC1] in a multi-hybrid test crate
• cic2_2s_crate : for reading out a 2S FEH prototype [with CIC2] in a multi-hybrid test crate

• Use the FPGA configuration binary provided by Ph2ACF to load the image file (either .bin or .bit) onto the
SD-card [fpgaconfig -c $hardware_description_xml -f $image_file -i $image_name]

• Use the FPGA configuration binary provided by Ph2ACF to confirm that the image file has been loaded on-
to the SD-card [fpgaconfig -c $hardware_description_xml -l]

• Use the FPGA configuration binary provided by Ph2ACF to select the image file (either .bin or .bit) from
the SD-card and load it onto the FPGA [fpgaconfig -c $hardware_description_xml -i $image_name]

https://udtc-ot-firmware.web.cern.ch

 6

Connecting the software to your front-end object
… check that you have the correct objects listed in your hardware description file
• Make sure that the hardware description file contains the correct description for your set-up :

if using a 2CBC3 hybrid/module remember to
comment out chips 2-7!

settings/D19CDescription.xml
Example hardware description files for 8CBC3 hybrid

settings/D19CDescription_Cic2.xml
Example hardware description files for a 2S module

if using a single 2S FEH prototype remember to :
• comment out the LHS hybrid !!
• disable the optical link [GBT, enable = 0] !!
• select the CIC version that corresponds to your hardware!

 7

Connecting the software to your front-end object
… check that you can communicate with the front-end objects [electrical readout]

• Use the 2S front-end hybrid test binary to verify that you can communicate with the front-end object
[feh_2s_test -f $hardware_description_xml -b] :

• Common (Tool) tools ConfigureHw() → reset FC7, configure FC7 with settings from xml, hard-reset to all
front-end ASICs, configure all front-end ASICs based on hardware description xml

• Back-end alignment (BackendAlignment) tool → prepare back-end for data taking (optimize sampling point for
electrical readout, align received data packets with 320 MHz clock boundaries, etc.)

Example of running on n 8CBC3 hybrid

FC7 + FEs configured

Phase and word alignment on SLVS
lines from hybrid

 8

Connecting the software to your front-end object
… check that you can communicate with the front-end objects [optical readout]

• Use the 2S front-end hybrid test binary to verify that you can communicate with the front-end object
[feh_2s_test -f $hardware_description_xml —withCIC—b] :

• Common (Tool) tools ConfigureHw() → reset FC7, configure FC7 with settings from xml, hard-reset to all
front-end ASICs, configure all front-end ASICs based on hardware description xml

• Configure ASICs on service hybrids, reset optical link in the back-end, check link lock
• Back-end alignment (BackendAlignment) tool → prepare back-end for data taking (align received data

packets with 320 MHz clock boundaries)
• Cic alignment (CicAlignment) tool → prepare CIC for data taking (optimize sampling point for data from

CBCs/MPAs, align received stub data with 320 MHz clock boundaries)

Link locked

stub data pre-alignment
mis-aligned with 8-bit boundary

stub data post-alignment
aligned with 8-bit boundary

Example of running on a 2S skeleton

Running your first calibration

 10

Connecting the software to your front-end object
… check that you can equalize the threshold response of all channels on a hybrid

• First,, use the 2S front-end hybrid test binary to simultaneously record S-curves (noise hit occupancy vs.
threshold) curves for all channels on your test system [feh_2s_test -f $hardware_description_xml —withCIC* -
a -m -b]

• look at the last root file saved to Results : [root -l Results/$(ls -t Results | head -n1)/Hybrid.root]

REMOVE IF USING A HYBRID WITH NO CIC

Directory structure of root file
Board → Optical Group(s) → Hybrid(s) → (Readout) Chip(s)

• For each readout ASIC on a hybrid :
1. noise hit occupancy vs. threshold
2. distribution of pedestals [in threshold units] extracted from above
3. noise vs. channel number on the readout ASIC
4. pedestal vs. channel number on the readout ASIC
5. noise vs. (nth) even channel on the readout ASIC
6. noise vs. (nth) odd channel on the readout ASIC
7. noise hit occupancy vs. channel number on the readout ASIC

• Summary plots for each hybrid in an optical group
1. distribution of noise [in threshold units] for all readout channels on this readout hybrid
2. noise vs. strip number (top + bottom) on this readout hybrid
3. noise vs. (nth) bottom strip sensor connected to this readout hybrid
4. noise vs. (nth) top strip sensor connected to this readout hybrid

 11

Connecting the software to your front-end object
… check that you can equalize the threshold response of all channels on a hybrid

• Definition of pedestal and noise in 2S modules :

�2 =

P
wi(V cthi � µ)2P

wi
<latexit sha1_base64="4FYy6ju6mzZ55QAu8ZaHxNVsLR8=">AAACL3icbVDLSgMxFM34tr6qLt0Ei1AXlpkq6EYQBHFZwVahU0smzbTBJDMkd9QS5o/c+CvdiCji1r8wrUV8HQgczjmXm3uiVHADvv/kTUxOTc/Mzs0XFhaXlleKq2sNk2SasjpNRKIvI2KY4IrVgYNgl6lmREaCXUTXx0P/4oZpwxN1Dv2UtSTpKh5zSsBJ7eJJaHhXkitbzfEhDmNNqA1NJu1tm5cboYySOxsCV31LoZfnbY53cCiz7atqnn8FnV4s+RV/BPyXBGNSQmPU2sVB2EloJpkCKogxzcBPoWWJBk4FywthZlhK6DXpsqajikhmWnZ0b463nNLBcaLdU4BH6vcJS6QxfRm5pCTQM7+9ofif18wgPmhZrtIMmKKfi+JMYEjwsDzc4ZpREH1HCNXc/RXTHnGdgau44EoIfp/8lzSqlWC3Uj3bKx2Vx3XMoQ20icooQPvoCJ2iGqojiu7RAD2jF+/Be/RevbfP6IQ3nllHP+C9fwCEV6qG</latexit>

 12

Connecting the software to your front-end object
… check that you can equalize the threshold response of all channels on a hybrid

• First,, use the 2S front-end hybrid test binary to simultaneously record S-curves (noise hit occupancy vs.
threshold) curves for all channels on your test system [feh_2s_test -f $hardware_description_xml —withCIC* -
a -m -b]

• look at the last root file saved to Results : [root -l Results/$(ls -t Results | head -n1)/Hybrid.root]

REMOVE IF USING A HYBRID WITH NO CIC

S-curves and extracted pedestals pre-threshold equalization

 13

Connecting the software to your front-end object
… check that you can equalize the threshold response of all channels on a hybrid

• First, use the 2S front-end hybrid test binary to simultaneously equalize the threshold response of all
channels, and then record S-curves (noise hit occupancy vs. threshold) curves [feh_2s_test -f
$hardware_description_xml —withCIC* -a -t -m -b]

• look at the last root file saved to Results : [root -l Results/$(ls -t Results | head -n1)/Hybrid.root]

REMOVE IF USING A HYBRID WITH NO CIC

S-curves and extracted pedestals post-threshold equalization

 14

Optimizing the calibration
… how does the threshold dispersion depend on the number of points used in the equalization algorithm?

• Modify the xml to allow you to fill in the google doc[1] with the results of the parameter scan :
• Nevents [points per step] : number of events collected for each point of bitwise threshold trimming scan

[1] https://docs.google.com/spreadsheets/d/1tFlyPXvcE3-NtkVmwrtrYP56YTXCbVBjkNnBSKYrzJc/edit#gid=0

• Go to the ‘threshold equalization’ sheet in the google doc [1] and select a cell, i.e. a combination of
values, that is free and mark it with your name

 15

Optimizing the calibration
… how do the pedestal and noise depend on the way the data is collected?

• First, pull the latest commit from the school’s branch : [git fetch; git pull origin daqSchool2021]
• Recompile and set-up the environment [make -C build -j4; source setup.sh]
• The following settings have been made configurable in the xml :

• Go to the ‘pedestal/threshold’ measurement sheet in the google doc [1] and select a cell, i.e. a combination
of values, that is free and mark it with your name

• Modify the xml to allow you to fill in the google doc[1] with the results of the parameter scan :
• Nevents [points per step] : number of events collected for each point of bitwise threshold trimming scan
• PedeNoiseStepSize [size of the step] : step size in DAC units

[1] https://docs.google.com/spreadsheets/d/1tFlyPXvcE3-NtkVmwrtrYP56YTXCbVBjkNnBSKYrzJc/edit#gid=0

Writing your first calibration

 17

Writing a calibration
… measure occupancy for a fixed range of thresholds , plot data, extract pedestal

• Skeleton code provided in the daqSchool2021 branch of the repository :
• complete top level source provided - but have a look at the code and take note of the steps required

before executing any calibrations
• skeleton tool provided (up-to you to fill in the blanks) : measure noise hit occupancy for threshold going

from 550 to 650
• skeleton DQM plotter utility provided (up-to you to fill in the blanks) : plot a 2D histogram (x = channel

#, y = threshold, z = occupancy) and use it to estimate the pedestal  
src/run_simple_scurve.cc

tools/SimpleSCurve.*

top level source to produce executable user specific tool DQM plotter tool

DQMUtils/DQMHistogramSimpleSCurve.*

https://gitlab.cern.ch/cms_tk_ph2/Ph2_ACF/-/tree/daqSchool2021

