Axion-driven Hybrid Inflation over a Barrier

arxiv:2101.11173 with Jinn-Ouk Gong

Kwang Sik JEONG
Pusan National University, Korea

2021 Chung-Ang University Beyond the Standard Model Workshop
1-3 February 2021
Contents

1. Inflation
2. Model
3. Cosmological Dynamics - Inflation
4. Cosmological Dynamics - Dark Matter
5. Conclusions
Cosmic Inflation
1. Inflation

- Inflation

 Essential part of the standard cosmological model

 - Initial conditions for the hot big-bang evolution of the universe
 → Homogenous, isotropic, spatially flat universe

 - Quantum fluctuations during inflation
 → CMB temperature fluctuations, and inhomogeneous distribution of galaxies

Slow-roll inflation: Unusually flat potential

- Stability against radiative corrections and quantum gravity effects
 → A powerful way is to impose a SYMMETRY
1. Inflation

- Axion

Appealing candidate for an inflaton

- Nambu-Goldstone boson associated with spontaneously broken U(1)
 - Flat direction in the absence of explicit U(1) breaking
 - Periodic: $\phi = \phi + 2\pi f$ with generally $f = U(1)$ breaking scale
- Shift symmetry, $\phi \rightarrow \phi + \text{constant}$, presumably broken by non-perturbative effects
 \rightarrow Naturally very light

$$V = V_0 + M^4 \cos\left(\frac{\phi}{f}\right) + \cdots$$

Size of the potential is finite, and insensitive to the decay constant
1. Inflation

- Natural inflation
 Freese, Frieman, Olinto 1990

 Minimal setup for axion-driven inflation
 - Marginally consistent with the recent Planck observations on CMB

 ![Image of inflation diagram]

 \[n_s \approx 1 + 2 \frac{V'}{V} - 3 \left(\frac{V''}{V}\right)^2 \]
 \[r = \frac{A_1}{A_0} \approx 8 \left(\frac{V'}{V}\right)^2 \]

- Trans-Planckian decay constant
 → Quantum gravity effects, \(\left(\frac{f}{m_{Pl}}\right)^n \) with \(n > 0 \), may spoil the field theoretic description

Inflation with multiple axions to get \(f \gg (\text{symmetry breaking scale}) \)

- Alignment
 Kim, Nilles, Peloso 2004
 Choi, Kim, Yun 2014, Higaki, Takahashi 2014

- Clockwork mechanism
 Choi, Im 2015, Kaplan, Rattazzi 2015

See talk by Kiwoon Choi
Model
2-1. Hybrid Inflation

- **Hybrid inflation**
 - End of inflation triggered by a waterfall transition
 - Slow-rolling inflaton
 - Instability of a waterfall field triggered by the inflaton

\[
V(\sigma, \phi) = \frac{1}{4\lambda} (M^2 - \lambda \sigma^2)^2 + \frac{m^2}{2} \phi^2 + \frac{g^2}{2} \phi^2 \sigma^2
\]
2-2. Model

- Axion-induced hybrid inflation over a barrier

 Field contents
 - Axion ϕ as an inflaton
 \rightarrow Naturally flat potential due to shift symmetry
 - Complex waterfall field χ various options
 $\rightarrow U(1)_{\chi}$ to forbid a dangerous tadpole

Potential barrier along the waterfall direction
- Traps χ at the origin
- Disappears when ϕ reaches a critical value \rightarrow a waterfall transition

Barrier can still be an important ingredient of slow-roll inflation.
2-2. Model

- Simple model

Scalar potential

\[
V(\phi, \chi) = V_0 + \mu_{\text{eff}}^2(\phi)|\chi|^2 - \lambda|\chi|^4 + \frac{1}{\Lambda^2}|\chi|^6 + U(\phi)
\]

- Inflaton-dependent waterfall mass parameter and potential

\[
\mu_{\text{eff}}^2(\phi) = m^2 - \mu^2 \cos \left(\frac{\phi}{f} + \alpha \right)
\]

\[
U(\phi) = M^4 \cos \left(\frac{\phi}{f} \right)
\]

- \(V_0 \) fixed by the condition \(V = 0 \) at the true vacuum
2-2. Model

- **Simple model**

 Parameter space of our interest

 \[m^4 < \mu^4 \ll M^4 \ll V_0 \]

 - Scale of inflation: \(H_{\text{inf}} \sim \sqrt{\frac{V_0}{m_{\text{Pl}}^2}} \) where \(V_0 \sim \lambda^3 \Lambda^4 \)

 - Scale of the waterfall transition: \(\mu \) and \(m \)

Role of the barrier

→ Separation of the scale of inflation and the scale of waterfall transition

→ Wide allowed range of \(f \) and \(H_{\text{inf}} \)

Ross, German 2010, Ross, German, Vazques 2016

Case without a barrier: Hybrid natural inflation

- No separation of the two scales
2-2. Model

- **Tunneling over a barrier**

 Tunneling rate
 - Tunneling rate \(\propto e^{-S_E} \)
 - \(S_E \): Euclidean action of \(\chi \) evaluated on a bounce solution

 In the region with \(\mu_{\text{eff}}^2 > 2H_{\text{inf}}^2 \), Coleman-De Luccia bounce: \(S_E > \frac{8\pi^2}{3\lambda} \)

 In the opposite region, Hawking-Moss instantons: \(S_E = \left(\frac{\mu_{\text{eff}}^2}{H_{\text{inf}}^2} \right)^2 \frac{8\pi^2}{3\lambda} \)

 - Viable inflation

 \(\mu^2 \gg H_{\text{inf}}^2 \)

 → Heavy enough \(\chi \) to be initially fixed at the origin
 → Exponentially suppressed tunneling until \(\phi \) reaches close to the critical value

 Bubble nucleation is possible at the end of inflation

 But, smooth \(U(1)_\chi \) phase transition due to quick disappearance of barrier

insensitive to the \(|\chi|^6\) term

Shkerin, Sibiryakov 2015
2-3. UV Completion

- **UV completion**

 Hidden QCD with $U(1)_χ$ charged quarks

 \[
 m_u u u^c + y χ u^c d + y' χ^* u d^c + m_d d d^c + \frac{1}{16\pi^2} \frac{φ}{f} G_{μν} \tilde{G}^{μν}
 \]

 - Confining scale in the range: $m_d \ll Λ_h \ll m_u$
 - At scales below m_u

 contribution from a closed waterfall loop

 \[
 \left(\frac{yy'}{m_u} |χ|^2 + m_d + δm_d \right) d d^c + \frac{1}{16\pi^2} \frac{φ}{f} G_{μν} \tilde{G}^{μν}
 \]

 Inflaton potential terms at low energy scales

 $→ μ$ and M controlled by the hidden confining scale
2-3. UV Completion

- UV completion

Inflaton-dependent waterfall mass parameter

\[\Rightarrow \mu^2 \cos \left(\frac{\phi}{f} + \alpha \right) |\chi|^2 \]

- Natural setup for the scale hierarchy: \(\mu^4 \ll M^4 \ll V_0 \)
- Small \(m \): required for the waterfall instability
 - Supersymmetry, or anthropic selection
Cosmological Dynamics

Inflation
3-1. Inflation

- **Inflation**
 - Inflation phase
 - Waterfall field trapped at the origin due to the barrier
 - Inflaton evolution: V_0, M, f

\[
V = V_0 + U(\phi) = V_0 + M^4 \cos\left(\frac{\phi}{f}\right)
\]

- Waterfall phase
 - Barrier disappears at

\[
\frac{\phi_c}{f} = \cos^{-1}\left(\frac{m^2}{\mu^2}\right) - \alpha
\]
3-1. Inflation

- Inflation
 Slow-roll parameters: \(\epsilon \equiv \frac{m_{pl}^2}{2} \left(\frac{V'}{V} \right)^2, \quad \eta \equiv m_{pl}^2 \frac{V''}{V} \)

 \(\rightarrow \epsilon \ll |\eta| \) as in natural inflation

- Cosmological observables: Let \(\theta \equiv \frac{\phi}{f} \)
 - Amplitude of power spectrum of curvature perturbation, and its spectral index
 - Tensor-to-scalar ratio of perturbation

\[
A_R = \frac{V_0}{24\pi^2 m_{pl}^4 \epsilon_*} \approx 2.0989^{+0.0296}_{-0.0292} \times 10^{-9}
\]
\[
n_R = 1 - 6\epsilon_* + 2\eta_* \approx 0.9656 \pm 0.0042, \quad r = 16\epsilon_* < 0.056,
\]

at the pivot scale horizon exit of the cosmological scales
3-1. Inflation

- Viable parameter region
 - Inflaton decay constant
 - From the spectral index
 \[f \approx 7.6 \sqrt{\cos \theta_*} \left(\frac{M^4}{V_0} \right)^{1/2} m_{\text{Pl}} \]
 → Can be well below the Planck scale
 - Number of e-folds before the onset of waterfall phase transition
 \[N \approx 58 \cos \theta_* \log \left[\frac{\tan(\theta_c/2)}{\tan(\theta/2)} \right] \]
 → Inflaton value at the horizon exit \((N \approx 60) \)
 \[\theta_* \approx 0.71 \tan \left(\frac{\theta_c}{2} \right) - 0.16 \tan^3 \left(\frac{\theta_c}{2} \right) \]
 Need not very close to the hilltop of the potential
3-2. Inflaton Properties

- Inflaton properties
 - Inflaton mass and decay constant in terms of H_{inf}

\[
\begin{align*}
 f &\approx \frac{2 \times 10^5}{\tan \theta_*} H_{\text{inf}} \\
 m_\phi &\approx \frac{0.2}{\sqrt{\cos \theta_*}} H_{\text{inf}}
\end{align*}
\]

Planck results

A_R, n_R

![Graph showing decay constant and mass vs. H_{inf}]

for θ_* between 0.01 (solid) and 1.5 (dotted)
3-2. Inflaton Properties

- Inflaton properties
 - Support for experimental searches for ALP in a wide mass range
 - Anomalous inflaton coupling to photons
 - If coupled to photons, Inflaton heavier than about 0.1GeV to avoid too rapid cooling of stars
 - Our scenario: \(f \sim 10^6 \times m_\phi \)

- Inflaton coupling to the Higgs sector
 - Model-dependent inflaton-Higgs mixing
 - Case with \(\theta_{\text{mix}} \sim \frac{v}{f} \)

Jaeckel, Spannowski 2015

Flacke, Frugiuele, Fuchs, Gupta, Perez 2016
Choi, Im 2016
3-3. Reheating

- **Post-inflationary evolution**

 Rich phenomenology, but strong model-dependence

 - Evolution of \(\chi \) after the barrier disappears

 - Acquires a huge mass soon: \(\mu \ll \Lambda \)

 - Evolves insensitively to the inflaton evolution

 - **Reheating**

 - Generally, very effective tachyonic preheating

 - Subsequent heating up to a radiation-dominated regime

 - Cosmic strings from \(U(1)_\chi \) symmetry breaking

 - Can contribute to CMB temperature anisotropies

 - Can source gravitational waves

 \(10^{-12} \) to 1 Hz for stable and metastable cosmic strings: LIGO, LISA

 1 to \(10^{10} \) Hz for inhomogeneities from tachyonic preheating

 - **Nucleation of barriers at the end of inflation and their effects:** *work in progress*
Cosmological Dynamics

Dark Matter
4-1. Dark Matter- Inflaton

- Inflaton as dark matter

 Hidden QCD sector with $U(1)_x$ charged quarks

 - Hidden quarks: Large masses proportional to χ_0 in the present universe
 \rightarrow Can be heavier than the confining scale

 - Such heavy quark case: no mesons formed

 $\mu^2 = 0$ and $M^4 = \Lambda_h^4$

 \rightarrow Inflaton stabilized at a CP conserving minimum

 Inflation sector: accidental Z_2 symmetry, $\phi \rightarrow -\phi$

 $\rightarrow Z_2$ makes the inflaton stable if it has no coupling to the SM

 c.f. $\alpha = 0$ case: Im, KJS 2019
4-1. Dark Matter- Inflaton

- **Inflaton as dark matter**
 - Inflaton coherent oscillation
 - Oscillation starts at \(T = T_1 \) when
 \[
 m_\phi(T_1) = 3H(T_1)
 \]
 - Inflaton relic density from misalignment
 - If oscillation starts before reheating ends
 \[
 \Omega_\phi h^2 \sim 0.24 \theta_c^2 \left(\frac{T_1}{\Lambda_h} \right)^n \left(\frac{f}{10^{11} \text{GeV}} \right)^2 \left(\frac{T_{\text{reh}}}{10^5 \text{GeV}} \right)
 \]
 - Otherwise, need the replacement \(T_{\text{reh}} \) with \(T_1 \)
 Thus, the observed dark matter density in a wide range of \(f \)
4-2. Dark Matter- PQ

- Waterfall sector
 Wide allowed range of H_{inf} allows to connect it to the scale of new physics for BSM
 - $U(1)_\chi$ as Peccei-Quinn symmetry solving the strong CP problem
 - Waterfall phase = QCD axion
 - Cosmologically determined PQ scale (axion decay constant)
 \[
 f_a \approx \frac{3.8 \times 10^{11} \text{ GeV}}{\lambda^{1/4}} \left(\frac{H_{\text{inf}}}{10^4 \text{GeV}} \right)^{1/2}
 \]
 - Contribution of the QCD axion to dark matter
 - Domain-wall number = 1 to avoid the domain-wall problem
 - Axions from misalignment and more efficiently from domain-walls bounded by string
 \[
 \Omega_a h^2 \approx 0.54 \times \left(\frac{\Lambda_{\text{QCD}}}{400 \text{MeV}} \right) \left(\frac{f_a}{10^{11} \text{GeV}} \right)^{1.19} \quad H_{\text{inf}} \lesssim \sqrt{\lambda} \times 10^4 \text{GeV}
 \]
 - Also other possibilities: $U(1)_\chi$ as $U(1)_L$ or local $U(1)_{B-L}$
Conclusions
5. Conclusions

Axion-driven hybrid inflation over a barrier

- Essential role by a potential barrier which diminishes as the axion-like inflation evolves
 - Separation of the scales of inflation and waterfall transition

- Inflaton
 - Decay constant well below the Planck scale
 - Relation between its mass and decay constant in terms of inflation scale: ALP searches
 - Potential to contribute to dark matter

- Waterfall sector
 - Wide allowed range of the inflation scale
 - Possibility to resolve other SM puzzles, e.g. PQ scale determined cosmologically
 - Rich structures: Bubbles, cosmic strings, ...