
Results from the Virtual Monte Carlo upgrade

HighRR BiWeekly, 24.03.2021 - @remote

 B. Volkel

2

Overview
● Briefly: The principle of Monte Carlo detector simulations

● Introduction to the Virtual Monte Carlo (VMC) package

● Challenges for ALICE in LHC Run3 – limitations of the VMC package and desired extensions

● Examples

● Sketching the code extension

● Another overall design decision

● Conclusion

3

The principle of Monte Carlo detector simulations
● A Monte Carlo detector simulation transports particles through

the detector geometry (e.g. GEANT)

● Involves different possible physics processes for given particles
[Compton, Bremsstrahlung, nucleon-nucleon, decay and many more]

4

The principle of Monte Carlo detector simulations
● A Monte Carlo detector simulation transports particles through

the detector geometry (e.g. GEANT)

● Involves different possible physics processes for given particles
[Compton, Bremsstrahlung, nucleon-nucleon, decay and many more]

● Each particle is transported in single steps

1) Compute mean free path per process

2) Derive no-interaction probability

3) Compute step length

5

The principle of Monte Carlo detector simulations
● A Monte Carlo detector simulation transports particles through

the detector geometry (e.g. GEANT)

● Involves different possible physics processes for given particles
[Compton, Bremsstrahlung, nucleon-nucleon, decay and many more]

● Each particle is transported in single steps

1) Compute mean free path per process

2) Derive no-interaction probability

3) Compute step length

6

Brief overview of Monte Carlo detector simulations
● A Monte Carlo detector simulation transports particles through

the detector geometry (e.g. GEANT)

● Involves different possible physics processes for given particles
[Compton, Bremsstrahlung, nucleon-nucleon, decay and many more]

● Each particle is transported in single steps

1) Compute mean free path per process

2) Derive no-interaction probability

3) Compute step length

7

Brief overview of Monte Carlo detector simulations
● A Monte Carlo detector simulation transports particles through

the detector geometry (e.g. GEANT)

● Involves different possible physics processes for given particles
[Compton, Bremsstrahlung, nucleon-nucleon, decay and many more]

● Each particle is transported in single steps

1) Compute mean free path per process

2) Derive no-interaction probability

3) Compute step length

8

Brief overview of Monte Carlo detector simulations
● A Monte Carlo detector simulation transports particles through

the detector geometry (e.g. GEANT)

● Involves different possible physics processes for given particles
[Compton, Bremsstrahlung, nucleon-nucleon, decay and many more]

● Each particle is transported in single steps

1) Compute mean free path per process

2) Derive no-interaction probability

3) Compute step length

9

Now what is the Virtual Monte Carlo (VMC) package?
● It is a framework/interface layer

As such, it is (re-)usable within different software stacks and
provides common interfaces to use its functionality.

● It is an abstraction layer “hiding” the details of different back-
ends which are in this case different Monte Carlo detector
simulation/transport engines

● Unify and make usage of different back easier

● Interfaces for GEANT4, GEANT3 and Fluka transport engines
[GEANT4 is the state-of-the art and successor of GEANT3, Fluka more specialised
for nuclei simulation]

● An interface can also be provided for any user-specific
simulation engine to be accessed via common VMC interfaces

Software stack

VMC

back-end
(e.g. GEANT)

call response

10

What is the purpose of using such a framework?
● The only things you need to know are the abstract interfaces, “how to talk to it”, say

”run”, “stop”, “pause”, “useGeometry”, “changePosition”, “howManySecondaries”

● A good framework keeps the interfaces intact, back-end details might change
→ no need to worry about that as a user

● Demands on developers
– Make sure interfaces trigger expected behaviour

– Hide implementation details as much as possible

– Ensure backward compatibility when new features are implemented
[that might be broken sometimes e.g. for major updates or depends on the user community]

● A framework such as the VMC package hence ensures the
reliable and unified usage of detector simulation engines
in a big collaboration.

VMC

back-end1
implementation details

VMC

back-end2
implementation details

“run” response

“run” response

11

Why different detector simulation frameworks?
● Different simulation frameworks are used by different (CERN) collaborations, but why?

– Historical reasons (once a big software stack/framework is in place, it is used and further
developed

– Specific needs: frameworks can be more or less tightly bound to a specific simulation engine
→ ATLAS for instance relies heavily on GEANT4 by default
→ ALICE was using GEANT3 during LHC Run2, GEANT4 will most likely become the default
in the future, but possible usage of GEANT3 and Fluka maintained (more on that later)

● VMC is also used by the Fair collaboration, indeed the ALICE O² software stack
interfaces with VMC in a very similar way → VMC is not only an ALICE effort

12

Challenges for ALICE in LHC Run 3 (similar for other experiments)
● Up to ~100 times more data expected compared to Run 2

– Not possible to increase simulation production by comparable factor
[during Run 2 ~2/3 of the resource were dedicated to simulation]

– Need smarter, software-based solutions to make the detector
simulation more efficient

● Need for what is generically called fast simulation and hence
interfacing

● GEANT will still be considered to be the default, BUT identify
most demanding
– ...sub-detectors,

– ...phase-space regions,

– ...particle types

...and introduce more efficient simulation process if possible
[such as parametrisation, Machine-Learning based approaches]

ALICE resource demands
during LHC Run 2

13

Challenges for ALICE in LHC Run 3
● Up to ~100 times more data expected compared to Run 2

– Not possible to increase simulation production by comparable factor
[during Run 2 ~2/3 of the resource were dedicated to simulation]

– Need smarter, software-based solutions to make the detector
simulation more efficient

● Need for what is generically called fast simulation and hence
interfacing

● GEANT will still be considered to be the default, BUT identify
most demanding
– ...sub-detectors,

– ...phase-space regions,

– ...particle types

...and introduce more efficient simulation process if possible
[such as parametrisation, Machine-Learning based approaches]

ALICE resource demands
during LHC Run 2

How can that be covered by the VMC package?

14

Simulation run

Previous limitations of the VMC package
Not capable of partitioning the event simulation among multiple different engines

→ no interaction with any other simulation/fast simulation possible during a full simulation

VMC

chosen back-end

previous

15

Previous limitations of the VMC package
Now capable of partitioning the event simulation among multiple different engines and is

therefore capable of running full and fast simulation engines together

Simulation run

VMC

chosen back-end 1

conditions

chosen back-end 2 chosen back-end 3

now
● Conditions can be based on

– Geometry

– Particle type

– Phase space

– Any combination of those

→ different tracks are transported
by different engines

16

Previous limitations of the VMC package
Now capable of partitioning the event simulation among multiple different engines and is

therefore capable of running full and fast simulation engines together

Simulation run

VMC

chosen back-end 1

conditions

chosen back-end 2 chosen back-end 3

now
● Conditions can be based on

– Geometry

– Particle type

– Phase space

– Any combination of those

→ different tracks are transported
by different engines

Done, thank you for your attention...

17

Test whether the partitioning works in principle

● Shoot particles through a geometry and register where each engine produces steps

● Steps are made according to the desired partitioning

Steps per volume and engine
Geant3

Geant3

Geant4

18

Test potential overhead introduced by track transfer
● Consider 3 scenarios, running with

1) ...only GEANT3

2) ...only GEANT4

3) ...GEANT3 for passive and GEANT4 for active layers
→ partitioning based on geometry conditions

electron

passive layer (ABSO)

active layer (GAPX)

D

19

Test potential overhead introduced by track transfer
● Consider 3 scenarios, running with

1) ...only GEANT3

2) ...only GEANT4

3) ...GEANT3 for passive and GEANT4 for active layers
→ partitioning based on geometry conditions

electron

passive layer (ABSO)

active layer (GAPX)

● Simulation time normalised to G3

● Increasing the number of layers NL

while keeping depth D constant
→ increasing number of passing the
simulation back and forth between
the back-ends

D

NL

20

Test potential overhead introduced by track transfer
● GEANT4 simulation takes ~3.5 times as long as GEANT3 (more detailed and higher

complexity of physics simulation)

● Let GEANT3 simulate passive volumes while keeping higher accuracy with GEANT4 in active
layers decreases performance significantly

● The fact that the overall ratio of the partitioned scenario is flat indicates that the transferring
of tracks between the engines does not
introduce significant overhead during
the computation

● This can be generalised to more
involved scenarios...

NL

21

Partitioning with a custom “fast simulation” (proof-of-principle)
● Use the same calorimeter setup as before and

run it with GEANT4 to obtain the energy
deposit distribution (red)

● Fit Gaussian to distribution
[of course, this is very simplified]

● In a second run, let GEANT4 do the transport
up to the calorimeter
[hence in the WORLD volume]

● As soon as the particle reaches it, dispatch to
a custom “fast simulation” that draws the
energy deposit from the aforementioned
distribution and produces the energy deposit

● This straightforward approach is already more
than 10 times faster

energy
deposit

22

Partitioning with a custom “fast simulation” (proof-of-principle)
● Use the same calorimeter setup as before and

run it with GEANT4 to obtain the energy
deposit distribution (red)

● Fit Gaussian to distribution
[of course, this is very simplified]

● In a second run, let GEANT4 do the transport
up to the calorimeter
[hence in the WORLD volume]

● As soon as the particle reaches it, dispatch to
a custom “fast simulation” that draws the
energy deposit from the aforementioned
distribution and produces the energy deposit

● This straightforward approach is already more
than 10 times faster

energy
deposit

23

Partitioning with a custom “fast simulation” (proof-of-principle)
● Use the same calorimeter setup as before and

run it with GEANT4 to obtain the energy
deposit distribution (red)

● Fit Gaussian to distribution
[of course, this is very simplified]

● In a second run, let GEANT4 do the transport
up to the calorimeter
[hence in the WORLD volume]

● As soon as the particle reaches it, dispatch to
a custom “fast simulation” that draws the
energy deposit from the aforementioned
distribution and produces the energy deposit

● This straightforward approach is already more
than 10 times faster

energy
deposit

24

Design considerations
● VMC has been used in production for many years already and is used by the Fair and

ALICE collaboration → hence many users
– Ensure the developments are fully backward-compatible and do not break current

implementations in any software stack

● Minimise potential run time overhead when
– tracks are paused/resumed and particle stacks are updated → no copying of track objects

– geometry states have to be re-initiated fast when tracks are picked up again → cache

● Hide implementations details as much as possible and automatise all necessary
workflows → to a user it looks as if one transport engine was running

● Mapping the requirements to the code took a significant amount of time; previous
VMC and interface implementations have several 10,000 lines of code and consist of
many C++ classes and interactions among those

25

The generic VMC workflow
● Detector geometry is initiated

● Physics models are loaded

● For each event primary particles
are requested to be transported
[originate for instance from an MC event generator]

● Each primary is transported through
the detector geometry

● At each stage indicated by a dark-blue box the user can inject additional routines
[e.g. to manage the primary particle generation, to discard tracks during the simulation etc]

● Transport is done when all primaries (and produced secondaries) have been processed

26

The implementation I
● Particles to be transported are pushed to the engine’s stack. In the previous implementation,

one particle stack was associated to an engine and visible to the user to interact with it

VMCEngine VMCStack
1 1

● But what is needed is rather

VMCEngine1 VMCStack1
1 1

VMCEngine2 VMCStack2
1 1

VMCEngineN VMCStackN
1 1

VMCStackUser

● Need control over multiple instances of engines and stacks, synchronise with what the
user sees on the VMCStackUser

27

The implementation II
● Introduce a managing object

VMCEngine1 VMCEnigeStack1
1 1

VMCEngine2 VMCEngineStack2
1 1

VMCEngineN VMCEngineStackN
1 1

VMCStackUser

● The MCManager is now the central object
– Always knows the currently running engines

– Automatically synchronises the engines’ stacks with the user stack

– Fully contains the control of the event loop

MCManager1N 1 N
1

1

Indeed, the whole picture collapses to
the previous one in case only one

engine is running

28

The implementation III

● No explicit search in geometry tree necessary for paused tracks

● When a track is transported, a so-called navigator is used to
find volumes in a geometry tree based on spatial coordinates

● Very expensive task in a complex and deep structure
→ avoid that when a paused track is resumed in another engines

MCManager
TransferTrack(targetEngine)

Extract current
geometry state

GeometryCache

1

1

MCManager
resumeTrack()

Read back and
initialise navigator

GeometryCache

1

1

Interrupt track resume track

Find deepest volume
containing position

29

The implementation IV

UserApp

MCManager
void Init()
void Run(int nEvents)
void TransferTrack(int targetEngineID)
void ForwardTrack(Particle *particle)

UserStackVMCEngine

EngineStack

1

1
1

1

1

N
1

1 11N

Engine invokes routines
defined by the user

1

MCManager known to the surrounding
framework through the UserApp

Stacks are synchronised to yield one
coherent history on UserStack

MCManager runs engines and synchronises
Stacks whenever tracks are transferred

30

Overall design consideration
● For an interface/framework like the VMC there are 2 principal design choices

– Run-time polymorphism (“inheritance from virtual/abstract base class”)

– Compile-time polymorphism (basically templating in C++)

31

Another overall design decision
● For an interface/framework like the VMC there are 2 principal design choices

– Run-time polymorphism (“inheritance from virtual/abstract base class”)

– Compile-time polymorphism (basically templating in C++)

VMCEngine *engine = new TGeant4();
engine->run(42);

class VMCEngine
{
 // purely virtual in base class
 virtual bool run(int nEvents) =
0;
}

Class TGeant4 : public VMCEngine
{
 virtual bool run(int nEvents)
 {
 // implementation
 }
}

● A virtual table is available providing to find correct
implementation of TGEant4::run() although it is called
on type VMCEngine

● This lookup is fast, however, has to be done for each
such call

● On the other hand, since working with VMCEngine
pointers, all can be treated the same
[remember that C++ is strictly type safe at compile time]

std::vector<VMCEngine> = {TGeant3(), TGeant4()}; // won’t work
std::vector<VMCEngine*> = {new TGeant3(), new TGeant4()}; // works

32

Another overall design decision
● For an interface/framework like the VMC there are 2 principal design choices

– Run-time polymorphism (“inheritance from virtual/abstract base class)

– Compile-time polymorphism (basically templating in C++)

template <typename T>
class VMCEngine
{
 // purely virtual in base class
 virtual bool runUser() = 0;
 Virtual bool run()
 {
 static_cast<T*>(this)->runUser();
 }
}

Class TGeant4 : public VMCEngine<TGeant4>
{
 virtual bool runUser()
 {
 // implementation
 }
}

● Correct type can be determined at compile time

● Potentially faster

● However, stuck to run-time polymorphism;
main reason: backward-compatibility

33

The status of the ALICE detector simulation framework
● Optimisations and QA of GEANT4 went/goes on

in parallel

● Run time of GEANT4 depends on physics list and
increases by ~2 using INCLXX
(better and required accuracy for light nuclei)
[physics list provides modelling of interactions and decays]

● However, now possible to only use INCLXX in in beam pipe and ITS and BERT everywhere
else

● GEANT4 performance becomes compatible in terms of run time with GEANT3

● GEANT4 provides fast simulation interfaces to inject user-specific fast simulation providing
very similar freedom compared to above presented VMC extensions

● However, exact implementation of potential fast simulation still to be decided, furthermore,
the VMC implementation works also independent of GEANT4

Overall time normalised to GEANT3 [%]

34

Conclusion
● Extended the VMC package to partition the event simulation among multiple transport

engines

● Principal commits
– VMC: https://github.com/vmc-project/vmc/commit/ce3fa3004d32925ea3c6c7f7b0728453d25e6df9

– GEANT3 interface: https://github.com/vmc-project/geant3/commit/74ab9dde34ebd906a7fa05ffe28932497299b4a6

– GEANT4 interface: https://github.com/vmc-project/geant4_vmc/commit/fd51ec51a2b50616f44f1e96a7bd00e5b2298c94

● Overall almost 10,000 lines of code added/modified/deleted

● Fully backward compatible and current state of code used by Fair and ALICE

● VMC package ready to partition among full and fast simulation engines
→ can be used to inject fast simulation based on concepts like parametrisation up to ML

https://github.com/vmc-project/vmc/commit/ce3fa3004d32925ea3c6c7f7b0728453d25e6df9
https://github.com/vmc-project/geant3/commit/74ab9dde34ebd906a7fa05ffe28932497299b4a6
https://github.com/vmc-project/geant4_vmc/commit/fd51ec51a2b50616f44f1e96a7bd00e5b2298c94

35

Conclusion
● Extended the VMC package to partition the event simulation among multiple transport

engines

● Principal commits
– VMC: https://github.com/vmc-project/vmc/commit/ce3fa3004d32925ea3c6c7f7b0728453d25e6df9

– GEANT3 interface: https://github.com/vmc-project/geant3/commit/74ab9dde34ebd906a7fa05ffe28932497299b4a6

– GEANT4 interface: https://github.com/vmc-project/geant4_vmc/commit/fd51ec51a2b50616f44f1e96a7bd00e5b2298c94

● Overall almost 10,000 lines of code added/modified/deleted

● Fully backward compatible and current state of code used by Fair and ALICE

● VMC package ready to partition among full and fast simulation engines
→ can be used to inject fast simulation based on concepts like parametrisation up to ML

Thank you for your attention

https://github.com/vmc-project/vmc/commit/ce3fa3004d32925ea3c6c7f7b0728453d25e6df9
https://github.com/vmc-project/geant3/commit/74ab9dde34ebd906a7fa05ffe28932497299b4a6
https://github.com/vmc-project/geant4_vmc/commit/fd51ec51a2b50616f44f1e96a7bd00e5b2298c94

BACKUP

37

Implementation details of the TMCManager I

● TMCManager is a singleton object

● Requested by the UserApplication (otherwise fall back to single engine run), no
TMCManager is constructed

● TVirtualMC objects are owned by the TMCManager and automatically registered when
instantiated

● TMCManager handles
– Communication between engines

– Pausing and resuming engines as needed

– Transferring tracks between stacks

38

Implementation details of the TMCManager I

● User is owner of created TParticle objects, hence of created particles and therefore
also the numbering scheme

● ForwardTrack should be called in UserStack::PushTrack

● An optional last argument can specify the target engine ID

39

Implementation details of the TMCManager I

● Called most likely in UserApp::Stepping

● Interrupts transport and transfers track to target engine stack

● Decision can be made based on geometry, particle type, phase space...

40

Implementation details of the TMCManager I

● Type F is assumed to be callable taking TVirtualMC* as argument

● f is then applied to all registered engines

● User can register a pointer to point to the current engine

41

Stacks

● Pointer to particles is kept in the TMCManager

● TMCManager also holds a pointer to the user’s stack to be able to synchronise it

● TMCManagerStack holds pointer to the vector std::vector<TParticle*> *fParticles

and indices of primaries and secondaries to be transported by the connected engine
→ no duplication of TParticle objects, especially, since they are owned by the user

TMCManagerStack
std::vector<TParticle*> *fParticles;
std::vector<std::unique_ptr<TMCParticleStatus>> *fParticleStatus;
Std::vector<int> fPrimaries;
std::vector<int> fSecondaries;

TMCManager
std::vector<TParticle*> fParticles;
std::vector<std::unique_ptr<TMCParticleStatus>> fParticleStatus;
TVirtualMCStack *fUserStack;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

