Axion-driven Hybrid Inflation over a Barrier

arxiv:2101.11173 with Jinn-Ouk Gong

Kwang Sik JEONG

Pusan National University, Korea

2021 Chung-Ang University Beyond the Standard Model Workshop

1-3 February 2021

Contents

- 1. Inflation
- 2. Model
- 3. Cosmological Dynamics- Inflation
- 4. Cosmological Dynamics- Dark Matter
- 5. Conclusions

Cosmic Inflation

1. Inflation

Inflation

Essential part of the standard cosmological model

- Initial conditions for the hot big-bang evolution of the universe
 - \rightarrow Homogenous, isotropic, spatially flat universe
- Quantum fluctuations during inflation
 - \rightarrow CMB temperature fluctuations, and inhomogeneous distribution of galaxies

Slow-roll inflation: Unusually flat potential

- Stability against radiative corrections and quantum gravity effects eta problem
 - \rightarrow A powerful way is to impose a **SYMMETRY**

1. Inflation

Axion

Appealing candidate for an inflaton

- Nambu-Goldstone boson associated with spontaneously broken U(1)
 - Flat direction in the absence of explicit U(1) breaking
 - Periodic: $\phi = \phi + 2\pi f$ with generally f = U(1) breaking scale
- Shift symmetry, $\phi \rightarrow \phi$ +constant, presumably broken by non-perturbative effects
 - \rightarrow Naturally very light

$$V = V_0 + M^4 \cos\left(\frac{\phi}{f}\right) + \cdots$$

Size of the potential is finite, and insensitive to the decay constant

1. Inflation

Natural inflation

Freese, Frieman, Olinto 1990

Minimal setup for axion-driven inflation

Marginally consistent with the recent Planck observations on CMB ٠

Trans-Planckian decay constant ٠

 \rightarrow Quantum gravity effects, $\left(\frac{f}{m_{\rm pl}}\right)^n$ with n > 0, may spoil the field theoretic description

Inflation with multiple axions to get $f \gg$ (symmetry breaking scale)

- Alignment ۲
- Kim, Nilles, Peloso 2004 Choi, Kim, Yun 2014, Higaki, Takahashi 2014
- Clockwork mechanism ٠

Choi, Im 2015, Kaplan, Rattazzi 2015

See talk by Kiwoon Choi

Model

2-1. Hybrid Inflation

Hybrid inflation

Linde 1993

End of inflation triggered by a waterfall transition

- Slow-rolling inflaton
- Instability of a waterfall field triggered by the inflaton

Axion-induced hybrid inflation over a barrier

Field contents

- Axion ϕ as an inflaton
 - \rightarrow Naturally flat potential due to shift symmetry
- Complex waterfall field χ various options
 - $\rightarrow U(1)_{\chi}$ to forbid a dangerous tadpole

Potential barrier along the waterfall direction

- Traps χ at the origin
- Disappears when ϕ reaches a critical value \rightarrow a waterfall transition

Barrier can still be an important ingredient of slow-roll inflation.

• Simple model

Scalar potential

positive

$$V(\phi, \chi) = V_0 + \mu_{\text{eff}}^2(\phi) |\chi|^2 - \lambda |\chi|^4 + \frac{1}{\Lambda^2} |\chi|^6 + U(\phi)$$

$$\downarrow$$
cutoff scale

• Inflaton-dependent waterfall mass parameter and potential

c.f. Graham, Kaplan, Rajendran 2015

$$\mu_{\rm eff}^2(\phi) = m^2 - \mu^2 \cos\left(\frac{\phi}{f} + \alpha\right)$$
$$U(\phi) = M^4 \cos\left(\frac{\phi}{f}\right)$$

• V_0 fixed by the condition V = 0 at the true vacuum

• Simple model

Parameter space of our interest

$$m^4 < \mu^4 \ll M^4 \ll V_0$$

- Scale of inflation: $H_{\rm inf} \sim \sqrt{\frac{V_0}{m_{\rm Pl}^2}}$ where $V_0 \sim \lambda^3 \Lambda^4$
- Scale of the waterfall transition: μ and m

Role of the barrier

- \rightarrow Separation of the scale of inflation and the scale of waterfall transition
- \rightarrow Wide allowed range of f and H_{inf}

Ross, German 2010, Ross, German, Vazques 2016

Case without a barrier: Hybrid natural inflation

- No separation of the two scales

• Tunneling over a barrier

Tunneling rate

• Tunneling rate $\propto e^{-S_E}$

- S_E : Euclidean action of χ evaluated on a bounce solution

In the region with $\mu_{\text{eff}}^2 > 2H_{\text{inf}}^2$, Coleman-De Luccia bounce: $S_E > \frac{8\pi^2}{3\lambda}$ Shkerin, Sibiryakov 2015 In the opposite region, Hawking-Moss instantons: $S_E = \left(\frac{\mu_{\text{eff}}^2}{H_{\text{inf}}^2}\right)^2 \frac{8\pi^2}{3\lambda}$

insensitive to the $|\chi|^6$ term

• Viable inflation

 $\mu^2 \gg H_{\rm inf}^2$

- \rightarrow Heavy enough χ to be initially fixed at the origin
- → Exponentially suppressed tunneling until ϕ reaches close to the critical value Bubble nucleation is possible at the end of inflation

But, smooth $U(1)_{\chi}$ phase transition due to quick disappearance of barrier

2-3. UV Completion

• UV completion

Hidden QCD with $U(1)_{\chi}$ charged quarks

$$m_u u u^c + y \chi u^c d + y' \chi^* u d^c + m_d d d^c + \frac{1}{16\pi^2} \frac{\phi}{f} G_{\mu\nu} \widetilde{G}^{\mu\nu}$$

- Confining scale in the range: $m_d \ll \Lambda_h \ll m_u$
- At scales below m_u

contribution from a closed waterfall loop

$$\left(\frac{yy'}{m_u}|\chi|^2 + m_d + \delta m_d\right) dd^c + \frac{1}{16\pi^2}\frac{\phi}{f} G_{\mu\nu}\widetilde{G}^{\mu\nu}$$

Inflaton potential terms at low energy scales

 $\rightarrow \mu$ and M controlled by the hidden confining scale

2-3. UV Completion

• UV completion

Inflaton-dependent waterfall mass parameter

 \rightarrow mixing between ϕ and dd^c meson

mediated by heavy $u + u^c$

- Natural setup for the scale hierarchy: $\mu^4 \ll M^4 \ll V_0$
- Small *m*: required for the waterfall instability
 - Supersymmetry, or anthropic selection

Cosmological Dynamics Inflation

3-1. Inflation

- Inflation
 - Inflation phase
 - Waterfall field trapped at the origin due to the barrier
 - Inflaton evolution: V_0 , M, f

$$V = V_0 + U(\phi) = V_0 + M^4 \cos\left(\frac{\phi}{f}\right)$$

• Waterfall phase

- Barrier disappears at
$$\frac{\phi_c}{f} = \cos^{-1}\left(\frac{m^2}{\mu^2}\right) - \alpha$$

3-1. Inflation

Inflation

Slow-roll parameters:
$$\epsilon \equiv \frac{m_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2$$
, $\eta \equiv m_{\rm Pl}^2 \frac{V''}{V}$

 $\rightarrow \epsilon \ll |\eta|$ as in natural inflation

- Cosmological observables: Let $\theta \equiv \frac{\phi}{f}$
 - Amplitude of power spectrum of curvature perturbation, and its spectral index
 - Tensor-to-scalar ratio of perturbation

$$A_{\mathcal{R}} = \frac{V_0}{24\pi^2 m_{\rm Pl}^4 \epsilon_*} \approx 2.0989^{+0.0296}_{-0.0292} \times 10^{-9}$$
$$n_{\mathcal{R}} = 1 - 6\epsilon_* + 2\eta_* \approx 0.9656 \pm 0.0042 ,$$
$$r = 16\epsilon_* < 0.056 ,$$

at the pivot scale horizon exit of the cosmological scales

3-1. Inflation

- Viable parameter region
 - Inflaton decay constant
 - From the spectral index

$$f \simeq 7.6 \sqrt{\cos \theta_*} \left(\frac{M^4}{V_0}\right)^{1/2} m_{\rm Pl}$$

 \rightarrow Can be well below the Planck scale

• Number of e-folds before the onset of waterfall phase transition

$$N \simeq 58 \cos \theta_* \log \left[\frac{\tan(\theta_c/2)}{\tan(\theta/2)} \right]$$

 \rightarrow Inflaton value at the horizon exit ($N \approx 60$)

$$\theta_* \approx 0.71 \tan\left(\frac{\theta_c}{2}\right) - 0.16 \tan^3\left(\frac{\theta_c}{2}\right)$$

Need not very close to the hilltop of the potential

3-2. Inflaton Properties

- Inflaton properties
 - Inflaton mass and decay constant in terms of H_{inf}

3-2. Inflaton Properties

Inflaton properties

Support for experimental searches for ALP in a wide mass range

• Anomalous inflaton coupling to photons

ks jeong @ pnu

3-3. Reheating

Post-inflationary evolution

Rich phenomenology, but strong model-dependence

- Evolution of χ after the barrier disappears
 - Acquires a huge mass soon: $\mu \ll \Lambda$
 - Evolves insensitively to the inflaton evolution
- Reheating
 - Generally, very effective tachyonic preheating

Garcia-Bellido, Linde 1997 Copeland, Pascoli, Rajantie 2002

- Subsequent heating up to a radiation-dominated regime
- Cosmic strings from $U(1)_{\chi}$ symmetry breaking
 - Can contribute to CMB temperature anisotropies
 - Can source gravitational waves

Auclair et al 2019 Garcia-Bellido, Figueroa 2007, Dufaux et al 2009

- 10^{-12} to 1 Hz for stable and metastable cosmic strings: LIGO, LISA
- 1 to 10¹⁰ Hz for inhomogeneities from tachyonic preheating
- Nucleation of barriers at the end of inflation and their effects: *work in progress*

Cosmological Dynamics Dark Matter

4-1. Dark Matter- Inflaton

Inflaton as dark matter

Hidden QCD sector with $U(1)_{\chi}$ charged quarks

- Hidden quarks: Large masses proportional to χ_0 in the present universe
 - \rightarrow Can be heavier than the confining scale
- Such heavy quark case: no mesons formed

$$\mu^2 = 0$$
 and $M^4 = \Lambda_h^4$

c.f. $\alpha = 0$ case: Im, KJS 2019

 \rightarrow Inflaton stabilized at a CP conserving minimum

Inflation sector: accidental Z_2 symmetry, $\phi \rightarrow -\phi$

 $\rightarrow Z_2$ makes the inflaton stable if it has no coupling to the SM

4-1. Dark Matter- Inflaton

- Inflaton as dark matter
 - Inflaton coherent oscillation
 - Oscillation starts at $T = T_1$ when

 $m_{\phi}(T_1) = 3H(T_1)$

- Inflaton relic density from misalignment
 - If oscillation starts before reheating ends

$$\Omega_{\phi}h^2 \sim 0.24 \,\theta_c^2 \left(\frac{T_1}{\Lambda_h}\right)^n \left(\frac{f}{10^{11} \text{GeV}}\right)^2 \left(\frac{T_{\text{reh}}}{10^5 \text{GeV}}\right)$$

- Otherwise, need the replacement $T_{\rm reh}$ with T_1

Thus, the observed dark matter density in a wide range of f

4-2. Dark Matter- PQ

• Waterfall sector

Wide allowed range of H_{inf} allows to connect it to the scale of new physics for BSM

- $U(1)_{\chi}$ as Peccei-Quinn symmetry solving the strong CP problem Peccei, Quinn 1977
 - Waterfall phase = QCD axion
 - Cosmologically determined PQ scale (axion decay constant)

$$f_a \approx \frac{3.8 \times 10^{11} \,\mathrm{GeV}}{\lambda^{1/4}} \left(\frac{H_{\mathrm{inf}}}{10^4 \mathrm{GeV}}\right)^{1/2}$$

- Contribution of the QCD axion to dark matter
 - Domain-wall number = 1 to avoid the domain-wall problem
 - Axions from misalignment and more efficiently from domain-walls bounded by string

$$\Omega_a h^2 \approx 0.54 \times \left(\frac{\Lambda_{\rm QCD}}{400 \,{\rm MeV}}\right) \left(\frac{f_a}{10^{11} {\rm GeV}}\right)^{1.19} \qquad H_{\rm inf} \lesssim \sqrt{\lambda} \times 10^4 \,{\rm GeV}$$

Hiramatsu, Kawasak, Saikawa, Sekiguchi 2012

• Also other possibilities: $U(1)_{\chi}$ as $U(1)_L$ or local $U(1)_{B-L}$

Conclusions

5. Conclusions

Axion-driven hybrid inflation over a barrier

- Essential role by a **potential barrier** which diminishes as the axion-like inflation evolves
 - Separation of the scales of inflation and waterfall transition
- Inflaton
 - Decay constant well below the Planck scale
 - Relation between its mass and decay constant in terms of inflation scale: ALP searches
 - Potential to contribute to dark matter
- Waterfall sector
 - Wide allowed range of the inflation scale
 - Possibility to resolve other SM puzzles, e.g. PQ scale determined cosmologically
 - Rich structures: **Bubbles**, cosmic strings, ...

Thank you for your interest!