

WUST involvement to FCC feasibility study

Jaroslaw Polinski, Maciej Chorowski, Pawel Duda, Valentina Venturi

XXVII Cracow EPIPHANY Conference on Future of Particle Physics, Polish FCC day ZOOM, 9th of Jan 2021

Contents

- Study of the design options for straight sections of the FCC cryogenic lines (2015-2016)
- Thermodynamic optimisation of the FCC thermal insulaion system (PhD thesis 2015-2019)

Cryogenic architecture of the FCC

FCC Cryogenic system

Specification of the process pipes of tunnel distribution line of FCC

Header	Function	DN mm	Nom. T K	Nom. P _N bar	Design P _D bar	Test P _T bar
Header B	Pumping line	250	4	0.5	4	6
Header C	SHe supply	80	4.6	3	20	29
Header D	Quench line and current lead He supply	200	40	1.3	20	29
Header E	Thermal shield and beam screen He supply	240	40	20 (50)	20 (50)	29 (71.5)
Header F	Thermal shield and beam screen He return	240	60	15 (45)	20 (50)	29 (71.5)
Vacuum jacket	Insulation vaccum enclosure	850	300	0	0 -1.05	1.5

All schemes transfer line analysed in the study

Standard stainless steel process pipes and compensation bellows

Standard stainless steel process pipes and long compensation bellows

Transfer line with INVAR process pipes

Scheme of the transfer line with stainless steel process pipes and compensation bellows

Use of standard stainless steel process pipes and compensation bellows

Use of standard stainless steel process pipes and compensation bellows

Comparison of heat fluxes and the supports structures

Comparison of design parameters

Impact of invar used of cumulative failure rates

Probabilities of defect occurrence (failure rates) of the most common process pipes defects

Stainl	ess steel	INVAR		
Defect	Failure rate	Source	Defect	Failure rate
FR ₁ Cold weld rupture	2.53·10 ⁻⁷ m ⁻¹ ·year ⁻¹	1	FR ₁ Cold weld rupture	5.06·10 ⁻⁷ m ⁻¹ ·year ⁻¹
FR ₂ Cold pipe leakage	4.61·10 ⁻⁶ m ⁻¹ ·year ⁻¹	2	FR ₂ Cold pipe leakage	4.61.10 ⁻⁶ m ⁻¹ .year ⁻¹
FR ₃ Cold pipe rupture	4.54·10 ⁻⁷ m ⁻¹ ·year ⁻¹	2	FR ₃ Cold pipe rupture	4.54.10 ⁻⁷ m ⁻¹ .year ⁻¹
FR ₄ Cold bellows rupture	8.76·10 ⁻⁵ year ⁻¹	3		

Calculation of cumulative failure rate CFR

$CFR_1 = FR_1 \cdot L_W$	L_w - length of welds
$CFR_2 = FR_2 \cdot L_P$	L_w - length of pipe
$CFR_3 = FR_3 \cdot L_P$	
$CFR_4 = FR_4 \cdot n$	n - the number of bellows

1. Cadwallader L.C.. Cryogenic System Operating Review for Fusion Application. Idaho National Engineering Laboratory. USA. 1992

2. Failure Frequency Guidance. Process Equipment Leak Frequency Data for Use in QRA. http://www.dnv.com/services/software/products/phast_safeti/leak_frequency_guidance.asp

3. Cadwallader L. Vacuum Bellows. Vacuum Piping. Cryogenic Break and Copper Joint Failure Rate Estimates for ITER Design Use. Idaho National Laboratory. USA. 2010

Compare of cumulative failure rates

Cumulative failure rate for stainless steel process pipes and compensation bellows

	Circuit of pipe	Length of pipe	Number of welds	Length of welds	Number of bellows	CFR ₁	CFR ₂	CFR ₃	CFR ₄	CFR
	m	m	-	m	-	1/yer	1/yer	1/yer	1/yer	1/yer
DN80	0.279	50	16	4.5	4.0	2.3E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04
DN200	0.688	50	16	11.0	4.0	5.6E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04
DN240F	0.804	50	16	12.9	4.0	6.5E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04
DN240R	0.804	50	16	12.9	4.0	6.5E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04
DN250	0.858	50	16	13.7	4.0	6.9E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04

Σ 3.0E-3/year

Cumulative failure rate for stainless steel process pipes and long compensation bellows

	Circuit of pipe	Length of pipe	Number of welds	Length of welds	Number of bellows	CFR ₁	CFR ₂	CFR_3	CFR_4	CFR
	m	m	-	m	-	1/yer	1/yer	1/yer	1/yer	1/yer
DN80	0.279	50	10	2.8	1.0	1.41E-06	2.3E-04	2.3E-05	8.76E-05	3.4E-04
DN200	0.688	50	10	6.9	1.0	3.48E-06	2.3E-04	2.3E-05	8.76E-05	3.4E-04
DN240F	0.804	50	10	8.0	1.0	4.07E-06	2.3E-04	2.3E-05	8.76E-05	3.4E-04
DN240R	0.804	50	10	8.0	1.0	4.07E-06	2.3E-04	2.3E-05	8.76E-05	3.4E-04
DN250	0.858	50	10	8.6	1.0	4.34E-06	2.3E-04	2.3E-05	8.76E-05	3.5E-04

Σ 1.7E-3/year

Impact of invar used of cumulative failure rates

Calculation of cumulative failure rate for INVAR process pipes

	Circuit of pipe	Length of pipe	Number of welds	Length of welds	CFR ₁	CFR ₂	CFR ₃	CFR
	m	m	-	m	1/yer	1/yer	1/yer	1/yer
DN80	0.279	50	5	1.40	7.1E-07	2.3E-04	2.3E-05	2.5E-04
DN200	0.688	50	5	3.44	1.7E-06	2.3E-04	2.3E-05	2.5E-04
DN240F	0.804	50	5	4.02	2.0E-06	2.3E-04	2.3E-05	2.6E-04
DN240R	0.804	50	5	4.02	2.0E-06	2.3E-04	2.3E-05	2.6E-04
DN250	0.858	50	5	4.29	2.2E-06	2.3E-04	2.3E-05	2.6E-04

Σ 1.3E-3/year

Summary

INVAR	Stainless steel
 Less types and numbers of supports Lower heat fluxes No compensation bellows Lower numbers of welds Lower forces on the vacuum barriers Lower probability of failure 	 Conventional design A well-known method of welding Pipes are commonly available

Using of invar process pipes seems to be very attractive alternative for FCC

Contents

- Study of the design options for straight sections of the FCC cryogenic lines (2015-2016)
- Thermodynamic optimisation of the FCC thermal insulaion system (PhD thesis 2015-2019)

FCC Thermal insulation system

FCC - Cryogenic Heat Loads

Property	HERA	TEVATRON	LHC	FCC
Centre-of-mass energy	$0.95 { m TeV}$	$2 { m TeV}$	$14 { m TeV}$	$100 { m TeV}$
Circumference	6.3 km	$6.5~\mathrm{km}$	$27 \mathrm{km}$	100 km
	$2.24 \mathrm{W/m}$	$2.15 \mathrm{W/m}$	$5.5 \mathrm{W/m}$	$9.3 \mathrm{W/m}$
Static heat loads	@ 40 - 80 K	@ 85 - 90 K	@ 50 - 75 K	@ 57 - 61 K
(including	$0.17 \mathrm{W/m}$	0.14 W/m	$0.085 \mathrm{W/m}$	
(including distribution)	@ 4.4 K	@ 4.6 K	@ 4 6 - 20 K	
distribution)			$0.28 \mathrm{W/m}$	$0.84 \mathrm{W/m}$
	1777	_	@ 1.9 K	@ 1.9 K
	$0.14 \mathrm{W/m}$	0.11 W/m	0.7 W/m	62.2 W/m
Dynamic heat loads	@ 4.4 K	@ 4.6 K	@ 4.6 - 20 K	@ 40 - 57 K
Dynamic near loads			$0.15 \mathrm{W/m}$	$0.8 \mathrm{W/m}$
	_		@ 1.9 K	@ 1.9 K
Minimal required cool-	0 19 MW	0.14 MW	2 88 MW	60 42 MW
ing power (Carnot)	0.15 101 00	0.14 1/1 //	2.00 111 11	00.42 101 00
Ratio of minimal re-				
quired cooling powers				
to extract dynamic	0.46	0.50	0.60	2.95
heat loads and to	0.40	0.50	0.00	2.00
extract static heat				
loads				

Thermal insulation system optimization

- Radiation heat transfer is mostly T_H depended
- Experimental data of MLI heat transfer for T_H =300 K and T_H =77K are well available
- No experimental data available of MLI heat transfer for $T_H = 20 \div 70$ K

Experimental set-up

Experimental set-up - Aluminum Thermal Shield

T_H regulation in range 20 ÷ 100 K

Experiment results

Optimal temperature of the Thermal Shield

Thank you for your attention

