Generative Networks Tilman Plehn

AN basic

Generation

mversi

Invertible LHC Simulations with Generative Networks

Tilman Plehn

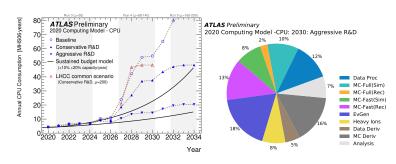
Universität Heidelberg

CAU BSM Workshop 2/2021

Orthogonal view on BSM searches

Searching for models — fundamental understanding of data

- precision theory
- precision simulations
- precision measurements
- ⇒ What's needed to keep the edge?



Orthogonal view on BSM searches

Networks

Searching for models — fundamental understanding of data

- precision theory
- precision simulations
- precision measurements
- ⇒ What's needed to keep the edge?

Precision event generation

- simulated event numbers ~ expected events [factor 25 for HL-LHC]
- general move to NLO/NNLO [1%-2% error]
- higher relevant multiplicities [jet recoil, extra jets, WBF, etc.]
- new low-rate high-multiplicity backgrounds
- cutting-edge predictions not through generators [N3LO in Pythia?]
- interpretation beyond specific models [jets+MET]

Tilman Plehn

GAN basic Generation

Orthogonal view on BSM searches

Searching for models ---- fundamental understanding of data

- precision theory
- precision simulations
- precision measurements
- ⇒ What's needed to keep the edge?

Precision event generation

- simulated event numbers \sim expected events <code>[factor 25 for HL-LHC]</code>
- general move to NLO/NNLO [1%-2% error]
- higher relevant multiplicities [jet recoil, extra jets, WBF, etc.]
- new low-rate high-multiplicity backgrounds
- cutting-edge predictions not through generators [N³LO in Pythia?]
- interpretation beyond specific models [jets+MET]

Three ways to use ML

- improve current tools: iSherpa, ML-MadGraph, etc
- new ideas, like fast ML-generator-networks
- conceptual ideas in theory simulations and analyses

Tilman Plehn

Generative networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

- neural network: learned function f(x) [regression, classification]
- can networks create new pieces of art? map random numbers to image pixels?
- train on 80,000 pictures [organized by style and genre]
 - generate flowers

Tilman Plehn

Generative networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

- neural network: learned function f(x) [regression, classification]
- can networks create new pieces of art? map random numbers to image pixels?
- train on 80,000 pictures [organized by style and genre]
- generate portraits

GANGoak

GANGogh [Bonafilia, Jones, Danyluk (2017)]

Generation

- neural network: learned function f(x) [regression, classification]

can networks create new pieces of art?
 map random numbers to image pixels?

- train on 80,000 pictures [organized by style and genre]

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

- trained on 15,000 portraits

- sold for \$432.500

⇒ ML all marketing and sales

GAN algorithm

Generating events

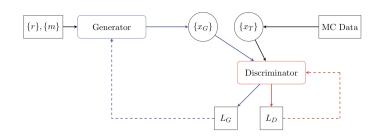
- training: true events $\{x_T\}$
 - output: generated events $\{r\} \rightarrow \{x_G\}$
- discriminator constructing D(x) by minimizing [classifier D(x) = 1, 0 true/generator]

$$L_D = \left\langle -\log D(x) \right\rangle_{x_T} + \left\langle -\log(1 - D(x)) \right\rangle_{x_G}$$

- generator constructing $r \rightarrow x_G$ by minimizing [D needed]

$$L_G = \big\langle -\log D(x) \big\rangle_{x_G}$$

- equilibrium $D = 0.5 \Rightarrow L_D = L_G = -\log 0.5$
- ⇒ statistically independent copy of training events



Tilman Plel

GAN basics

Generation

GAN algorithm

Generating events

- training: true events $\{x_T\}$

output: generated events $\{r\} \rightarrow \{x_G\}$

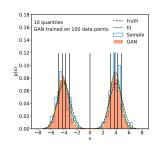
- discriminator constructing D(x) by minimizing [classifier D(x) = 1, 0 true/generator]
- generator constructing $r o x_G$ by minimizing <code>[D needed]</code>
- ⇒ statistically independent copy of training events

Generative network studies [review 2008.08558]

- Jets [de Oliveira (2017), Carrazza-Dreyer (2019)]
- Detector simulations [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]
- Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]
- Unfolding [Datta (2018), Omnifold (2019), Bellagente (2019), Bellagente (2020), Howard (2020)]
- Templates for QCD factorization [Lin (2019)]
- EFT models [Erbin (2018)]
- Event subtraction [Butter (2019)]
- Sherpa [Bothmann (2020), Gao (2020)]
- Basics [GANplification (2020), DCTR (2020)]
- Unweighting [Verheyen (2020), Backes (2020)]
- Superresolution [DiBello (2020), Baldi (2020)]

Warm-up: gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

- true function known compare GAN vs sampling vs fit
- quantiles with χ^2 -values

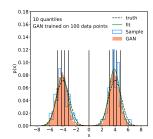


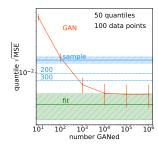
GAN basics

GANplification

Warm-up: gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

- true function known compare GAN vs sampling vs fit
- quantiles with χ^2 -values
- fit like 500-1000 sampled points GAN like 500 sampled points [amplifictation factor 5] requiring 10,000 GANned events





Tilman Ple

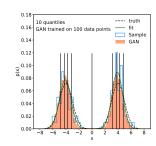
GAN basics

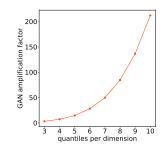
Inversion

GANplification

Warm-up: gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

- true function known compare GAN vs sampling vs fit
- quantiles with χ^2 -values
- fit like 500-1000 sampled points
 GAN like 500 sampled points [amplifictation factor 5]
 requiring 10,000 GANned events
- 5-dimensional Gaussian shell sparsely populated amplification vs quantiles
- fit-like additional information
- interpolation and resolution the key [NNPDF]
- ⇒ GANs enhancing training data





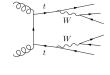
Filman P

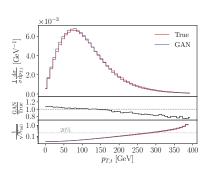
Generation

Inversi

How to GAN LHC events

- medium-complex final state $t\bar{t} \to 6$ jets t/\bar{t} and W^\pm on-shell with BW $6 \times 4 = 18$ dof on-shell external states $\to 12$ dof [constants hard to learn]
- flat observables flat [phase space coverage okay]
- direct observables with tails [statistical error indicated]
- reconstructed observables similar





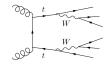
Tilman Pl

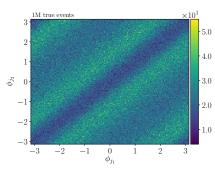
Generation

Inversion

How to GAN LHC events

- medium-complex final state $t\bar{t} \to 6$ jets t/\bar{t} and W^\pm on-shell with BW $6 \times 4 = 18$ dof on-shell external states $\to 12$ dof [constants hard to learn]
- flat observables flat [phase space coverage okay]
- direct observables with tails [statistical error indicated]
- reconstructed observables similar
- improved resolution [1M training events]





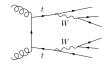
Tilman Pl

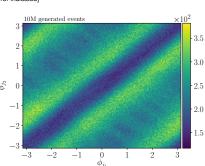
Generation

Inversion

How to GAN LHC events

- medium-complex final state $t\bar{t} \to 6$ jets t/\bar{t} and W^\pm on-shell with BW 6 × 4 = 18 dof on-shell external states \to 12 dof constants hard to learn!
- flat observables flat [phase space coverage okay]
- direct observables with tails [statistical error indicated]
- reconstructed observables similar
- improved resolution [10M generated events]



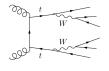


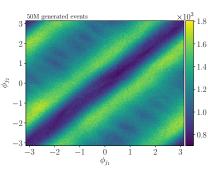
Tilman Ple

Inversi

How to GAN LHC events

- medium-complex final state $t\bar{t} \to 6$ jets t/\bar{t} and W^\pm on-shell with BW $6 \times 4 = 18$ dof on-shell external states $\to 12$ dof [constants hard to learn]
- flat observables flat [phase space coverage okay]
- direct observables with tails [statistical error indicated]
- reconstructed observables similar
- improved resolution [50M generated events]
- Forward simulation working



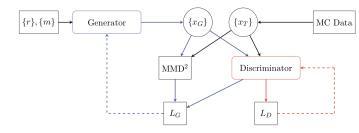


Chemistry of loss functions

GAN version of adaptive sampling

- generally 1D features phase space boundaries kinematic cuts invariant masses [top, W]
- batch-wise comparison of distributions, MMD loss with kernel k

$$\begin{aligned} \mathsf{MMD}^2 &= \left\langle k(x,x') \right\rangle_{x_T,x_T'} + \left\langle k(y,y') \right\rangle_{y_G,y_G'} - 2 \left\langle k(x,y) \right\rangle_{x_T,y_G} \\ \mathcal{L}_G &\to \mathcal{L}_G + \lambda_G \, \mathsf{MMD}^2 \;, \end{aligned}$$



Chemistry of loss functions

Tilman Plehn

C-----------

Generation

GAN version of adaptive sampling

- generally 1D features
 phase space boundaries
 kinematic cuts
 invariant masses [top, w]
- $-\,$ batch-wise comparison of distributions, MMD loss with kernel $k\,$

$$\begin{aligned} \mathsf{MMD}^2 &= \left\langle k(x,x') \right\rangle_{x_T,x_T'} + \left\langle k(y,y') \right\rangle_{y_G,y_G'} - 2 \left\langle k(x,y) \right\rangle_{x_T,y_G} \\ \mathcal{L}_G &\to \mathcal{L}_G + \lambda_G \, \mathsf{MMD}^2 \; . \end{aligned}$$

True

 $\Gamma_{\rm SM}$

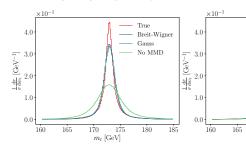
 $\frac{1}{\epsilon}\Gamma_{SM}$

 $-4\Gamma_{SM}$

180 185

170 175

 m_t [GeV]

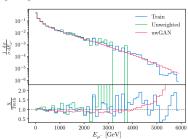


.

Generation

Gaining beyond GANpliflication [Butter, TP, Winterhalder]

- phase space sampling: weighted events $[PS weight \times |\mathcal{M}|^2]$ events: constant weights
- probabilistic unweighting weak spot of standard MC
- learn phase space patterns [density estimation]
 generate unweighted events [through loss function]
- compare training, GAN, classic unweighting



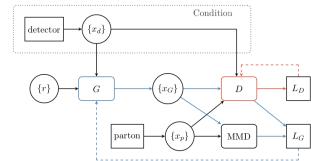
Inverted simulation

Goal: invert Markov processes [Bellagente, Butter, Kasiczka, TP, Winterhalder]

- detector simulation typical Markov process
- inversion possible, in principle [entangled convolutions]
- GAN task partons $\xrightarrow{\text{DELPHES}}$ detector $\xrightarrow{\text{GAN}}$ partons
- ⇒ Full phase space unfolded

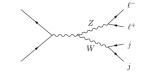
Conditional GAN

- map random numbers to parton level hadron level as condition [matched event pairs]

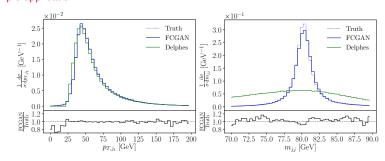


Reference process $pp \to ZW \to (\ell\ell)$ (jj)

- broad jj mass peak narrow $\ell\ell$ mass peak modified 2 ightarrow 2 kinematics fun phase space boundaries
- GAN same as event generation [with MMD]



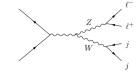
Simple application



Detector unfolding

Reference process $pp \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- broad jj mass peak narrow $\ell\ell$ mass peak modified 2 ightarrow 2 kinematics fun phase space boundaries
- GAN same as event generation [with MMD]

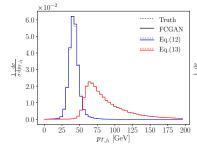


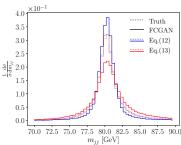
Simple application

- detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

$$p_{T,j_1} = 30 \dots 50 \text{ GeV}$$
 $p_{T,j_2} = 30 \dots 40 \text{ GeV}$ $p_{T,\ell^-} = 20 \dots 50 \text{ GeV}$ (12)

$$p_{T,j_1} > 60 \text{ GeV} \tag{13}$$





Detector unfolding

Reference process $pp \to ZW \to (\ell\ell)$ (jj)

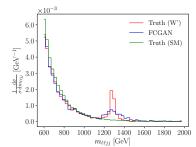
- broad jj mass peak narrow $\ell\ell$ mass peak modified 2 ightarrow 2 kinematics fun phase space boundaries
- GAN same as event generation [with MMD]

Simple application

- detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

$$p_{T,j_1} = 30 \dots 50 \text{ GeV}$$
 $p_{T,j_2} = 30 \dots 40 \text{ GeV}$ $p_{T,\ell^-} = 20 \dots 50 \text{ GeV}$ (12)
 $p_{T,j_1} > 60 \text{ GeV}$ (13)

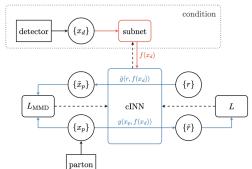
- model dependence of unfolding
- train: SM events test: 10% events with W' in s-channel
- ⇒ Working fine, but ill-defined



Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- network as bijective transformation normalizing flow Jacobian tractable — normalizing flow [specifically: coupling layer] evaluation in both directions — INN [Ardizzone, Rother, Köthe]
- conditional: parton-level events from $\{r\}$
- maximum likelihood loss

$$\begin{aligned} L &= -\left\langle \log p(\theta|x_p, x_d) \right\rangle_{x_p, x_d} \\ &= -\left\langle \log p(g(x_p, x_d)) + \log \left| \frac{\partial g(x_p, x_d)}{\partial x_p} \right| \right\rangle_{x_p, x_d} - \log p(\theta) + \text{const.} \end{aligned}$$



GAN basics

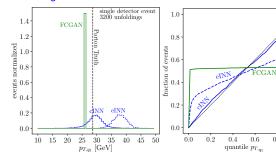
Inversion

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- network as bijective transformation normalizing flow Jacobian tractable — normalizing flow [specifically: coupling layer] evaluation in both directions — INN [Ardizzone, Rother, Köthe]
- conditional: parton-level events from {r}
- maximum likelihood loss

Properly defined unfolding [again $pp \rightarrow ZW \rightarrow (\ell\ell)$ (jj)]

- performance on distributions like FCGAN
- parton-level probability distribution for single detector event
- ⇒ Proper statistical unfolding



0.8 1.0

Unfolding as inverting

Tilman Plehn

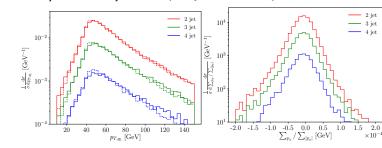
Invertible networks (Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthel

Generation

- network as bijective transformation normalizing flow Jacobian tractable — normalizing flow [specifically: coupling layer] evaluation in both directions — INN [Ardizzone, Rother, Köthe]
- conditional: parton-level events from {r}
- maximum likelihood loss

Unfolding initial-state radiation

- detector-level process $pp \rightarrow ZW$ +jets [variable number of objects]
- parton-level hard process chosen 2 → 2 [whatever you want]
- ME vs PS jets decided by network [including momentum conservation]



Unfolding as inverting

ANI book

GAN basics

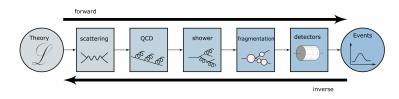
Imegraior

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- network as bijective transformation normalizing flow Jacobian tractable — normalizing flow [specifically: coupling layer] evaluation in both directions — INN [Ardizzone, Rother, Köthe]
- conditional: parton-level events from $\{r\}$
- maximum likelihood loss

Unfolding initial-state radiation

- detector-level process pp o ZW+jets [variable number of objects]
- parton-level hard process chosen 2 \rightarrow 2 $\,$ [whatever you want]
- ME vs PS jets decided by network [including momentum conservation]
- ⇒ How systematically can we invert?



Tilman Plehr

Concretion

Inversio

Outlook

Machine learning for LHC theory

- goal: data-to-data with fundamental physics input
- MC challenges
 higher-order precision in bulk coverage of tails unfolding to access fundamental QCD
- neural network benefits
 best available interpolation
 training on MC and/or data, anything goes
 lightning speed, once trained
- GANs the cool kid generator trying to produce best events discriminator trying to catch generator,
- INNs the theory hope flow networks to control spaces invertible network the new tool Any ideas?

