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Introduction

The strong nuclear force is observed (and assumed) to be roughly equally
strong between a proton-proton(pp) pair and a neutron-neutron(nn) pair
(charge symmetry) and on average equally strong between a
proton-neutron(pn) pair as between pp and nn pairs (charge
independence).

I Charge symmetry;
Vnn = Vpp

I Charge independent;

Vnp = (Vnn + Vpp)/2

Charge symmetry and charge independence characteristics of the strong
force gives rise to the concept of isospin symmetry.
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Introduction

Protons and neutrons are distinguished
by the z-component of isospin quantum
number T:
I Tz,π = -1/2 for protons (π)
I Tz,ν = +1/2 for neutrons (ν)

For multi-nucleon systems, the isospin projection (z-component) is
defined as;

Tz =
N − Z

2

Total isospin T for a nucleus with mass A,ranges from:

|N − Z |
2

to
A

2

And can not be less than its projection. Given T can have Tz

numbers:
Tz = T ,T − 1, ...., 0, ....,−T
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Introduction

Figure 1: This figure shows the formation of isospin multiplets - different nuclei with different Tz have a set of states with the same
isospin T (analog states). Without any isospin symmetry breaking forces the states would be degenerate in terms of excitation energy as
indicated in this figure.

.
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Introduction - np pairing

I For almost all known nuclei, i.e. those
with N>Z ,the pair correlated state
consists of neutron and/or proton pairs
coupled to angular momentum J=0
and isospin T=1.

I Charge independence of the nuclear
force implies that for N=Z nuclei, J=0,
T=1 np pairing should exist on an
equal footing with J=0, T=1 nn and
pp pairing.

I However, it is still an open question
whether strongly correlated J=1, T=0
np pairs also exist(deuteron-like pair
condensate)

What would be the “fingerprint” of T=0, np pairing?
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Introduction - np pairing

Theoretical and experimental efforts to find “fingerprints” of np
pairing:

I Binding energies

I Low-lying states of odd-odd self-conjugate nuclei

I Rotational response

I Gamow-Teller β-decay

I Pairing vibrations

I ........
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Theoretical Calculations

Figure 2: Schematic illustration of the structure of the ground-state wavefunction of
92Pd in the spin-aligned np paired phase (green, neutron hole; red, proton hole). The

experimental and calculated spectra for 92,94Pd include, in addition to full Shell Model,
also results for pure T=0 and pure T=1 np interactions [1]

.

I Evidence that the
T=0 mode of the
np interactions
plays a role in
92
46Pd46?

I This work provides
some evidence for
the presence of
spin-aligned np
pairing (T=0)
phase. However
further
experimental
information is
needed to confirm
this interpretation.
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Theoretical Calculations

(a) Level scheme of 84Mo [2]

(b) Experimental I − ω plots for ground state bands of (a) N = Z 76Sr, 80Zr, 84Mo, and
88Ru, (b) N=Z+2 nuclei 78Sr, 82Zr, 86M0, and 90Ru [3] and reference herein
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Theoretical Calculations

Figure 4: Comparison of experimental data(dots) and projected shell model
calculations(PSM). The full lines are the PSM calculations with standard
interaction, the dashed lines are PSM calculations with enhanced np residual
interaction [2]

Ĥ = Ĥν + Ĥπ + Ĥνπ

Where Ĥπν is the np
quadrupole-quadrupole
residual interaction.

Ĥ = −χπν
∑
µ

Q̂†µν Q̂µ
π
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Figure 5: Table of nuclides [4]
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Experiment details

58Ni +28 Si −→86 Mo∗ −→84 Mo + 2n @ Elab = 201MeV

Figure 6: Theoretical cross section various evaporation channels for a 58Ni beam and 28Si target made using PACE4 code

George Zimba neutron-proton pairing March 16, 2021 16 / 31



Experiment details

Fusion recoils with specific mass are steered through the separator [5] and
γ - rays detected using JUROGAM 3 [6](with 24 Compton-suppressed
HpGe Clover detectors and 15 Phase 1 HpGe detectors).
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Experiment details

Figure 7: γ-ray detection efficiency of JUROGAM 3. Filled circles represent

efficiencies determined with 133Ba and 152Eu calibration sources for the
JUROGAM 3 array (black) and the JUROGAM 3 array combined with the JYTube
detector (blue). Continuous and dashed lines are fit to the source data
(corresponding colours). Open diamonds represent detection efficiency extracted

from in-beam data obtained for 130Pr (red) and 132Nd (green) nuclei[6]

Table 1: Measured veto efficiency for Jyvaskyla
charged particle veto tube detector(JYtube).

channel Veto efficiency(%)
pn 83
2p 93
3p 96
4p 94
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Results
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Figure 8: Raw juroGeE juroGeE X-projection. The ratio of the 2+ −→0+ in 84Zr to the total counts in the three nuclei(Zr, Sr
and Y) are (a) 19%
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Previous Results of 84Mo

Figure 9: Gated γ-ray spectra showing the assignment of the yrast line in 84Mo. The upper two spectra are gated by the 444keV
transition,(a) γ − γ matrix with veto on the charged particles and coincident with neutrons; (b)on γ − γ-matrix coincident with both
neutrons and one proton. The lower two spectra are doubly gated spectra, with a gate 444keV/( 673+889+1063 keV),(c) on
γ − γ − γ cube with veto on charged particles, and (d) on a γ − γ − γ cube coincident with protons. The lines labeled with their

energy have been assigned to the yrast band of 84Mo.[2]

.
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Current Results
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Figure 10: The spectra are gated by the 444keV transition,(a) recoil juroGeE γ − γ matrix without any charged particle
conditions; (b) on γ − γ-matrix coincident with veto on charged particle (c) n γ − γ-matrix coincident with one charged particle

.
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Current Results
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Figure 11: The spectra are gated by the 444keV transition,(a) on background subtracted recoil juroGeE γ − γ matrix mass gated
using mpq+mwpcx without any charged particle conditions; (b) on background subtracted γ − γ-matrix mass gated using mpq+mwpcx
coincident with veto on charged particle (c) on background subtracted γ − γ-matrix mass gated using mpq+mwpcx coincident with one
charged particle. The background is γ − γ-matrix outside juroGam time gate”.
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Figure 12: The spectra are gated by the 444keV transition,(a) recoil juroGeE γ − γ matrix mass gated using mpq+mwpcx
coincident with veto on charged particle; (b) on background subtracted γ − γ-matrix mass gated using mpq+mwpcx coincident with
veto on charged particle; (c) on background subtracted γ − γ-matrix mass gated using mpq+mwpcx coincident with veto charged
particle and charged particles subtracted. ”The background is γ − γ-matrix outside juroGam time gate”.
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Figure 13: The spectra are gated by the 444keV transition,(a) on γ − γ-matrix mass gated using mpq+mwpcx coincident with
veto charged particle and charged particles subtracted and (b) on γ − γ-matrix mass gated using mpq+mwpcx coincident with veto
charged particle and charged particles subtracted without background
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Current Results
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Conclusions

I Analysis is still in progress but it may be that new transitions above
the currently proposed 10+ state can not be discovered from this
data.

I In order to identify states above 10+, we will require additional
equipment such as ionization chamber.

Typical particle identification after of a cocktail beam. Shown is the energy loss measured with the ionization chamber of the S800 focal
plane vs. time of flight taken between two scintillators[7]

.

George Zimba neutron-proton pairing March 16, 2021 27 / 31



Conclusions

I Analysis is still in progress but it may be that new transitions above
the currently proposed 10+ state can not be discovered from this
data.

I In order to identify states above 10+, we will require additional
equipment such as ionization chamber.

Typical particle identification after of a cocktail beam. Shown is the energy loss measured with the ionization chamber of the S800 focal
plane vs. time of flight taken between two scintillators[7]

.

George Zimba neutron-proton pairing March 16, 2021 27 / 31



JYFL nuclear spectroscopy group

K. Auranen (KA) A. Briscoe(Missing), A. Illana Sison, R. Julin, H. Joukainen(Missing), H. Jutila, M. Leino, J. Louko, M. Luoma, J. Ojala,
P. Rahkila, P. Ruotsalainen M. Sandzelius(Left) J. Sarén, H. Tann(Left), A. Tolosa Delgado(Missing), J. Uusitalo, and G. Zimba
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