Joachim Zinßer

Introduction

The High Luminos LHC ATLAS Trigger and Data

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementatio in FPGA

Results

Particle Track Fitting in Hardware for the ATLAS Phase-II Upgrade

Joachim Zinßer

Physikalisches Institut Heidelberg

16th June 2021

Joachim Zinßer

Introduction

The High Luminosi LHC

Trigger and Data Acquisition System (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy Steps of Preparatio

Implementation in FPGA

Results

1 Introduction

2 Goal of the HTT

3 Challenges

4 Strategy

5 Implementation in FPGA

6 Results

Joachim Zinßer

Introduction

- The High Luminosit LHC
- Trigger and Da Acquisition Sy:
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenges
- Steps of Preparation Online Track-Fitting
- Implementatic in FPGA

Results

The Large Hadron Collider (LHC) at CERN

- Largest (27 km circumference) and most powerful (13 TeV collision energy) particle accelerator built so far.
- Development:
 - 80ies Envisioned the design1996 Construction started2008 Bringing to service
- Seven independent experiments at LHC: ALICE, ATLAS, CMS, LHCb, LHCf, TOTEM, MoEDAL

Map of the accelerators at CERN [CERN 2018].

Joachim Zinßer

Introduction

The High Luminosity LHC

- ATLAS
- Trigger and Data Acquisition Syste (TDAQ)
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenge
- Strategy
- Online Track-Fitting
- Implementatio in FPGA
- Results

The High Luminosity LHC - Overview

LHC / HL-LHC Plan

Timetable of the LHC program [CERN-Website].

Joachim Zinßer

Introduction

The High Luminosity LHC

- ATLAS
- Trigger and Data Acquisition System (TDAQ)
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenges
- Strategy
- Steps of Preparation Online Track-Fitting
- Implementation in FPGA

Results

The High Luminosity LHC – Scientific Aims

- Explore the *Electroweak Symmetry Breaking*.
- Measure properties of the *Higgs Boson.*
- Measure parameters of the *Standard Model* with high precision.
- Try to look *beyond* the Standard Model.
- Flavor Physics.
- Study of *Heavy Ion Collisions*. [ATLAS 2018, p. 9,10]

The ATLAS detector observing a Higgs Boson decay into bottom quarks [CERN-Website].

Joachim Zinßer

Introduction

The High Luminosity LHC

ATLAS

Trigger and Data Acquisition Syste (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementatic in FPGA

Results

The High Luminosity LHC – Comparison

Parameter	Nominal LHC	HL-LHC
Beam energy in TeV	7	7
Protons per bunch	$1.15 imes 10^{11}$	$2.2 imes 10^{11}$
Events per crossing	27	140 - 200
Instantaneous luminosity in $ m cm^{-2} m s^{-1}$	$2 imes 10^{34}$	up to 7.5 $ imes$ 10 34
Data collected in PB a^{-1}	≈ 30	≈ 300

[ATLAS 2018, CERN 2018, CERN-Website]

Joachim Zinßer

Introduction

- The High Luminosit LHC
- ATLAS
- Trigger and Data Acquisition System (TDAQ)
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenges

Strategy

Steps of Preparation Online Track-Fitting

- Implementatio in FPGA
- Results

- Largest detector at the LHC.
- General-purpose detector.
- Can observe Proton-Proton and Lead-Ion collisions.
- Layered design of several different detectors.

The ATLAS Experiment

Sketch of the ATLAS Detector [ATLAS-Website].

Joachim Zinßer

Introduction

The High Luminosi LHC

ATLAS

Trigger and Data Acquisition System (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Online Track-Fitting

mplementatio n FPGA

Results

ATLAS – Phase II Upgrade

- Detectors degrade due to radiation.
- Opportunity for Upgrade: Installation of the new *Inner Tracker* silicon detector.
- Upgrades of the calorimeters and spectrometers.
- Increase in collisions per crossing from ≈ 40 to ≈ 200
 - \rightarrow Necessity to filter interesting events more efficiently
 - ightarrow Trigger system Update

Sketch of the Inner Tracker (ITk) [Moening 2019, p. 5]

Joachim Zinßer

Introduction

The High Lumine LHC

ATLAS

Trigger and Data Acquisition System (TDAQ)

The Hardware Tracking Trigg

Goal of the HTT

Challenge

Strateg

Steps of Preparation Online Track-Fitting

Implementatio in FPGA

Results

The Trigger System of ATLAS Phase II

- Level-0 Trigger System
 - Calorimeter Trigger
 - Muon Trigger
 - Global Trigger
 - Central Trigger

Decides if the detectors are to be read out.

DAQ System

Bundles data from the detectors to events when triggered by Level-0.

- Event Filter System
 - Processor Farm
 - Hardware Tracking Trigger

Programmable conditions.

Accepted Events are sent to permanent storage.

Joachim Zinßer

Introduction

- The High Luminosi LHC
- ATLAS
- Trigger and Data Acquisition System (TDAQ)
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenges
- Strategy Steps of Preparati
- Implementatio in FPGA
- Results

Motivation for Hardware Track-Fitting

- High pileup conditions (200 interactions / bunch crossing) [ATLAS 2018, p. 39].
- Analyze up to 13 detector layers simultaneously [Dittmeier 2020, p. 15,23].
 → Very easy to parallelize hardware.
- High frequency 1 MHz Level-0 trigger rate [ATLAS 2018, p. 13]. \rightarrow Custom hardware can be the fastest.
- Custom hardware is expensive to develop but cheap to produce.
- Custom hardware saves energy-costs.

Joachim Zinßer

Introduction

The High Luminosity LHC

ATLAS

Trigger and Data Acquisition Syste (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy Steps of Preparation Online Track-Fitting

Implementatio in FPGA

Results

Goal of the Regional *Hardware Track Trigger* – for ATLAS Phase-II Upgrade

The Level-0 trigger has a trigger rate of about 1 MHz.

- \rightarrow Need to suppress background of energetic but scientifically uninteresting events.
 - 1 Identify which hits in the detector belong to the same particle.
 - 2 Fit the tracks of each particles.
 - 3 Estimate helix parameters.
 - 4 Calculate momentum vectors.

Joachim Zinßer

Introduction

The High Lumino: LHC

Trigger and Data Acquisition Syste (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementatio in FPGA

Results

A close-up view perpendicular to the beam direction of an ATLAS event [ATLAS 2017].

Joachim Zinßer

Introduction

The High Lumino: LHC

ATLAS

Trigger and Data Acquisition Syste (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementatio in FPGA

Results

A close-up view perpendicular to the beam direction of an ATLAS event [ATLAS 2017].

Joachim Zinßer

Introductior

- The High Luminosi LHC
- ATLAS
- Trigger and Data Acquisition System (TDAQ)
- The Hardware Tracking Trigger
- Goal of the HTT

Challenges

- Strategy
- Steps of Preparation Online Track-Fitting
- Implementation in FPGA
- Results

Possible Options for Track Reconstruction

- Fit all permutations of hits and check the qualities of the fits?
- Have to reduce the combinations somehow.
- For example group hits to triplets and only check hits that are close to the line.
- Alternative: Kalman-Filter-Algorithmus
- A goal is to recognize all tracks together (like an eye!).
 - Machine learning
 - Hough-Transformations
 - Templates

Simulation of an Event in the ATLAS *Inner Tracker* (ITk) Detector [CERN-Website].

Joachim Zinßer

Introduction

The High Lumino LHC

- ATLAS
- Trigger and Data Acquisition Syster (TDAQ)
- The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementatio in FPGA

Results

Possible Options for Track Reconstruction

- Fit all permutations of hits and check the qualities of the fits?
- Have to reduce the combinations somehow.
- For example group hits to triplets and only check hits that are close to the line.
- Alternative: Kalman-Filter-Algorithmus
- A goal is to recognize all tracks together (like an eye!).
 - Machine learning
 - Hough-Transformations
 - Templates

Grouping of 9 layers in 3 super-layers to reduce combinatorics [Kolanoski 2017].

 \rightarrow Individual calculations of particle Tracks as described will take to much processing time.

Joachim Zinßer

Introduction

The High Luminosity LHC

ATLAS

Trigger and Data Acquisition Syster (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementatio in FPGA

Results

Concept of Track Reconstruction in the HTT

- Compare data with a prepared collection of possible tracks (Pattern Recognition).
- 2 Calculate the fit quality with linear equations using constants from the χ^2 -test.
- **3** Remove ill-fitting tracks.
- Calculate the helix-parameters with linear equations and a respective set of constants.

loachim Zinßer

Introduction

- The High Luminosi LHC
- ATLAS
- Trigger and Data Acquisition Syster (TDAQ)
- The Hardware Tracking Trigger
- Goal of th HTT
- Challenges

Strategy

Steps of Preparation Online Track-Fitting

- Implementatio
- Results

1 Generate a pattern bank.

- Perform a fit of the helix parameters on the patterns.
- **3** Estimate the quality of the fits (χ^2 -method).
- **(**) Formulate linear dependency of the χ^2 and the helix-parameters (for small sectors of the detector).

Preparations for Track-Fitting

5 Save the constants for the linear equations in a database.

Joachim Zinßer

Introduction

The High Luminosi LHC

ATLAS

Trigger and Data Acquisition System (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementation in FPGA

Results

• Generate a *pattern bank*:

- Generated using full simulations of Monte-Carlo muons.
- Different binning of pixels to superstrips.
- Data is compressed (don't cares, wildcards).
- Usage-count of the patterns is also saved.
- [ATLAS 2018, p. 350]
- The detector is separated into independent regions.
- 4 Million patterns prepared for each region [ATLAS 2018, p. 354].

The Pattern Bank

Tracks traversing strip-layers organized into superstrips [ATLAS 2018, p. 351].

Joachim Zinßer

Introduction

The High Luminosi LHC

ATLAS

Trigger and Data Acquisition System (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

mplementatic n FPGA

Results

Preparation of Helix Parameters

- Combine similar patterns from the bank into Sectors.
- Each sector has a simulated set of *n* values y_i (at the positions x_i) and their covariance matrix V_x .
- Utilize a fit-function $f(x, \vec{\theta}) = \sum_{j=1}^{m} \theta_j f_j(x)$ (the $f_j(x)$ do not need to be linear).
- With the expected values $\eta_i = f(x_i, \vec{\theta}) = \sum_{j=1}^m \theta_j f_j(x_i) = \sum_{j=1}^m H_{ij}\theta_j$ you get the $n \times m$ -Matrix H.
- Perform the *least-square-method* $S = \sum_{k}^{n} \sum_{l}^{m} (y_{k} \eta_{k}) V_{ij}^{-1} (y_{l} \eta_{l})$ or in the matrix form $S = (\vec{y} - H\vec{\theta})^{\mathsf{T}} V^{-1} (\vec{y} - H\vec{\theta}).$
- Solve this system of linear equations for the parameters θ_j : $\vec{\theta} = (H^T V^{-1} H)^{-1} H^T V^{-1} \vec{y} = C \vec{y}$
- Save the *m* times *n* entries of *C* as constants for the Sector. [Kolanoski 2017]

Joachim Zinßer

Introduction

The High Luminosi LHC

ATLAS

Trigger and Data Acquisition System (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

mplementatio n FPGA

Results

Memory Requirements for the Constants

- There are up to 65 000 Sectors in a region.
- Desired resolution of the number-encoding of the constants is 32 bit.
- Planing for the extreme case of four pixel and four strip layers in the ITk:
 - 3 kbit for a set of Chi2 constants
 - 2 kbit for a set of PC constants
- Together 325 Mbit of constants.
- Expected maximum Road-Rate at the Track-Fitter is 135 MHz.
- Although large, the necessary bandwidth to the memory is not 370 Gbit/s. Several roads will require the same constants.

Algorithm

Ungrade loachim Zinßer

Particle Track Fitting in

Hardware for the ATLAS Phase-II

Online Track-Fitting

- **1** Compare data \vec{x} with pattern-bank \rightarrow receive ID of the matched sector.
- Request constants for the Sector 2 from the HBM.
- 3 Calculate the quality of the match with $\chi^2 = \sum_{i=1}^{7} (\vec{S}_i \cdot \vec{x} + h_i)^2$.
- 4 If χ^2 is below a threshold \rightarrow request further constants.
- **5** Calculate the 5 helix parameters $p_i = \vec{C}_i \cdot \vec{x} + q_i$

Firmware Diagram of the PRM-Module of the HTT [ATLAS 2017].

Joachim Zinßer

Introduction

- The High Luminosity LHC
- Trigger and Data Acquisition Syst (TDAO)
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenges
- Steps of Preparation Online Track-Fitting
- Implementatio

Results

The Associative Memory (AM) ASICs

- Incoming data arrives at all CAM-units simultaneously.
- Each CAM-unit compares the data to its content. *rightarrow* this CAM-unit gets flagged.
- At the end of an event each line counts its flags.
- The lines represent patterns and if a pattern has enough flags, its ID is read out.

Sketch of the Pattern-Recognition firmware [Crescioli 2018].

Joachim Zinßer

Introduction

The High Luminosit LHC ATLAS Trigger and Data Acquisition System (TDAQ) The Hardware

Goal of the HTT

Challenges

Strategy

Online Track-Fitting

Implementatio in FPGA

Results

The Pattern Recognition Mezzanine (PRM)

Photograph of HTT-PRM prototype board [Francavilla 2021].

Joachim Zinßer

Introduction

- The High Luminosit LHC
- ATLAS
- Trigger and Data Acquisition System (TDAQ)
- The Hardware Tracking Trigger

Goal of the HTT

Challenges

Steps of Preparation Online Track-Fitting

Implementatio in FPGA

Results

Requirements to the AM-ASIC Interface

- Up to 8 million patterns can be stored.
 - \rightarrow only 4 million different patterns needed.
 - \rightarrow increase speed through parallelization.
- A data-word is simultaneously compared to all patterns in the database.
- Matches are stored and read out sequentially.

Schematic view of event processing and pattern distribution [ATLAS 2019] (evolved scenario).

Joachim Zinßer

Introduction

The High Luminosity LHC

ATLAS

Trigger and Data Acquisition Syster (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Online Track-Fitting

Implementatio

Results

The Intel Stratix 10 FPGA with embedded High Bandwidth Memory

- Almost 900 ports.
- Approximately 700 000 Adaptive Logic Modules (ALMs).
- Almost 4000 Digital Signal Processor (DSP) Blocks.
- 140 M bit Block-Memory.
- Two embedded 8 GB High Bandwidth Memory (HBM) units.
- Two HBMs provide a bandwidth of up to 270 Gbit/s.

Joachim Zinßer

Introductior

The High Luminosity LHC

ATLAS

Trigger and Data Acquisition System (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy Steps of Preparation Online Track-Fitting

mplementatio in FPGA

Results

Requirements to the *High Bandwidth Memory Interface* (HBM-IF)

Desired resolution (32 bit number-encoding)

ightarrow 5 kbit for one set of constants $ec{C}_{j},\,q_{j},\,ec{S}_{i}$ and h_{i}

Have to be available each clock-cycle, possibly at several places in the FPGA!

Tasks of the HBM-Interface:

- Transmits requests.
- Stores incoming data until a set of constants is complete.
- Distributes constants between the various FPGA-entities.
- Suppresses repeated requests, temporarily storing constants
 → Reduces required bandwidth.

Joachim Zinßer

Introduction

The High Luminosi LHC ATLAS Trigger and Data Acquisition System (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementation in FPGA

Results

The Concept of the HBM Interface

The Track Fitter Block

- All entities are designed to not limit throughput.
- To save resources perform χ^2 -test first.
- Less Parameter Calculator Units than Chi2-Units.

Joachim Zinßer

The High Luminosity LHC

Particle Track Fitting in

Hardware for the ATLAS Phase-II

Upgrade

- ATLAS
- Trigger and Data Acquisition Syster (TDAQ)
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenges

Strategy Steps of Preparation Online Track-Fitting

Implementation in FPGA

Results

Joachim Zinßer

Introduction

- The High Luminosity LHC
- ATLAS
- Trigger and Data Acquisition System (TDAQ)
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenges
- Strategy Steps of Prepar
- Steps of Preparation Online Track-Fitting
- Implementation in FPGA

Results

Scalar Product calculated by using Pipelined DSPs

How to calculate *i*-dimensional scalar product $\vec{A} \cdot \vec{x} + k$ in hardware?

- 1 Chain of *i* DSPs. Outputs connected to addition-inputs.
- Pipeline of *i* registers in front of the multiplication-inputs of the *i*th DSP.
- **3** Inputs A_0 , x_0 and k are fed to the first DSP.
- G Further inputs A_i and x_i are fed to the registers.
- Initial latency of *i* clock cycles. Does not limit throughput.

Sketch of the pipelined DSP cascade of an scalar product [Braagaard 2020].

Joachim Zinßer

Introduction

The High Luminosi LHC

Trigger and

Acquisition System (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementation in FPGA

Results

Scalar Product calculated by using Pipelined DSPs

How to calculate *i*-dimensional scalar product $\vec{A} \cdot \vec{x} + k$ in hardware?

- Chain of *i* DSPs. Outputs connected to addition-inputs.
- 2 Pipeline of *i* registers in front of the multiplication-inputs of the *i*th DSP.
- **3** Inputs A_0 , x_0 and k are fed to the first DSP.
- G Further inputs A_i and x_i are fed to the registers.

Compilation Hierarchy Node	Combinational ALUTs	Dedicated Logic Registers	Block Memory Bits	DSP Blocks
	53104 (84)	226528 (4420)	725376	424
\gen_chi_square:0:chi_square	861 (19)	35090 (5003)	34304	91
FIFO	672 (0)	480 (0)	34304	0
ISQUARE_IP_0	0 (0)	0 (0)	0	1
GEN_INNER_SUMS:0:inner_sum	0 (0)	4224 (4224)	0	12

Joachim Zinßer

Introduction

The High Luminosity LHC

ATLAS

Trigger and Data Acquisition System (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenge

Strateg

Steps of Preparation Online Track-Fitting

mplementation in FPGA

 ${\sf Results}$

Resource Usage of the Preliminary Track-Fitter Firmware

		Compilation Hierarchy Node	Combinational ALUTs	Dedicated Logic Registers	Block Memory Bits	DSP Blocks
			53104 (84) 7.4%	226528 (4420) 8.0%	725376 0.5%	42410.6%
		\gen_chi_square:0:chi_square	861 (19)	35090 (5003)	34304	91
	A .	[\gen_constants_bu:buffer_constants]	1748 (0)	1288 (0)	46848	0
X 4	4-	<pre>[\gen_track_buffers:0:buffer_tracks]</pre>	456 (0)	336 (0)	8576	0
		[\gen_track_constalign_track_const]	32 (32)	3458 (3458)	0	0
		align_track_const_ii	29 (29)	2642 (2642)	0	0
		buffer_chi2	3073 (781)	2617 (849)	70912	0
		buffer_constants_ii	1255 (0)	924 (0)	33536	0
		buffer_pc	475 (0)	350 (0)	8832	0
		hbm_interface	26859 (10)	22340 (17)	221312	0
		output_buffer	2822 (167)	1253 (276)	14848	0
		parameter_calculator	475 (0)	21643 (161)	8832	60
		[track_distributor]	5686 (106)	9651 (1891)	8192	0

Joachim Zinßer

Introduction

The High Luminosity LHC ATLAS

Trigger and Data Acquisition Syster (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

Implementatio in FPGA

Results

🔶 Output		(Output)									
- A VALID out	0										
	0										
EVENTEND out	0										
	00	0000000		10000001							
	00	00000000		10000001							
	00	00000000		1000017EE							
	00	0000000		1000017FF							
SECTORID_OUT	0000	0000		10001	22 (222 V (AND VIAGO	V LOODOL	V (00000	100000		
ROAD_out	{0	10000000110	0000000110		011000 110	0001	01		100000	0000400110	00013001 10000
(7)	00	00000000		100001000		1 0000	1400	100000400			
🛄 🔩 (6)	00	0000000		100001300							
📄 🛖 (5)	00	0000000		00000F00		(0000	7600	<u>00000F00</u>	100	007F00	
(4)	00	0000000		00000A00							
🗼 🖕 (3)	00	0000000		0E000C00	Į O į	0006 (0E00	IOC (090006	OE000C	09000600		
(2)	00	0000000		0A000040							
1)	00	0000000		008000A0							
📩 📥 (0)	00	0000000		108000080							
📩 👍 CHI2_out	0.0	0.00000		2.63672							
PARAMETERS out	{0	{0000} {0000}	{0000} {00.	. [{0148} {0	0001 {0000}	{0000} {010	0}				
	0.0	0,00000		1.28125							
a (3)	0.0	0 00000									
$\frac{1}{2}$ $\frac{1}{2}$	0.0	0 00000									
	0.0	0,00000									
	0.0	0,00000		1							
± (0)	0.0	_0100000		11.00000							
🕫 🕤 Now	00 ns	760) ns			780) ns			800) ns

The Tracks of Road 000017 have parameters P = (1, 0, 0, 0, 1.28).

28/30

Output of the Track-Fitter

Joachim Zinßer

Introduction

- The High Luminosit LHC
- ATLAS
- Trigger and Data Acquisition Syster (TDAQ)
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenges
- Strategy
- Steps of Preparation Online Track-Fitting
- mplementatio n FPGA
- Results

Results with Respect to the Extended Requirements

- The HTT can currently be build with a maximum frequency of 170 MHz. Fewer than the expected 250 MHz ([?]) but probably achievable with optimization.
- The Track Fitter can handle the expected Track Rate of up to 450 MHz ([?]) but not a Road-Rate of 135 MHz.

Probably necessary to reorganize the Track-Distributor.

• It is expected that only 9 MHz of Tracks pass the Chi2-test. Parameter-Calculator can handle that.

Summary and Outlook

Upgrade Joachim Zinßer

Particle Track Fitting in

Hardware for the ATLAS Phase-II

Introduction

- The High Luminosi LHC
- ATLAS
- Trigger and Data Acquisition Syster (TDAQ)
- The Hardware Tracking Trigger
- Goal of the HTT
- Challenges
- Strategy Steps of Preparation Online Track-Fitting
- Implementatio in FPGA
- Results

- The Track-Fitter is now working in Simulation.
- Combined firmware of the HTT-PRM works in simulation.
- The HTT is compliant with the baseline of the ATLAS Phase-II upgrade.
- The HTT is not yet compliant with the extended requirements.
- Some parts of the PRM are already verified to work on hardware.
- In the next weeks, the Track-Fitter will be tested on hardware.

Joachim Zinßer

Introduction

The High Luminos LHC

Trigger and Data Acquisition Systen (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

mplementation in FPGA

Results

CERN:

"LHC Season 2 – Facts & Figures", Informative Brochure, July 2018.

CERN, Hi-Lumi Project:

"HL-LHC Industry - Project Schedule", project-hl-lhc-industry.web.cern.ch/content/project-schedule, 21st April 2020.

CERN:

"Long-sought Decay of Higgs Boson Observed",

home.cern/news/press-release/physics/long-sought-decay-higgs-boson-observed,22nd April2020.

Roman copy of Greek original, Photographer: Lalupa:

"Statua romana di Atlante – Collezione Farnese – Museo Archeologico Nazional di Napoli", en.wikipedia.org/wiki/Atlas_(mythology), 21st April 2020.

CERN, The ATLAS Experiment:

"Detector & Technology",

atlas.cern/discover/detector, 17th April 2020.

The ATLAS Experiment:

"Event Display from Upgrade Physics Simulated Data", CERN, 2021.

The ATLAS Collaboration, Klaus Moening:

"Expected Tracking Performance of the ATLAS Inner Tracker at the HL-LHC", ATL-PHYSI, PUB-2019-014, March 2019.

The ATLAS Collaboration:

"Performance of the ATLAS Transition Radiation Tracker in Run 1 of the LHC: tracker properties", Journal of Instrumentation, Volume 12, May 2017.

Joachim Zinßer

Introduction

The High Luminosi LHC

ATLAS

Trigger and Data Acquisition Systen (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenges

Strategy

Steps of Preparation Online Track-Fitting

mplementation

Results

"Technical Design Report for the Phase-II Upgrade of the ATLAS Trigger and Data Acquisition System", CERN-LHCC-2017-020, June 2018.

The ATLAS Collaboration:

"HTT ATLAS Electronics Specification for Pattern Recognition Mezzanine (PRM)", ATL-COM, DAQ-2018-039, December 2019.

The AM Design Team:

"Phase-II Associative Memory ASIC Specifications and Technical/Scientific Report", CERN-OPEN-2018-003, November 2019.

Francesco Crescioli:

"Development of Associative Memory ASIC in 28nm technology", Jouneés VLSI - FPGA - PCB et Outils CAO de l'IN2P3, May 2018.

Paolo Francavilla:

"PRM HW Status", PRM Meeting, Presentation, March 2021.

Hermann Kolanoski, Norbert Wermes:

"9 Spurrekonstruktion und Impulsmessung" in "Teilchendetektoren", Springer-Verlag, Berlin und Heidelberg, 2016.

Mathias Braagaard:

"Implementation of a linearized χ^2 -Square [sic] method for the ATLAS Pattern Recognition Mezzanine", DTU Kongens Lyngby, early 2020.

Magnus Høegh Jensen:

"Implementation of Particle Track Parameter Calculations for the ATLAS Pattern Recognition Mezzanine", DTU Kongens Lyngby, early 2020.

Sebastian Dittmeier:

"The ATLAS Hardware Tracking for the Trigger System",

Joachim Zinßer

Introduction

The High Luminosi LHC

ATLAS

Trigger and Data Acquisition Syste (TDAQ)

The Hardware Tracking Trigger

Goal of the HTT

Challenge

Strategy

Steps of Preparation Online Track-Fitting

Implementation in FPGA

Results

HEP Group Meeting, February 2020.