New Mechanism for Baryon Asymmetry and Connection with Dark Matter

Seoul National University of Science and Technology

Sin Kyu Kang September 6, 2019

Based on Phys. Rev. D102, 055009(2020) In collaboration with Arnab Dasgupta, Dev Bhupal, Y. Zhang

Outline

- Introduction
 - brief review on baryon asymmetry of Universe (BAU)
- Baryon asymmetry from scattering
 - WIMPy baryogensis/leptogensis
- New mechanism for baryon asymmetry
- Conclusion

Unsolved mysteries of the Universe

unknown

Total density = critical density

Present composition:

- Inflation explains $\rho = \rho_{cr}$
- Big-bang explains $n_e = n_p$, $n_{4He}/n_p = 0.25/4$, $n_D/n_p = 3x10^{-5}/2$, $n_n = 3n_v/22$, etc.
- We do not understand n_{B}/n_{γ}

• Measuring $n_B / n_{\gamma} = 6 \cdot 10^{-10}$ $n_B \equiv n_B - n_{\overline{B}}$

-
$$T_{now} \sim 3K$$
 directly tells $n_{\gamma} \sim T^3_{now} \sim 400/cm^3$.

(1) Anisotropies in the cosmic microwave background:

(2) Big Bang Nucleosynthesis: the D abundancy implies $n_B/n_{\gamma} = (6.1 \pm 0.5) \times 10^{-10}$. because many γ push in the \leftarrow direction reactions like $p \ n \ \leftarrow D \ \gamma$

Their agreement makes the result trustable.

Why is our present Universe matter dominated?

 $n_B/n_{\gamma} = 6 \cdot 10^{-10}$ is a strange number, because means that when the universe cooled below T ~ m_p , we survived to nucleon/antinucleon annihilations as

Nucleons and anti-nucleons got together...

They have all annihilated away except for the tiny difference.

 That created tiny excess of matter in the present universe

$$n_{B}/n_{\gamma} = 6 \cdot 10^{-10}$$

Sakharov's Conditions

Three basic ingredients necessary for dynamical generation of a net baryon asymmetry from an initially B symmetric Universe

- Baryon Number (B) violation
- C and CP violation.

$$\Gamma(X \to Y + B) \neq \Gamma(\overline{X} \to \overline{Y} + \overline{B})$$

 $\Gamma(X \to q_L + q_L) + \Gamma(X \to q_R + q_R) \neq \Gamma(\overline{q}_L + \overline{q}_L) + \Gamma(\overline{q}_R + \overline{q}_R)$

• Departure from thermal equilibrium.

Leptogenesis

- The SM seems to fail to satisfy Sakharov's conditions.
 - insufficient CP violation in the quark sector
 - Higgs Mass is too large to support a strong first order electroweak phase transition.
- New source of CP violation is necessarily required.
- Seesaw models provide a common framework to achieve tiny neutrino masses and baryon asymmetry of our universe.

→ Baryogenesis through Leptogenesis (Fukugita, Yanagida 86):

Three basic steps

(1) Generation of L asymmetry by the decay of heavy Majorana neutrino

• CP asymmetry is produced by the interference between the tree and the loop diagrams for the decay of right-handed neutrino

Three basic steps

(2) Partial washout of the asymmetry due to inverse decay and scattering

(3) Conversion of the left-over *L* asymmetry to

B asymmetry via sphaleron at T > T sph.

conversion factor :
$$\eta_B = -\left(\frac{28}{79}\right)\eta_L$$

Baryogenesis & Dark Matter

- The observed BAU and DM abundance are of the same order $\Omega_{DM} \approx 5 \Omega_B$
- Although this could be just a coincidence, it has motivated several studies trying to relate their origins.
- Asymmetric DM, WIMPy Baryogenesis etc. are some of the scenarios proposed so far.
- While generic implementations of these scenarios tightly relate BAU & DM abundances, there exists other implementations too where the connections may be loose.

Baryon asymmetry from scattering

- WIMPy baryogenesis
- Baryon asymmetry can be obtained by *B*−violating dark matter scattering → cogenesis of baryon asymmetry and dark matter (two miracles happen in one framework !)

(Cui, Randall, Shuve, JHEP, 2012)

Baryon asymmetry from scattering

- WIMPy leptogenesis
- Baryon asymmetry can be obtained by *L*-violating dark sector scattering in scotogenic model (Borah, Dasgupta, SK, EPJC 2020)

 \rightarrow SM+ 3N_k + inert SU(2) scalar doublet η (E. Ma, PRD73, 2006)

- L -violating scattering processes contributing to ΔL :
 - co-annihilations : $N_k \eta \rightarrow L, X (= \gamma, W, Z, h)$
 - annihilations : $\eta\eta \rightarrow LL$ through t-channel

Scalar Doublet η as Dark Matter

• co-annihilation processes $N_k\eta \rightarrow L, X(=\gamma, W, Z, h)$ lead to ΔL

Right-handed neutrino as dark matter

- co-annihilation processes $N_k\eta \rightarrow L, X(=\gamma, W, Z, h)$ lead to ΔL
- annihilation processes $\eta\eta \rightarrow LL$ through t-channel mediated by N_i

• In this scenario, we require N_1 to be lighter than η whose annihilations are responsible for creating the asymmetry.

New idea on L/B asymmetry

Interference between two sets of tree-level decay or scattering diagrams with the same $|i_i\rangle$ and $|f_i\rangle$

- A net nonzero L/B asymmetry between $|i_i\rangle$ and $|f_i\rangle$
- At least, one set of decay or scattering amplitude is complex such that $|\mathcal{M}(i \to f)|^2 \neq |\mathcal{M}(\bar{\iota} \to \bar{f})|^2$

• total amplitude for the process : $i_1i_2 \rightarrow f_1f_2$

 $\mathcal{M} = (\mathcal{C}_1 \mathcal{M}_1 + \mathcal{C}_2 \mathcal{M}_2) \mathcal{W}$

 $\begin{bmatrix} C_i & \text{contain only the couplings,} \\ W & \text{contains wave functions for the particles} \\ M_i & \text{stand for the rest of the sub-amplitude} \end{bmatrix}$

• total amplitude for the conjugate process : $\overline{\iota}_1\overline{\iota}_2 \rightarrow \overline{f}_1\overline{f}_2$

 $\bar{\mathcal{M}} = (\mathcal{C}_1^*\mathcal{M}_1 + \mathcal{C}_2^*\mathcal{M}_2)\mathcal{W}^*$

• CP asymmetry is proportional to

$$\delta \equiv |\mathcal{M}|^2 - |\bar{\mathcal{M}}|^2$$

$$= -4 \text{Im}[\mathcal{C}_1 \mathcal{C}_2^*] \text{Im}[\mathcal{M}_1 \mathcal{M}_2^*] |\mathcal{W}|^2$$

• Source of the complexity of \mathcal{M}_i :

imaginary part of Breit-Wigner propagator of unstable mediator

 \rightarrow finite width of mediators

$$\mathcal{M}_j = \frac{A_j}{x_j - m_j^2 + (im_j\Gamma_j)},$$

Then,

$$\operatorname{Im}[\mathcal{M}_{1}\mathcal{M}_{2}^{*}] = \frac{A_{1}A_{2}[(x_{1}-m_{1}^{2})m_{2}\Gamma_{2}-(x_{2}-m_{2}^{2})m_{1}\Gamma_{1}]}{[(x_{1}-m_{1}^{2})^{2}+m_{1}^{2}\Gamma_{1}^{2}][(x_{2}-m_{2}^{2})^{2}+m_{2}^{2}\Gamma_{2}^{2}]}$$

• To achieve L/B asymmetry, denominator should not be zero as well as $\operatorname{Im}[\mathcal{C}_1\mathcal{C}_2^*] \neq 0$

- 3 possibilities for $\text{Im}[\mathcal{M}_1 \mathcal{M}_2^*] \neq 0$
- Both processes in *s*-channel, $x_{1,2}$ replaced by *s*, δ can be enhanced in the vicinity of *s*, $s - m_i^2 \simeq m_i \Gamma_i$
- one in *s*-channel, the other in t(u) -channel, δ can be enhanced at *s*-channel,

$$\operatorname{Im}[\mathcal{M}_{1}\mathcal{M}_{2}^{*}] \simeq -\frac{A_{1}A_{2}m_{1}\Gamma_{1}}{[(s-m_{1}^{2})^{2}+m_{1}^{2}\Gamma_{1}^{2}](x-m_{2}^{2})}$$

- Both in t(u)-channel, width terms can be neglected, $Im[\mathcal{M}_1\mathcal{M}_2^*]$ $\simeq \frac{A_1A_2[(x_1-m_1^2)m_2\Gamma_2 - (x_2-m_2^2)m_1\Gamma_1]}{(x_1-m_1^2)^2(x_2-m_2^2)^2}$ CP asymmetry is suppressed by $m_i\Gamma_i/(x_i-m_i^2)$

A model to realize the idea

- Scotogenic model with type II seesaw :
 - Z_2 odd: an inert SU(2) doublet scaler: $\eta = (\eta^+, \eta^0)$, 3 N_{R_i} ,
 - Z_2 even: a SU(2) triplet scalar $\Delta = (\Delta^{++}, \Delta^{+}, \Delta^{0})$
- assumptions :
 - asymmetry generated by N_{R_i} or Δ is not relevant at T of interest
 - no mixing and CPV in N_{R_i} sector
 - η^0 DM candidate
- Relevant Yukawa Lagrangian: $-\mathcal{L}_Y = Y_{i\alpha}^N \tilde{\eta}^{\dagger} L_{\alpha} N_i + Y_{\alpha\beta}^{\Delta} \overline{L_{\alpha}^C} \Delta L_{\beta} + \text{H.c.}$
- The mass term $V \supset \mu_{\eta\Delta} \eta^{\dagger} \Delta^{\dagger} \tilde{\eta} + \text{H.c.}$ to be complex, crucial for CPV Tree mass(Type-II)

• Neutrino masses: $m_{\nu} = (Y^N)^{\mathsf{T}} \Lambda Y^N + Y^{\Delta} v_{\Delta},$

$$\sum_{\substack{n' \\ n_{k} \\ n_$$

E. Ma, Phys. Rev. D73, 077301 (2006)

Generation of L asymmetry

achieved by $\mathbf{2} \rightarrow \mathbf{2} \ \Delta \mathbf{L} = \mathbf{2}$ scattering : $\eta \eta \rightarrow L_{\alpha} L_{\beta}$

$$\delta = 4 \sum_{i} \operatorname{Im}[\mu_{\eta\Delta} \{Y^{N} Y^{\Delta^{*}} (Y^{N})^{\mathsf{T}}\}_{ii}]$$
$$\times \frac{sm_{N_{i}} m_{\Delta} \Gamma_{\Delta}}{(s - m_{\Delta}^{2})^{2} + m_{\Delta}^{2} \Gamma_{\Delta}^{2}} \left[\frac{1}{t - m_{N_{i}}^{2}} + \frac{1}{u - m_{N_{i}}^{2}}\right]$$

$$Y_{i\alpha}^{N} = F_{\mathrm{I}}^{1/2} (\Lambda^{-1/2} \mathcal{O} \hat{m}_{\nu}^{1/2} U_{\mathrm{PMNS}}^{\dagger})_{i\alpha},$$

 $\hat{m}_{\nu} = \{m_{\nu_1}, m_{\nu_2}, m_{\nu_3}\}$

parameterizing

 $Y^{\Delta}_{\alpha\beta} = F_{\mathrm{II}} v^{-1}_{\Delta} (U^*_{\mathrm{PMNS}} \hat{m}_{\nu} U^{\dagger}_{\mathrm{PMNS}})_{\alpha\beta},$

Boltzmann eqs.

Cogenesis of DM relic density and lepton asymmetry is governed by

$$\begin{split} \frac{\mathrm{d}Y_{\eta}}{\mathrm{d}z} &= \frac{-s}{H(z)z} [(Y_{\eta}^{2} - (Y_{\eta}^{\mathrm{eq}})^{2})\langle \sigma v \rangle (\eta\eta \to \mathrm{SMSM})], & z = m_{\eta}/T, \\ H(z) &= \sqrt{\frac{8\pi^{3}g_{*}}{90}} \frac{m_{\eta}^{2}}{z^{2}M_{\mathrm{Pl}}} \\ \frac{\mathrm{d}Y_{\Delta L}}{\mathrm{d}z} &= \frac{s}{H(z)z} [(Y_{\eta}^{2} - (Y_{\eta}^{\mathrm{eq}})^{2})\langle \sigma v \rangle_{\delta}(\eta\eta \to LL) & Y_{\Delta L} = Y_{L} - Y_{\bar{L}}, \\ &- 2Y_{\Delta L}Y_{\ell}^{\mathrm{eq}}r_{\eta}^{2}\langle \sigma v \rangle_{\mathrm{tot}}(\eta\eta \to LL) & Y_{i}^{(\mathrm{eq})} \equiv n_{i}^{(\mathrm{eq})}/s \\ &- 2Y_{\Delta L}Y_{\eta}^{\mathrm{eq}}\langle \sigma v \rangle (\eta\bar{L} \to \eta L)], & r_{\eta} = Y_{\eta}^{\mathrm{eq}}/Y_{\ell}^{\mathrm{eq}} \\ \langle \sigma v \rangle_{\mathrm{tot}}(\eta\eta \to LL) \equiv \langle \sigma v \rangle (\eta\eta \to LL) + \langle \sigma v \rangle (\eta^{*}\eta^{*} \to \bar{L}\,\bar{L}) \end{split}$$

$$\langle \sigma v \rangle_{\delta} (\eta \eta \to LL) \equiv \langle \sigma v \rangle (\eta \eta \to LL) - \langle \sigma v \rangle (\eta^* \eta^* \to \bar{L} \, \bar{L})$$

 $\Omega_{\rm DM}h^2 = 2.755 \times 10^8 Y_{\eta}(m_{\eta}/{\rm GeV})$ at DM freeze out temperature $T_f \simeq m_{\eta}/20$ $Y_{\Delta B} = -(28/51)Y_{\Delta L}$ at sph. transition temperature $T_{\rm sph} = (131.7 \pm 2.3) \,{\rm GeV}$ A crucial criterion for achieving successful asymmetry:

washout of the asymmetry must freeze out before the freeze-out of DM annihilations.

 $\langle \sigma v \rangle_{\text{tot}}(\eta \eta \to LL) < \langle \sigma v \rangle(\eta \eta \to \text{SMSM})$

Similar to WIMPy baryogenesis

- In WIMPy, both washout and DM freeze-out are governed by the same final states, so, one of the final states should be massive to satisfy the condition.
- But, in our mechanism, dominant process for DM freeze-out : $\eta\eta \rightarrow W^+W^-$ & the dominant washout process : $\eta\eta \rightarrow LL$
- So, the freeze-out condition is satisfied for suitable choice of Yukawa couplings without requiring any of the final states to be massive.

Numerical Results

3 benchmark points

	BP1	BP2	BP3
v_{Δ}	1 keV	1 keV	1 keV
μ_{η}	600 GeV	1 TeV	1.5 TeV
$\mu_{H\Delta}$	33.6 keV	93.5 keV	210 keV
$\mu_{\eta\Delta}$	15 <i>i</i> GeV	7.1 <i>i</i> GeV	6 <i>i</i> GeV
m_{N_1}	6 TeV	10 TeV	15 TeV
m_{N_2}	6.6 TeV	11 TeV	16.5 TeV
m_{N_2}	7.2 TeV	12 TeV	18 TeV
m_{n^0}	600 GeV	1 TeV	1.5 TeV
Δm_{n^0}	506 keV	300 keV	200 keV
$m_{n^{\pm}}$	606 GeV	1 TeV	1.5 TeV
m_{Λ^0}	1.2 TeV	2 TeV	3 TeV
$m_{\Lambda^{\pm}}$	1.2 TeV	2 TeV	3 TeV
$m_{\Delta^{\pm\pm}}$	1.2 TeV	2 TeV	3 TeV
λ_H^{-}	0.253	0.253	0.253
$\lambda_{H\eta}$	0.19	0.56	0.91
λ'_{Hn}	-0.19	-0.56	-0.91
$\lambda_{H\eta}^{\prime\prime}$	1×10^{-5}	1×10^{-5}	1×10^{-5}

 $\Delta m_{\eta^0} = m_{\eta_R} - m_{\eta_I}$

- We solve the BEs numerically for 3BPs in Table.
- ΔL coming from the standard decay of N_i will not come into play. (taking yukawa matrix appropriately)
- N_i are taken to be much heavier than η to avoid the wash-out of ΔL from the inverse decay $L_{\alpha}\eta \rightarrow N_i$

Net baryon number density $Y_{\Delta B}$, DM density $\Omega_{DM}h^2$, $n_{DM}^{eq}\langle\sigma\nu\rangle_{\delta}/H$ as a function of *T* for 3 BPs

Solid black line : $Y_{\Delta B}^{\rm obs} = (8.718 \pm 0.004) \times 10^{-11}$ dashed black line : $\Omega_{\rm DM}^{\rm obs} h^2 = 0.120 \pm 0.001$

Net baryon number density $Y_{\Delta B}$ as a function of m_{Δ} for 3 BPs

Net baryon number density $Y_{\Delta B}$ and $n^{eq} \langle \sigma v \rangle / H$ for the processes

 $(\eta\eta \to LL)_{\delta}, (\eta\eta \to LL)_{tot} \text{ and } (\eta\eta \to \text{SMSM})$ for $|\mu_{\eta\Delta}| = 1 \text{ GeV}, 10 \text{ GeV}, 100 \text{ GeV} \text{ and } 1 \text{ TeV}$ for the BP1 $v_{\Delta} = 0.1 \text{ eV}$ (left) $v_{\Delta} = 100 \text{ eV}$ (right)

BP1: 40 eV $\lesssim v_{\Delta} \lesssim 1.5$ MeV, 0.3 GeV $\lesssim |\mu_{\eta\Delta}| \lesssim 80$ GeV, BP2: 20 eV $\lesssim v_{\Delta} \lesssim 1.2$ MeV, 0.3 GeV $\lesssim |\mu_{\eta\Delta}| \lesssim 380$ GeV, BP3: 10 eV $\lesssim v_{\Delta} \lesssim 20$ MeV, 0.3 GeV $\lesssim |\mu_{\eta\Delta}| \lesssim 1.2$ TeV.

Collider signature

- The allowed range of v_{Δ} corresponding to $5 \times 10^{-9} \le Y_{\Delta} \le 3 \times 10^{-3}$ gives rise to prompt dilepton signals in the Δ^{++} decays for the triplet masses given in Table.
- The charged scalars η + can be produced in association with the neutral DM particle η^0 through the W boson

$$pp \rightarrow W^* \rightarrow \eta^{\pm} \eta^0 \rightarrow \eta^0 \eta^0 W^{(*)}$$

• For our chosen BPs, N_i are heavier than η and can only be produced at high-energy colliders from the off-shell decay

$$\eta^{\pm *} \to \mathscr{C}^{\pm}_{\alpha} N_{i} \longrightarrow \mathscr{C}^{\pm}_{\alpha} \eta^{\mp(*)} \to \mathscr{C}^{\pm}_{\alpha} \eta^{0} W^{\mp(*)}$$

 \rightarrow same sign leptons but with missing energy due to η^0

Conclusion

- We have shown a new mechanism for generation of baryon asymmetry from the interference between two tree processes containing BW propagators of unstable mediators.
- The interesting feature of this mechanism is that the baryon asymmetry depends on the decay width of the unstable dark sectors.
- The model we consider is readily testable in next generation colliders

Thank You