Cooling of young neutron stars and dark gauge bosons

Deog Ki Hong

Pusan National University, Busan, S. Korea

Feb. 1, 2020

CAU BSM workshop

Work done with Seokhoon Yun and Chang Sub Shin

arXiv:2012.05427

<ロ> (四) (四) (三) (三) (三) (三)

Motivation Motivation

Cooling of NS and Dark gauge bosons

Conclusions

<ロト<部ト<Eトを目り 2/18

Motivation

What is neutron star?

Neutron star appears as a remnant of supernova explosion

Motivation

Two young neutron stars: (1) Cas-A Cas A Neutron Star

images from Chandra's webpage

- In 1999, Chandra found a point source at the center of Cas A.
- X-ray spectrum is consistent with a thermal emission of Neutron Star with a carbon atmosphere, mass $M = (1.4\pm0.3)$ Msun, and radius R = (11-13) km.

[W.C.G.Ho, C.O.Heinke, '09], [W.C.G.Ho, K.G.Elshamouty, C.O.Heinke, A.Y.Potekhin, '14].

• and,....

(A slide from Hamaguchi 2019)

Motivation

Standard cooling scenario of NS

Inside NS nucleons and electrons are in chemical equilibrium:

$$n \rightarrow p + e^- + \bar{\nu}_e \leftrightarrow p + e^- \rightarrow n + \nu_e$$

- However neutrinos are not in thermal equilibrium and escape NS, taking energy away by Direct Urca till T ~ 10⁹ K.
- Then the modified Urca (MU) takes over till $6 \times 10^5 K$.

Motivation

Rapid cooling of Cas-A

- \blacktriangleright The surface temperature has decreased $\sim 4\%$ for 15 years.
- The rapid cooling might be due to the superfluidity in the core. (Heinke-Ho 2010; Ho et al 2015; others)

 If confirmed, it is the first evidence of superfluidity in NS, predicted by Migdal (1959) and Baym (1969).

Motivation

Rapid cooling of Cas-A

Effect of pairing for NS cooling

3. Triggering of the "pair breaking and formation" (PBF) emission

Motivation

Two young neutron stars: (2) NS1987a

- SN 1987A was a type II SN in the Large Magellanic Cloud.
- The remnant is consistent with NS of R = 25 km and $T \sim 5 \times 10^6 \text{ K}$. (Page et al. arXiv:2004.06078)

Figure: 2016

Figure: February 23, 1987

<ロト < 部ト < 目ト < 目ト 目 のQで 8/18

Dark gauge bosons from NS

Light dark gauge bosons that couples weakly to nucleons might upset the ν cooling fit (DKH+Shin+S. Yun, 2020):

Figure: dark photons Figure: U(1)_{B−L} gauge bosons
 Constraints on axions from Cas-A are compatible with SN1987a bounds. (Hamaguchi et al 2018)

Dark gauge bosons from NS

Global constraints on dark gauge bosons.

Dark gauge bosons from NS

The effective Lagrangian for dark gauge bosons:

$$egin{aligned} \mathcal{L}_{\mathrm{eff}} &=& -rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} - rac{1}{4} \mathcal{F}'_{\mu
u} \mathcal{F}'^{\mu
u} - rac{1}{2} m_{\gamma'}^2 \mathcal{A}'_\mu \mathcal{A}'^\mu \ &+ rac{arepsilon}{2} \mathcal{F}_{\mu
u} \mathcal{F}'^{\mu
u} + e \mathcal{A}_\mu J^\mu_{\mathrm{EM}} + e' \mathcal{A}'_\mu J'^\mu \,, \end{aligned}$$

Photons have medium effects:

$$\begin{split} \Pi_{\rm T} &= \omega_{\rm P}^2 \left[1 + \frac{1}{2} G \left(v_*^2 k^2 / \omega^2 \right) \right] \equiv \pi_{\rm T}, \\ \Pi_{\rm L} &= \omega_{\rm P}^2 \frac{k^2}{\omega^2} \frac{1 - G \left(v_*^2 k^2 / \omega^2 \right)}{1 - v_*^2 k^2 / \omega^2} \equiv \frac{k^2}{\omega^2 - k^2} \pi_{\rm L}, \end{split}$$

where $\omega_{\rm P}$ is the plasma frequency, v_* denotes the typical electron velocity in the medium, and G(x) is given as

$$G(x) = \frac{3}{x} \left(1 - \frac{2x}{3} - \frac{1 - x}{2\sqrt{x}} \ln \frac{1 + \sqrt{x}}{1 - \sqrt{x}} \right).$$

Dark gauge bosons from NS

The effective couplings of dark gauge bosons in cold medium:

Model	$e_{ m eff}^{ m e}$	$e^{ m p}_{ m eff}$	$e_{ m eff}^{ m n}$
Dark photon	$\varepsilon em_{\gamma'}^2/\pi_{\mathrm{T,L}}$	$-\varepsilon em_{\gamma'}^2/\pi_{\mathrm{T,L}}$	-
$U(1)_{B-L}$	$e'm_{\gamma'}^2/\pi_{ m T,L}$	$-e'm_{\gamma'}^2/\pi_{ m T,L}$	e'

Pair formation and pair breaking (PBF) by dark gauge bosons:

$$\psi + \psi \to X$$
 or $\psi \to \psi_c + X$.

Dark gauge bosons from NS

The dark gauge boson emissivity from PBF:

$$Q_V^{\rm PBF} = 2 \int \frac{\mathrm{d}^3 \vec{k}}{2\omega (2\pi)^3} \mathrm{d} W_{i \to f} \omega f_F\left(\frac{\epsilon_p}{T}\right) f_F\left(\frac{\epsilon_{p'}}{T}\right)$$

with the transition rate

$$\mathrm{d}W_{i\to f} = \frac{\mathrm{d}^3\vec{p}}{(2\pi)^3} \frac{\mathrm{d}^3\vec{p}'}{(2\pi)^3} |M|^2 \times (2\pi)^3 \delta(\epsilon_p + \epsilon_{p'} - \omega) \delta^3(\vec{p} + \vec{p}' - \vec{k})$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Dark gauge bosons from NS

The emissivity in the HDL approximation:

$$Q_{\gamma',\mathrm{L}}^{\mathrm{p}^{1}\mathcal{S}_{0}} \simeq g'^{2}m_{\mathrm{p}}^{*}|ec{p}_{F,\mathrm{p}}|T^{3}igg(rac{m_{\gamma'}^{6}}{\pi_{\mathrm{L}}^{2}T^{2}}igg)igg(rac{8v_{F,\mathrm{p}}^{4}F_{3}\left(z_{\mathrm{p}^{1}\mathcal{S}_{0}}
ight)}{9\,\pi^{3}}igg),$$

▶ For $U(1)_{B-L}$ gauge bosons

$$Q_{B-L}^{\mathrm{n}^{3}\!P_{2}}\simeq e^{\prime2}m_{\mathrm{n}}^{*}|ec{p}_{F,\mathrm{n}}|\,\mathcal{T}^{3}\left(rac{4v_{F,\mathrm{n}}^{4}F_{1}\left(z_{\mathrm{n}^{3}\!P_{2}}
ight)}{15\pi^{4}}
ight)\,,$$

From the phase space integration

$$F_n(z_i) = \int \frac{\mathrm{d}\Omega}{4\pi} \int_1^\infty \mathrm{d}y \, \frac{z_i^{n+2} y^n}{\sqrt{y^2 - 1}} f_F(z_i y)^2$$

with $z_i = \Delta_i / T$.

<ロト < 部ト < 言ト < 言ト 言 のへで 14/18

Dark gauge bosons from NS

In the crust the bremsstrahlung emission is dominant and comparable:

$$Q_{\gamma'}^{
m eZ} \simeq g'^2 |ec{p}_{F,
m e}| T^4 \left(rac{m_{\gamma'}^6}{16\pi^4 T^2 \pi_L^2}
ight) \sum_{ec{K}} G\left(v_{\parallel},t
ight)$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

15/18

where G is the lattice function.

Dark gauge bosons from NS

 Core and crust, each channel contributions (DKH+Shin+S. Yun, 2020):

Figure: dark photons

Figure: $U(1)_{\rm B-L}$ gauge bosons

Conclusions

- Light dark gauge bosons do have an interesting contraints from the rapid cooling of Cas-A:
- When $m < \mathcal{O}(0.1) \,\mathrm{MeV}$, we find for the dark photons

$$\varepsilon m_{\gamma'} < 1.5 imes 10^{-8} \, {
m MeV}$$

▶ For the U(1)_{B−L} gauge boson of mass < O(0.1) MeV its couplings should be</p>

$$e' < 10^{-13}$$

 Our fitting with Cas-A is consistent with another young neutron star, NS1987.

Conclusions

Constraints on dark gauge bosons from Cas-A

