Quantum aspects of inflationary GWs

Jinn-Ouk Gong

Ewha Womans University Seoul 03760, Korea

Chung-Ang University Beyond the Standard Model Workshop 3rd February, 2021

Introduction	Quantum non-linear evolution	Quantum nature of inflationary GWs	Quantum origin of inflationary GWs	Conclusions
0000	0000000	000000	000000	00

Outline

Introduction

- 2 Quantum non-linear evolution
 - Lindblad equation
 - Elements of the reduced density matrix
- 3 Quantum nature of inflationary GWs
- Quantum origin of inflationary GWs
 - Black hole analogy
 - Instability of dS

5 Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

2 Quantum non-linear evolution

- Lindblad equation
- Elements of the reduced density matrix
- 3 Quantum nature of inflationary GWs

Quantum origin of inflationary GWsBlack hole analogy

• Instability of dS

5 Conclusions

IntroductionQuantum non-linear evolutionQuantum nature of inflationary GWsQuantum origin of inflationary GWsConclusions•••

Generation and evolution of perturbations

Everything seems to be clearly understood

イロト イボト イヨト イヨト

Quantum origin of inflationary GWs

Quantum aspects of perturbations?

If the inflationary picture is the case...

- Quantum origin of perturbations?
- Quantum-to-classical transition?
- Quantum signature of perturbations?

Important to test the inflationary paradigm

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why tensor perturbations?

- Persistent
- Well defined even during dS
- (For pure tensor) free from gauge

イロト イ団ト イヨト イヨト

nar

2 Quantum non-linear evolution

- Lindblad equation
- Elements of the reduced density matrix
- 3 Quantum nature of inflationary GWs

Quantum origin of inflationary GWsBlack hole analogy

• Instability of dS

5 Conclusions

Introduction
0000Quantum non-linear evolution
00000Quantum nature of inflationary GWs
000000Quantum origin of inflationary GWs
000000Conclusions
00000

Introduction
0000Quantum non-linear evolution
00000Quantum nature of inflationary GWs
000000Quantum origin of inflationary GWs
000000Conclusions
00000

Introduction	Quantum non-linear evolution	Quantum nature of inflationary GWs	Quantum origin of inflationary GWs	Conclusions
0000	000000	000000	000000	00

Introduction	Quantum non-linear evolution	Quantum nature of inflationary GWs	Quantum origin of inflationary GWs	Conclusions
0000	000000	000000	000000	00

System and environment

Quantum aspects of inflationary GWs

Introduction	Quantum non-linear evolution	Quantum nature of inflationary GWs	Quantum origin of inflationary GWs	Conclusions
0000	000000	000000	000000	00

Lindblad equation

$$\frac{d\rho_{\rm red}}{d\tau} = -i[H,\rho_{\rm red}] - \frac{1}{2} \sum \left(L_{\mu}^{\dagger} L_{\mu} \rho_{S} + \rho_{S} L_{\mu}^{\dagger} L_{\mu} - 2L_{\mu} \rho_{S} L_{\mu}^{\dagger} \right)$$

cf. Talk by C. Burgess today

Quantum aspects of inflationary GWs

E Jinn-Ouk Gong

5990

<ロト <回ト < 三ト < 三ト

Lindblad equation

$$\frac{d\rho_{\rm red}}{d\tau} = -i[H,\rho_{\rm red}] - \frac{1}{2} \sum \left(L_{\mu}^{\dagger}L_{\mu}\rho_{S} + \rho_{S}L_{\mu}^{\dagger}L_{\mu} - 2L_{\mu}\rho_{S}L_{\mu}^{\dagger}\right)$$

• Unitary evolution: von Neumann equation

cf. Talk by C. Burgess today

э Jinn-Ouk Gong

nar

<ロト <回ト < 三ト < 三ト

Lindblad equation

$$\frac{d\rho_{\rm red}}{d\tau} = -i[H,\rho_{\rm red}] - \frac{1}{2} \sum \left(L_{\mu}^{\dagger} L_{\mu} \rho_{S} + \rho_{S} L_{\mu}^{\dagger} L_{\mu} - 2L_{\mu} \rho_{S} L_{\mu}^{\dagger} \right)$$

- Unitary evolution: von Neumann equation
- Non-unitary evolution: Lindblad operators
 - Due to the interaction between system and environment

$$L_{\mu} \sim \left\langle \mathcal{E}_{f} \middle| H_{\text{int}} \middle| \mathcal{E}_{i} \right\rangle$$

- Exponential decay of (some components of) $\rho_{\rm red}$ Effective theory description
- cf. Talk by C. Burgess today

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

L = 1/(aH)

Quantum aspects of inflationary GWs

イロト イロト イヨト イヨト

L=1/(aH)

• All modes are in the environment or system sector

イロト イポト イヨト イヨト

- All modes are in the environment or system sector
- 2 system and 1 environment: $\mathbf{k}_1 \approx \mathbf{k}_2$ and $|\mathbf{k}_3| \approx 2|\mathbf{k}_1|$

イロト イポト イヨト イヨト

L=1/(aH)

- All modes are in the environment or system sector
- 2 system and 1 environment: $\mathbf{k}_1 \approx \mathbf{k}_2$ and $|\mathbf{k}_3| \approx 2|\mathbf{k}_1|$
- 1 system and 2 environment: $k_1 \approx -k_2$ and $k_3 \ll k_1 \approx k_2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Matrix notation of Lindblad equation

$$\rho_{\rm red}|_{ab} = \langle a|\rho_{\rm red}|b\rangle = \begin{pmatrix} 1-\rho_{00} & 0 & \rho_{02} \\ 0 & \rho_{11} & 0 & 0_{3\times 4} \\ \rho_{20} & 0 & 0 & \\ \hline & 0_{4\times 3} & 0_{4\times 4} \end{pmatrix}$$

- $ho_{\rm red}$ is reduced from 1 (non-unitary evolution)
- Probability of keeping the pure squeezed state is reduced
- (Classical) probability for other processes involving 2 excitation emerges

イロト イポト イヨト イヨト

Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs Conclusions

Number of *e*-folds for decoherence

The *e*-fold for $\rho_{\rm red}|_{00}$ to change by e^{-1}

$$\Delta N_{\text{dec}} \approx \frac{1}{3} \log \left[\frac{(2\pi)^2}{\Delta_{\mathscr{R}}^2} \frac{9}{2} (r \mathscr{C}_{\mathscr{SE}})^{-1} \right] \approx 8.38689 - \frac{1}{3} \log (r \mathscr{C}_{\mathscr{SE}})$$
$$\left(\mathscr{C}_{\mathscr{SE}} \sim \log \varepsilon, \varepsilon \ll 1 \right)$$

Typically $5 \lesssim \Delta N_{dec} \lesssim 10$ for a wide range of *r* and \mathcal{C}_{SE}

ヘロア 人間 アメヨアメヨア

Take-home message #1

Non-linearity is essential for classicalization

Quantum aspects of inflationary GWs

э Jinn-Ouk Gong

イロト イヨト イヨト イヨト

nar

Introduction

2 Quantum non-linear evolution

- Lindblad equation
- Elements of the reduced density matrix

3 Quantum nature of inflationary GWs

Quantum origin of inflationary GWsBlack hole analogy

• Instability of dS

5 Conclusions

Introduction	Quantum non-linear evolution	Quantum nature of inflationary GWs	Quantum origin of inflationary GWs	Conclusions
0000	000000	00000	000000	00

Wigner function

- Analogue of phase space distribution
- "Classical" probability distribution
- Function of *both* position and momentum

$$W(q,p) = \int_{-\infty}^{\infty} ds e^{-ips} \left\langle q + \frac{s}{2} \right| \rho \left| q - \frac{s}{2} \right\rangle$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Wigner function for harmonic oscillator

W(q, p) is positive definite only for a Gaussian wavefunction

N.B. Positive $W(q, p) \neq$ no quantum effect (e.g. Bell inequality)

イロト イポト イヨト イヨ

nan

IntroductionQuantum non-linear evolutionQuantum nature of inflationary GWsQuantum origin of inflationary GWsConclusions0000000000000000000000000000000000

Wavefunction for tensor perturbations

"Rotation" operator, only phase shift

$$\widehat{U}_{\boldsymbol{k}}(\tau,\tau_0) = \overbrace{\widehat{R}_{\boldsymbol{k}}(\tau,\tau_0)}^{\widehat{R}_{\boldsymbol{k}}(\tau,\tau_0)} \underbrace{\widehat{S}_{\boldsymbol{k}}(\tau,\tau_0)}^{\widehat{S}_{\boldsymbol{k}}(\tau,\tau_0)}$$

"Squeezing" operator, responsible for 2-mode squeezing

The state $|\Psi\rangle$ evolved from $|0\rangle$ at τ_0 : $|\Psi\rangle = \hat{U}(\tau, \tau_0)|0\rangle$

$$\Psi(q_{k}, q_{-k}) = \frac{e^{A(r_{k}, \varphi_{k})}(q_{k}^{2} + q_{-k}^{2}) - B(r_{k}, \varphi_{k})q_{k}q_{-k}}}{\cosh(r_{k}/2)\sqrt{\pi}\sqrt{1 - e^{4i\varphi_{k}} \tanh^{2}(r_{k}/2)}}$$

イロト イポト イヨト イヨト

Introduction
0000Quantum non-linear evolution
000000Quantum nature of inflationary GWs
000000Quantum origin of inflationary GWs
000000Conclusions
000000

Wigner function for tensor perturbations

$$W(q_{\mathbf{k}}, q_{-\mathbf{k}}; p_{\mathbf{k}}, p_{-\mathbf{k}}) = \int dx dy \, e^{-ip_{\mathbf{k}}x} e^{-ip_{-\mathbf{k}}y} \\ \times \left\langle q_{\mathbf{k}} + \frac{x}{2}, q_{-\mathbf{k}} + \frac{y}{2} \right| \rho \left| q_{\mathbf{k}} - \frac{x}{2}, q_{-\mathbf{k}} - \frac{y}{2} \right\rangle$$

•
$$W_{00} = 4(1 - \rho_{00}) w_k \ge 0$$

• $W_{11} = 4\rho_{11}w_k(-1+\cdots)$, negative for small $(q_k, q_{-k}, p_k, p_{-k})$

•
$$W_{20} = 2\rho_{20}w_k(\cdots)e^{-3i\theta_k}$$

N.B. $W(0,0;0,0) = 4(1-2\rho_{00})$, IR divergent

イロト イロト イヨト イヨト

Take-home message #2

Classicality includes quantum nature

Quantum aspects of inflationary GWs

э Jinn-Ouk Gong

nar

イロト イロト イヨト イヨト

Introduction

2 Quantum non-linear evolution

- Lindblad equation
- Elements of the reduced density matrix
- 3 Quantum nature of inflationary GWs

Quantum origin of inflationary GWs

- Black hole analogy
- Instability of dS

5 Conclusions

Hawking radiation in dS

5990

<ロト <回ト < 三ト < 三ト

Hawking radiation in dS

<ロト < 回 > < 回 > < 回 > < 回 >

Quantum aspects of inflationary GWs

크 Jinn-Ouk Gong

Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs 00000

Hawking radiation in dS

イロト イ団ト イヨト イヨト

Quantum aspects of inflationary GWs

크 Jinn-Ouk Gong

Hawking radiation in dS

5990

<ロト < 回 > < 回 > < 回 > < 回 >

Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs

000000

イロト イ団ト イヨト イヨト

Radiation from dS horizon

+-frequency modes w.r.t. t_s and \overline{u} are related by Bogoliubov x-form

cf. Talk by Y. Tsai today

Vacuum states and horizon thermal flux

Different sets of operators define different vacua

- Annihilated by $b_{\omega\ell m}^{\text{in}}$ and $b_{\omega\ell m}^{\text{out}}$: $|B\rangle$
- 2 Annihilated by $a_{\omega\ell m}^{\text{in}}$ and $a_{\omega\ell m}^{\text{out}}$: $|H\rangle$
- Annihilated by $a_{\omega\ell m}^{\text{in}}$ and $b_{\omega\ell m}^{\text{out}}$ (by $a_{\omega\ell m}^{\text{out}}$ and $b_{\omega\ell m}^{\text{in}}$): $|U\rangle (|U'\rangle)$

"Luminorsity" L at r_s : thermal flux from / into the surface at r_s

$$\langle T_{t_s r_*} \rangle = -\frac{L}{4\pi r_s^2} \quad \rightarrow \quad L(r_s = 1/H) = \begin{cases} 0 & \text{for } |B\rangle \text{ and } |H\rangle \\ \mp \frac{H^2}{12} |Y_{\ell m}|^2 & \text{for } |U\rangle \text{ and } |U'\rangle \end{cases}$$

Only $|U\rangle$ and $|U'\rangle$ allow a non-zero flux from thermal radiation

イロト イポト イヨト イヨト 一日

Raychaudhuri equation and evolution of dS

Change of the horizon area $\mathcal A$ can be found from Raychaudhuri eq

$$\epsilon = \mp \frac{H^2}{384\pi^2 m_{\text{Pl}}^2} \text{ for } |U\rangle \text{ and } |U'\rangle \quad (\text{s-wave contribution})$$

- $\Delta S_{\text{rad}} = \pm 1/24$ per one *e*-fold
- Adiabaticity demands $\Delta S_{dS} = \mp 1/24$ (cf. $\Delta S_{dS} \gg 1$ for SR inf)
- Quantum break-time: dS evolution due to thermal radiation

$$H(t) = H_0 \left(1 \pm \frac{1}{128\pi^2} \frac{H_0^3}{m_{\rm Pl}^2} t \right)^{-1/3}$$

Take-home message #3

Quantum fluctuations destabilize dS geometry

Quantum aspects of inflationary GWs

э Jinn-Ouk Gong

nar

イロト イロト イヨト イヨト

Introduction

2 Quantum non-linear evolution

- Lindblad equation
- Elements of the reduced density matrix
- 3 Quantum nature of inflationary GWs

Quantum origin of inflationary GWsBlack hole analogy

• Instability of dS

5 Conclusions

Introduction	Quantum non-linear evolution	Quantum nature of inflationary GWs	Quantum origin of inflationary GWs	Conclusions
0000	0000000	000000	000000	0

Conclusions

- Studying quantum origin may be relevant
- Pure tensor perturbations are of physical interest
- Non-linear evolution allows system-environment interactions
 - Generation of classical probability for other states
 - Classicality inherits quantum nature
 - It is unstable due to quantum fluctuations
- Many more questions to be answered

イロト イポト イヨト イヨト