

HighRR seminar 21.04.2021

Towards a novel, truly cylindrical, ultra-thin silicon detector for the ALICE Inner Tracker System

Bogdan Mihail BLIDARU

Overview

- ALPIDE @ ITS2, ALICE
- Motivation & design for ITS3
- R&D highlights
 - → testbeam characterization of bent ALPIDEs

Bogdan Blidaru | HighRR seminar | 21.04.2021 | 1

ALICE detector

- > ALICE is the heavy-ion physics focused experiment at the LHC
- ➤ Main goal: study of the quark-gluon plasma in heavy-ion collisions
- ➤ Currently LHC LS2 → detector upgrades
- Inner Tracking System 2 (ITS2)

ALICE detector - the Inner Tracking System (ITS2)

ALICE detector - ITS2

- > ITS2 (LHC LS2, currently under installation)
 - Novel, MAPS based, detector design
 - Seven layers of ALPIDE sensors
 - Increased vertexing and tracking performance with respect to ITS

- Reduced material budget (x/ X_0) per layer: 1.14% \rightarrow 0.3%
- Rate capability: $1kHz \rightarrow 100 kHz$ (Pb-Pb)
- → Higher granularity (pixel size): $50\times425 \,\mu\text{m}^2 \rightarrow 29\times27 \mu\text{m}^2$

Hybrid vs monolithic pixel sensors

ITS2

 $50 \times 425 \, \mu m^2$

 $29 \times 27 \mu m^2$

ALPIDE - a closer look

Alpide on carrier card

- ➤ MAPS produced in the 180nm TowerJazz CMOS IP
- > 30 × 15 mm² matrix of pixels
- ightharpoonup Pixel pitch 29.24 × 26.88 µm² (1024 × 512 px)
- ➤ Silicon thickness 50µm
- Spatial resolution ~5μm (required: 5μm)
- > Time resolution ~1µs
- Detection efficiency>99% (req: >99%)
- ➤ Fake hit rate

 « req. 10⁻⁶ /px /event
- Power consumption (7mW/cm² matrix, 150mW/cm² periphery)
 ~40mW/cm²

ALPIDE layout features

- Readout of the pixel data from the matrix based on combinatorial readout
- ALPIDE readout is binary (hit / no hit information)
- Data transfer from matrix to periphery is zero suppressed via a priority encoder circuit
- No free running CLK distributed in the matrix, no signaling activity if no hits to read

Very low power consumption!

ALPIDE - the pixel

- Charge is created in the high resistivity (>1k Ω cm) epitaxial layer (half the sensor thickness)
- Highly doped P substrate and PWELLs act as reflective barriers and contain the charge
- Deep PWELL shields NWELLs, allowing PMOS transistors (full CMOS within active area)
- Small NWELL diode (2µm diameter) \rightarrow low capacitance (2fF) \rightarrow large S/N
- Reverse bias (-3V) used to increase depletion of the diode

ALPIDE - the pixel; signal processing

- Charge is collected, amplified, discriminated and strobed to in-pixel memory
- The analogue front-end is continuously active (non-linear response); it acts as analogue delay line; rise-time (<2μs) defines time resolution</p>
- Global shutter (STROBE) latches discriminated hits to memory

ALICE detector - ITS2

- > ITS2 (LHC LS2, currently under installation)
 - Novel, MAPS based, detector design
 - Seven layers of ALPIDE sensors
 - Increased vertexing and tracking performance with respect to ITS

- ► Layer 0 closer to IP: $39mm \rightarrow 23mm$
- Reduced material budget (x/ X_0) per layer: 1.14% \rightarrow 0.3%
- Rate capability: $1kHz \rightarrow 100 \text{ kHz}$ (Pb-Pb)
- → Higher granularity (pixel size): $50\times425 \,\mu\text{m}^2 \rightarrow 29\times27\mu\text{m}^2$
- ITS2 is a state of the art MAPS detector
- Further improvements are possible

ALICE detector - ITS3

- ITS2 (LHC LS2, currently under installation)
 - Novel, MAPS based, detector design
 - Seven layers of ALPIDE sensors
 - Increased vertexing and tracking performance with respect to ITS
- ITS3 (LHC LS3, 2025-2027)
 - Aim: replace the three ITS2 IB layers
 - Ultra-light, wafer-scale, curved sensors
 - Currently: R&D based on bent ALPIDE
 - First testbeam results with bent ALPIDE

➤ Si accounts for **1/7**th of the total material (irregularities due to support/cooling)

- Si accounts for 1/7th of the total material (irregularities due to support/cooling)
- Removal of water cooling possible
 - \rightarrow if power consumption < 20 mW/cm²

- Si accounts for 1/7th of the total material (irregularities due to support/cooling)
- > Removal of water cooling possible
 - \rightarrow if power consumption < 20 mW/cm²

- Si accounts for 1/7th of the total material (irregularities due to support/cooling)
- Removal of water cooling possible
 - \rightarrow if power consumption < 20 mW/cm²
- Removal of the circuit board for power distribution and data lines possible
 - → if integrated on chip (make single large chips, use CMOS metal layers)

- Si accounts for 1/7th of the total material (irregularities due to support/cooling)
- Removal of water cooling possible
 - \rightarrow if power consumption < 20 mW/cm²
- Removal of the circuit board for power distribution and data lines possible
 - → if integrated on chip (make single large chips, use CMOS metal layers)

- ➤ Si accounts for **1/7**th of the total material (irregularities due to support/cooling)
- ➤ Removal of water cooling possible
 → if power consumption < 20 mW/cm²
- ➤ Removal of the circuit board for power distribution and data lines possible
 → if integrated on chip (make single large chips, use CMOS metal layers)
- ➤ Move mechanical support outside acceptance → benefit from bent Si structure (+ ultra-light carbon foam)

- Si accounts for 1/7th of the total material (irregularities due to support/cooling)
- ➤ Removal of water cooling possible
 → if power consumption < 20 mW/cm²
- ➤ Removal of the circuit board for power distribution and data lines possible
 → if integrated on chip (make single large chips, use CMOS metal layers)
- ➤ Move mechanical support outside acceptance → benefit from bent Si structure (+ ultra-light carbon foam)

ITS3 detector concept

Beam pipe inner/outer radius (mm)	16.0 / 16.5		
	Layer 0	Layer 1	Layer 2
Radial distance from IP (mm)	18	24	30
Pixel sensor dimensions (mm²)	280×56.5	280×75.5	280×94
Sensitive area length (mm)	300		
Pixel size (μm²)	O(10×10)		

- Ultra thin and closer to the interaction point
 - Layer 0: $23 \rightarrow 18 \text{ mm}$
 - Layer thickness:

$$0.35 \rightarrow < 0.05\% X_0$$

(beampipe: $500\mu m$ Be 0.14% X_0)

- Uniformly distributed material (no system. errors)
- ➤ Wafer scale ← stitching
- Layout based on air cooling

Architecture & stitching

Bending ALPIDEs

Bending ALPIDEs - part I

Bent ALPIDE - part I - electrical characterization

- Electrical performance
 of the chip is
 unchanged with respect
 to the flat state
- Threshold and noise unchanged
- No variation in the number of dead pixels

Bent ALPIDE - part I - testbeam

- > First ever testbeam with bent silicon pixel sensors
- > 5.4 GeV e⁻, DESY
- > 6 flat ALPIDEs as reference planes (track reconstruction)
- > Determine: efficiency of bent sensor. position resolution
- Corryvreckan* used for data analysis

^{*} https://cern.ch/corryvreckan

Bent ALPIDE - part I - testbeam

- Sensor bent to 16.9 mm measured with Coordinate Measurement Machine (CMM) before the testbeam
- Re-measured after testbeam: observed relaxation (R_{new}=24.4mm)
- Results of the testbeam analysis show a radius of 22 ± 1 mm
- Cylindrical geometry model used to describe the bent chip
- ➤ Radius free parameter ← minimization of the residuals

Bent ALPIDE - part I - spatial residuals

Mean of the residuals distribution

- Invariant to rotation around column axis
- Row direction compatible with cylindrical geometry model up to 35 µm

RMS of the residuals

- Larger where the chip is glued to PCB (due to scattering)
- Row direction increase with the incident angle of the beam

Mean of the residuals distribution

- Invariant to rotation around column axis
- Row direction compatible with cylindrical geometry model up to 35 µm

RMS of the residuals

- Larger where the chip is glued to PCB (due to scattering)
- Row direction increase with the incident angle of the beam

Bent ALPIDE - part I - efficiency of bent sensor

- Inefficiency as a function of pixel threshold for various chip rows (= incident angles)
- ➤ Linear-logarithmic plot

- Only 0V back-bias!
- More than 8000 tracks per data point
- Below a threshold of 100 e⁻, only 1 in 10⁴ tracks is inefficient
- ➤ Above 100 e⁻, the inefficiency increases with decreasing beam incident angle (increasing row number)
- Excellent detection performance retained!
 - Publication under internal review

Bending ALPIDEs - part II

Bending ALPIDEs - part II

- More rigid construction
- ➤ Bent along the long side (decompressed circuitry) → piezoresistive effect (change in electrical resistivity)
- Connection to DAQ board done via flex-print-cable (FPC)
- Bonded after bending
- Multiple radii (18,24,30 mm), corresponding to ITS3 layers

Bending ALPIDEs - part II - new geometry

- Include cylindrical geometry in code
- ➤ Account for change of coordinate transformation (local → global)
- Correct for different z track intercept (no curved detectors previously studied)
- Ensure all DOFs are accounted for
- Check that tracks/clusters lie on the same plane

Bending ALPIDEs - part II - tracking

- Align telescope planes with tracks from the reference planes only
- Include and align the DUT with respect to the telescope
- Straight tracks only (not accounting for scattering)

Bending ALPIDEs - part II - spatial residuals

- Broad residuals
- Convolution of effects?

Bending ALPIDEs - part II - ROI definition

- Tracks associated to clusters on DUT
- Region of interest (ROI) selection chose part of the sensor to characterize

Bending ALPIDEs - part II - ROI definition

- Tracks associated to clusters on DUT
- Region of interest selection chose part of the sensor to characterize

Bending ALPIDEs - part II - residuals

Bending ALPIDEs - part II - residuals

> Residuals are still a convolution of Gaussians, due to curvature effect

Bending ALPIDEs - part II - residuals

- > Residuals are still a convolution of Gaussians, due to curvature effect
- A single bin, deconvoluted ~6-7 μm
- \triangleright Need to subtract telescope resolution (tracking) \rightarrow resolution \sim 5 µm

Bending ALPIDEs - part II - efficiency

- Still highly efficient (@ 0V back bias)
- Efficiency decreases as a fc. of threshold (increasing number of inefficient pixels)

Bending ALPIDEs - part II - configurations

- More than one configuration possible
 - A single crossing per sensor
 - B double crossing / grazing
- Example hitmap grazing events
- Can probe epitaxial layer

Conclusion

- ALICE proposes to build a next-generation Inner Tracking System in LHC LS3
- ightharpoonup Based on 300mm wafer scale, ultra-thin bent MAPS ightharpoonup ITS3 will push the technology even further, approaching a massless detector
- R&D started with bending current ALPIDE sensors and testing them in beam
- Laboratory and testbeam results show no performance deterioration of the sensors after bending

Outlook - now!

- - → mimics ITS3 same radii (18, 24, 30 mm)
 - \rightarrow 4 out of 6 layers bonded, operational
- \triangleright Carbon foam X_0 measurement
 - \rightarrow measure scattering on foam, determine X_0

Outlook - further out

- MLR1 (Multi Layer Reticle 1)
 - → chip submitted in 65 nm technology node
 - → back end of May, then testing starts

- Super ALPIDE
 - → 18 ALPIDE dies/ superchip
 - → not stitched, but interconnected

