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@® Background.

® Introduction and motivation.

® Axion Dark Matter and Cosmology.

® Phenomenology of ALPs Coupling with Photons in the
Jets of AGNs.

® Potential of SKA to Detect CDM ALPs with Radio
Astronomy.

® Conclusion and future work.
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Background: Egypt, Sohag City
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Background: Wits University, Johannesburg, South Africa
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Introduction

® Have you ever question the nature of your reality?

® Qur current best understanding for the structure of our
universe is based on the SMPP together with the SMC.
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Standard Model of Particle Physics
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Standard Model of Particle Physics

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
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Standard Model of Cosmology

Einstein field equations
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Standard Model of Cosmology
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Problems with the standard models

e Gravity puzzle.

® The gauge hierarchy problem.
® QOrigin of the mass.

® Neutrino mass.

® Flavor problem.

® Matter-antimatter asymmetry.
® The strong CP problem.

¢ [nflation.

® Dark matter and dark energy.
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Models beyond the standard models

Supersymmetric theories.

Extra-dimensional theories.

Grand unified theories.

Theories of everything.

Understanding the nature of DM is in the core of all these
models! So what is going on?
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What is dark matter?

e Well, I don’t know what dark matter is!

® Direct information on cosmology can be obtained by
observational tests.

e Explaining the contradictions required additional sort of
matter can not be observed by all observational techniques.

® [t does not interact strongly enough with anything we can
readily detect or see, so it is basically invisible to us and
referred to as “Dark Matter”.
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First evidence for dark matter

® Fritz Zwicky (1898-1974) b
1930’s: Studied the motion
of galaxies within the
Coma cluster, found they
are moving too fast to
remain confined by Coma’s
gravitational field. Why is
Coma still there?

® The gravity of something
that we can’t see must be
keeping the galaxies from
flying off into space: Dark
Matter.
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Galactic rotation curves

Observations -
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Gravitational lensing
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Cosmic Microwave Background
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Big bang nucleosynthesis
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The contents of the universe

Dark Matter

Dark Energy
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The problem of Dark Matter

o [f dark matter not exists, there is a big problem with our
standard theory of gravity, or

e [f dark matter exists, there is a big problem with our
standard model of particle physics,

® or both!

Let us move now to the next question ....
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What we know/don’t-know about DM?

® Relic abundance.

® Mass??
® Electrically neutral.

® Spin??
e (Collisionless.

® Decays??
® Temperature.

® Elementary??
® Stability.

[ ]
® Non-baryonic nature.

® No Ideal!!

¢ Fluid.

None of the known particles suitable enough to be the DM!!
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Dark matter candidates

e Astrophysical objects - Disfavored

- MAssive Compact Halo Object (MACHO)
- Black holes

® Particle Dark Matter

- Weakly Interacting Massive Particle (WIMP)

- Sterile Neutrinos

- Supersymmetric particles like: Gravitinos, Neutralinos
- Axions and axion-like particles
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The strong CP problem

® Axions: pseudo-scalar bosons associated to the solution of
the strong CP problem in QCD.

® Lqcp — global symmetry: SU(N), ® SUN)r® [U(1)y ® U(1)4l.

® The axial symmetry neither represents a symmetry nor is
spontaneously broken — U(1)4 problem.

® This problem explained due to the complex structure of the
QCD vacuum = Ly = 0(g2/32x2)F o

® The extra term is a source of CP violation.

® But experimentally, || < 107' = fine tuning needed.
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Axion solution

® Peccei—Quinn solution: extend the SM with additional
axial U(1)pg global symmetry.

® Spontaneously broken at some high scale = axion is the
resulting Goldstone mode.

® The interactions between axions and gluons, generate an
axion potential witch makes 6 dynamically relaxes to zero.

® Axions must solve the strong CP problem and suggested as
dark matter candidate.
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Axion-like particles

® Many string theory models extend the SM by new
symmetries and there can be many other ALPs.

® They are characterized by their coupling to two photons,
ga~ Which directly related to the axion mass m,.

e ALPs have the same properties of the QCD axions but
their masses and coupling to photons are unrelated.

e ALPs show as very promising dark matter candidates.
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Phenomenology of axions and ALPs

® The coupling of axion with gluons makes possible the
mixing with pions as well.

® The mixing with pions generates couplings of the axions to
photons (Primakoff effect)

by = —%gavFWF"”a =g E-Ba

® The axion-two-photon coupling constant:

«
Gay = R Ca’y
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How to search for ALPs?

{ ALP coupling with photons }

/ \
ALP convertion to a single photon ALP decay to two photons
in external magnetic field
a — v (B, = mg) a = vy (By = ma/2)

® These two mechanisms are using in my work to explain a
number of astrophysical phenomena and to constrain ALP
properties.

30/ 45



Probing a CAB within the jets of AGN

® Many string theory models motivate the existence of a
homogeneous CAB analogous to the CMB.

® Recent work explain the Coma cluster soft X-ray excess
due to CAB ALPs conversion into photons in the magnetic
field of galaxy clusters.

® We test this scenario using the astrophysical environment
of the M87 AGN jet to constrain the ALP-photon coupling
parameter.
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ALP-photon mixing model

® For propagation in the z-direction and very relativistic
ALPs, the evolution equations of ALP-photon coupling

model:
d Al(z) Apcos? €+ Apsin? € cosEsing(Aj+AL) Agysing) [(AL(2)
1d— All(z) | == [ cosgsing(Ay+AL) Arsin?&+Ajcos?E Agycosé | [ Afl(2)
'Z a(z) Agysing Agycosé A, a(z)

® The strongest mixing occurs at energy range depends on:
mq & gy and the transverse magnetic field and the
electron density profile:

Br(r,R) = Js(r) - Bx (Rﬂ>_l G & ne(r,R) = Jg(1) - Nex (R%)_l cm ™3

*
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ALP-photon conversion probability

® The probability for ALPs to convert into photons after
traveling a certain distance is Py = |A)(E)|* + |AL(E)[%.

® We checked the role of the misalignment angle 6 and the
jet opening angle of ¢.

® The maximum conversion probability occurs when the
misalignment angle 6 is close to the opening angle of the
AGN jet ¢.

(B) [107]
5

Par(E)[10°7]

E(KeV)
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M87 AGN energy spectra
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Summery of result I

6 (), p=4° gy (GVT) ¢ (), 0 =20° 9oy (GVT)
0 <391 x 10713 4 <6.56 x 10714
5 <9.17x 10718 8 SISIEE | (s
10 < 7.50 x 10718 12 < 7.99 x 10719
15 <2.08x 1071
20 < G152 0=
25 <1.98x 10718

® The overall X-ray emission for the M87 AGN [Flux (0.3-8)
B 76102 erg cm 2 571,

® These results cast doubt on the current best fit value on
i GeV~! obtained in the Coma cluster soft
X-ray excess CAB model.

® [nstead we suggest a new constraint that the largest
allowed value of gqy < 6.65 x 10714 GeV ™1,
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Parametric space of ALP mass-coupling
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Potential of SKA to detect CDM ALPs decays

e ALPs may spontaneously decay with lifetime:

. 64m
Ta = Dpan = 755~ > o
adary

e ALPs = Bose-Einstein condensate (BEC) = thermalize to
spatially localized clumps.

e Stimulated decay of ALPs is also possible with effective
decay rate:
Feff = I‘pert(l ar 2f'y)

® Photon occupation number can receive Bose enhancement
and grows exponentially.

® Equation of Motion for photons is a Mathieu equation
(resonance possible):

G [k:Q 4 wz TF Jarkwoao sin(wgt)} e )
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Plasma density evolution

® Photons propagating in a plasma acquires an effective mass
equal to the plasma frequency:

o Aman,

wp—

Me
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The stimulated emission factor

® The stimulated decay produces an enhancement of the
ALPs decay rate by factors arising from

f’y = f'y,CMB T f’y,gal I f’y,extra—gal

m, [eV]
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The effect of cosmic plasma

i (a) my ~ 1.0 x 10-% eV 5 (b) m, ~ 1.0 x 107 eV
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Estimating the average radio flux

Mgl et

e =
£ 47Td%

— my=10x10"%eV
= m,=1.0x 107 eV
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Summery of result I1

® We find that neither the current cosmic plasma nor the
plasma in the galactic halos can prevent the stimulated
decay of ALP with the 10~7-10* eV mass range.

® Interestingly, the radio signal produced via the stimulated
decay of ALPs in the 1077-10~* eV mass range is expected
to be within the reach of the next-generation of the SKA
radio telescopes.
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Conclusion

e Axions appears in the solution to the strong CP problem.
® ALPs are suggested by many string theory models.
e ALPs seem to be suitable candidates for dark matter.

® The coupling between ALPs and photons may allow for
ALPs conversion or decay to photons.

® Result I: Suggest new constraints on the ALP-photon
coupling lower than the current limits used to explain the
Coma cluster soft X-ray excess.

® Result II: Shows that the next-generation of the SKA
telescopes might be able to detect a radio signal produced
via the stimulated decay of ALPs.
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Current and future work

® Estimating the radio flux from ALP stimulated decay for a
number of astrophysical objects.

e Examine the capability of the CAB to explain the EDGES
21 cm anomaly.

e Investigate whether ultra-light ALPs can solve the
core-cusp problem.
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