Hunting for New Physics in Neutrino Oscillation Experiments

Joachim Kopp (CERN & Uni Mainz) Chung-Ang University BSM Workshop | 1st February 2021

Outline

- **Sterile** Neutrinos
- **Mew Neutrino Interactions**
- Mear Detectors

Neutrino Oscillation Experiments

Current Neutrino Flagships

NOvA

Blair (T2K) 1509.08889

What we Know About Neutrino Oscillations

image credit: NuFit 5.0

What we Know About Neutrino Oscillations

image credit: NuFit 5.0

In this talk we will look for dents in this picture

Sterile Neutrinos?

Anomalies in Short Baseline Oscillations

Anomalies in Short Baseline Oscillations

\mathcal{I} LSND / MiniBooNE: anomalous $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

IGU

erc

Neutrino **PLATFORM** \mathcal{M} LSND / MiniBooNE: anomalous $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

Markov Reactor & Gallium Experiments: anomalous ν_e disappearance

Mention et al., <u>1101.2755</u>

erc

Add extra neutrino flavor, promote mixing matrix to 4×4
Oscillation channels are related:

$$\begin{split} P_{\nu_e \to \nu_e} \simeq 1 - 2|U_{e4}|^2 (1 - |U_{e4}|^2) \\ P_{\nu_\mu \to \nu_\mu} \simeq 1 - 2|U_{\mu 4}|^2 (1 - |U_{\mu 4}|^2) \\ P_{\nu_\mu \to \nu_e} \simeq 2|U_{e4}|^2 |U_{\mu 4}|^2 \\ (\text{for } 4\pi E / \Delta m_{41}^2 \ll L \ll 4\pi E / \Delta m_{31}^2) \\ \end{split}$$

Global Fit in 3+1 Model

Dentler Hernandez JK Machado Maltoni Martinez Schwetz, <u>1803.10661</u> see also works by Collin Argüelles Conrad Shaevitz, <u>1607.00011</u> Gariazzo Giunti Laveder Li, <u>1703.00860</u>

Global Fit in 3+1 Model

Dentler Hernandez JK Machado Maltoni Martinez Schwetz, <u>1803.10661</u> see also works by Collin Argüelles Conrad Shaevitz, <u>1607.00011</u> Gariazzo Giunti Laveder Li, 1703.00860

 $|U_{\mu 4}|^2$

erc

Sterile Neutrino production in the target, followed by $v_s \rightarrow v + \gamma$ decay in the detector (MiniBooNE cannot distinguish e^{\pm} and γ)

Fischer Hernández-Cabezudo Schwetz, 1909.09561

- Sterile Neutrino production in the detector, followed by $v_s \rightarrow v + \gamma$ decay Gninenko, 1009.5536
- Sterile Neutrino production in the detector, followed by $v_s \rightarrow v + (A' \rightarrow e^+e^-)$ decay (on-shell or off-shell)

Bertuzzo Jana Machado Zukanovich-Funchal, 1807.09877 Ballett Pascoli Ross-Lonergan, 1808.02915

Sterile Neutrino production in the target, followed by $v_s \rightarrow v_{e,\mu,\tau} + \phi$ decay in flight Dentler Esteban JK Machado, 1911.01427

Extended Sterile Neutrino Models

Sterile Neutrino production in the tail $v_s \rightarrow v + \gamma$ decay in the detector (MiniBooNE cannot distinguish e[±] and γ)

difficulty reproducing angular distribution of MiniBooNE events

Fischer Hernández-Cabezudo Schwetz, 1909.09561

Sterile Neutrino production in the detector, followed by $v_s \rightarrow v + \gamma$ decay Gninenko, 1009.5536

Sterile Neutrino production in the detector, followed by $v_s \rightarrow v + (A' \rightarrow e^+e^-)$ decay (on-shell or off-shell)

Bertuzzo Jana Machado Zukanovich-Funchal, 1807.09877 Ballett Pascoli Ross-Lonergan, 1808.02915

Sterile Neutrino production in the target, followed by $v_s \rightarrow v_{e,\mu,\tau} + \phi$ decay in flight Dentler Esteban JK Machado, 1911.01427

MiniBooNE Backgrounds

$\Delta \to \gamma \, \mathsf{N}$

$\Delta \to \gamma \, \mathsf{N}$

$\Delta \rightarrow \gamma N$

- $\mathbf{M} \Delta$ production rate measured in $\Delta \rightarrow \pi + N$
- Pions may be absorbed on their way out of the nucleus
 - **O** may excite another Δ resonance
 - $\rightarrow \gamma N$ enhanced
 - background prediction enhanced
 - **O** or may be absorbed
 - control region suppressed
 - background prediction enhanced Ioannisian 1909.08571

Giunti Ioannisian Ranucci <u>1912.01524</u>

These effects have been modelled and have been taken into account by MiniBooNE

$\Delta \to \gamma \, \mathsf{N}$

Mow reliable is the background estimate?

No successful explanation for the anomaly exists But **theory uncertainties** are large and difficult to quantity

New Neutrino Interactions

EFT valid below the electroweak scale

$$\mathcal{L}_{\text{NSI,NC}} = \sum_{f,\alpha,\beta} 2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}) (\bar{f}\gamma^{\mu}Pf) + \text{h.c.}$$

$$\mathcal{L}_{\text{NSI,CC}} = \sum_{f,f',\alpha,\beta} 2\sqrt{2G_F} \varepsilon_{\alpha\beta}^{JJ',P} (\bar{\nu}_{\alpha}\gamma_{\mu}P_L\ell_{\beta}) (f'\gamma^{\mu}Pf) + \text{h.c.}$$

JG

- **MC**: non-standard matter effects
- CC: anomalous production and detection

Anomalous Neutral Currents

Coloma Esteban Gonzalez-Garcia Maltoni arXiv:1911.09109

Anomalous Charged Currents

\mathbf{M} Interesting new opportunity: FASERv at the LHC

https://faser.web.cern.ch/about-the-experiment/detector-design/fasernu

Anomalous Charged Currents

Near Detectors

- Large systematic uncertainties in
 - O Composition of neutrino beam
 - **O** Neutrino interaction cross sections
- Dedicated detectors close to the source ("near detectors") measure the unoscillated neutrino event rate.

- Large systematic uncertainties in
 - O Composition of neutrino beam
 - **O** Neutrino interaction cross sections
- Dedicated detectors close to the source ("near detectors") measure the unoscillated neutrino event rate.

Liquid Argon TPC

• similar to far detector (cancel systematic uncertainties)

High Pressure Gas TPC + ECal

• excellent event reconstruction• magnetic field

Liquid Argon TPC

• similar to far detector (cancel systematic uncertainties)

High Pressure Gas TPC + ECal

• excellent event reconstruction• magnetic field

Liquid Argon TPC

• similar to far detector (cancel systematic uncertainties)

Beam axis

- CH₂ → neutrino interactions on free protons (no nuclear physics)
 • Noutron tagging
- Neutron tagging

Movable Platform

to take data both on-axis and off-axis (different beam spectra)

High Pressure Gas TPC + ECal

ND-GAr

• excellent event reconstruction• magnetic field

Liquid Argon TPC

• similar to far detector (cancel systematic uncertainties)

Example: Heavy Neutral Leptons

Example: Heavy Neutral Leptons

Example: Heavy Neutral Leptons

Summary

Sterile Neutrinos:

- interesting hints, but inconsistent with null results
- extended models?
- **O** SM explanations?
- **Mew Neutrino Interactions**
 - O anomalous matter effects
 - **O** new CC interactions: opportunities with LHC neutrinos

Mear Detectors

- O parasitical "beam-dump" program
- DUNE-PRISM: improved S/B ratio off-axis

Thank You!

Bonus Slides

More on MiniBooNE

$\Delta \to \pi \gamma$

Brdar JK, in preparation

Testing the MiniBooNE Anomaly

Solution FNAL Short-Baseline Program: 3 LAr detectors **Condistinguish** γ (background) from e[±] (signal)

Decaying Sterile Neutrinos?

Idea: production of sterile neutrinos that quickly decay back into active neutrinos (+ light new scalar): $v_s \rightarrow v_a + \Phi$

$$\mathcal{L} \supset -g \,\bar{\nu}_s \nu_s \phi - \sum_{a=e,\mu,\tau,s} m_{\alpha\beta} \,\bar{\nu}_\alpha \nu_\beta$$

Idea: production of sterile neutrinos that quickly decay back into active neutrinos (+ light new scalar): $v_s \rightarrow v_a + \Phi$

Excellent fit to MiniBooNE data

- Idea: production of sterile neutrinos that quickly decay back into active neutrinos (+ light new scalar): $v_s \rightarrow v_a + \phi$
- Excellent fit to MiniBooNE data
- Consistent with all null results (incl. cosmology)

- Idea: production of sterile neutrinos that quickly decay back into active neutrinos (+ light new scalar): $v_s \rightarrow v_a + \Phi$
- Excellent fit to MiniBooNE data
- Consistent with all null results (incl. cosmology)
- with small extensions: consistent also with LSND + reactors + gallium

More on the Reactor Anomaly

Predicting Reactor Neutrino Fluxes

\overline{v}_e flux from nuclear reactors is ~ 3.5% (~ 3 σ) below prediction

\mathbf{M} Predicting reactor $\overline{\mathbf{v}}_{e}$ fluxes:

- **O** Use measured β spectra from ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fission
- **O** Convert to \overline{v}_e spectrum
- **O** For single β decay: $E_v = Q E_e$
- **O** Reality: thousands of decay branches, many not known precisely
- O Use (incomplete) information from nuclear data tables ...
- **O** ... complemented by a fit to "effective decay branches"

Mueller et al. <u>1101.2663</u>, Huber <u>1106.0687</u>

- **Solution** Four fissile isotopes in a reactor: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- Different fission product distributions + secondary decays
- Analyze isotope-dependence of the anomaly
 - **O** "New Physics" would be isotope-independent
 - Problems with flux prediction are typically different for different isotopes

Isotope-Dependent Fluxes

Isotope-Dependent Fluxes

M Reactor fuel composition evolves with time ("burnup")

Isotope-Dependent Fluxes

M Reactor fuel composition evolves with time ("burnup")

Effective fraction of ²³⁹Pu fissions

Reactor fuel composition evolves with time ("burnup") \mathbf{M} Measure neutrino event rate as function of F_{239}

Reactor fuel composition evolves with time ("burnup")
 Measure neutrino event rate as function of F₂₃₉
 New Physics: same deficit for all isotopes
 Flux Misprediction: isotope-dependent deficits

New Physics or Flux Uncertainty?

Daya Bay <u>1704.01082</u>

New Physics or Flux Uncertainty?

New Physics or Flux Uncertainty?

Is the flux from each isotope really time and burnup-independent?

More on Global Fits

Caveats

Non-Linear Isotopes

Neutron capture on fission products

Extra neutron flux/burnup dependence in v flux

Jaffke Huber 1510.08948, Daya Bay 1904.07812

Global Fit to v_e Appearance Data

Dentler et al., <u>1803.10661</u>

Global Fit to v_e Appearance Data

Global fit to v_e appearance data consistent.

Dentler et al., 1803.10661

Global Fit to v_e Disappearance

Dentler et al., 1803.10661

