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Generation and evolution of perturbations

quantum fluctuations
in clock

horizon

classical
perturbation

in clock

perturbation
in amount of

expansion

curvature
perturbation

density perturbations

galaxies, etc
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Everything seems to be clearly understood

Quantum aspects of inflationary GWs Jinn-Ouk Gong



Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs Conclusions

Quantum aspects of perturbations?

If the inflationary picture is the case...

Quantum origin of perturbations?

Quantum-to-classical transition?

Quantum signature of perturbations?

Important to test the inflationary paradigm

Quantum aspects of inflationary GWs Jinn-Ouk Gong



Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs Conclusions

Why tensor perturbations?

Persistent

Well defined even during dS

(For pure tensor) free from gauge
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System and environment

𝐿𝐿~𝐻𝐻−1
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Lindblad equation

𝑑𝑑𝜌𝜌red
𝑑𝑑𝜏𝜏

= −𝑖𝑖 𝐻𝐻,𝜌𝜌red −
1
2
� 𝐿𝐿𝜇𝜇

†𝐿𝐿𝜇𝜇𝜌𝜌𝑆𝑆 + 𝜌𝜌𝑆𝑆𝐿𝐿𝜇𝜇
†𝐿𝐿𝜇𝜇 − 2𝐿𝐿𝜇𝜇𝜌𝜌𝑆𝑆𝐿𝐿𝜇𝜇

†

Unitary evolution: von Neumann equation

Non-unitary evolution: Lindblad operators
1 Due to the interaction between system and environment

Lµ ∼
〈
E f

∣∣∣Hint

∣∣∣Ei

〉
2 Exponential decay of (some components of) ρred
3 Effective theory description

cf. Talk by C. Burgess today
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Triangular contributions from cubic interactions

𝐿𝐿 = 1/(𝑎𝑎𝑎𝑎)

Sub-horizon 𝑘𝑘𝐸𝐸 ≳ 𝑎𝑎𝐻𝐻 Super-horizon 𝑘𝑘𝑆𝑆 ≲ 𝑎𝑎𝐻𝐻

All modes are in the environment or system sector

2 system and 1 environment: k1 ≈ k2 and |k3| ≈ 2|k1|
1 system and 2 environment: k1 ≈−k2 and k3 ¿ k1 ≈ k2

Quantum aspects of inflationary GWs Jinn-Ouk Gong



Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs Conclusions

Triangular contributions from cubic interactions

𝐿𝐿 = 1/(𝑎𝑎𝑎𝑎)

Sub-horizon 𝑘𝑘𝐸𝐸 ≳ 𝑎𝑎𝐻𝐻 Super-horizon 𝑘𝑘𝑆𝑆 ≲ 𝑎𝑎𝐻𝐻

All modes are in the environment or system sector

2 system and 1 environment: k1 ≈ k2 and |k3| ≈ 2|k1|
1 system and 2 environment: k1 ≈−k2 and k3 ¿ k1 ≈ k2

Quantum aspects of inflationary GWs Jinn-Ouk Gong



Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs Conclusions

Triangular contributions from cubic interactions

𝐿𝐿 = 1/(𝑎𝑎𝑎𝑎)

Sub-horizon 𝑘𝑘𝐸𝐸 ≳ 𝑎𝑎𝐻𝐻 Super-horizon 𝑘𝑘𝑆𝑆 ≲ 𝑎𝑎𝐻𝐻

All modes are in the environment or system sector

2 system and 1 environment: k1 ≈ k2 and |k3| ≈ 2|k1|

1 system and 2 environment: k1 ≈−k2 and k3 ¿ k1 ≈ k2

Quantum aspects of inflationary GWs Jinn-Ouk Gong



Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs Conclusions

Triangular contributions from cubic interactions

𝐿𝐿 = 1/(𝑎𝑎𝑎𝑎)

Sub-horizon 𝑘𝑘𝐸𝐸 ≳ 𝑎𝑎𝐻𝐻 Super-horizon 𝑘𝑘𝑆𝑆 ≲ 𝑎𝑎𝐻𝐻

All modes are in the environment or system sector

2 system and 1 environment: k1 ≈ k2 and |k3| ≈ 2|k1|
1 system and 2 environment: k1 ≈−k2 and k3 ¿ k1 ≈ k2

Quantum aspects of inflationary GWs Jinn-Ouk Gong



Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs Conclusions

Matrix notation of Lindblad equation

ρred|ab = 〈a|ρred|b〉 =


1−ρ00 0 ρ02

0 ρ11 0 03×4

ρ20 0 0
04×3 04×4


ρred is reduced from 1 (non-unitary evolution)

Probability of keeping the pure squeezed state is reduced

(Classical) probability for other processes involving 2
excitation emerges
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Number of e-folds for decoherence

The e-fold for ρred|00 to change by e−1

∆Ndec ≈
1

3
log

[
(2π)2

∆2
R

9

2

(
rCS E

)−1

]
≈ 8.38689− 1

3
log

(
rCS E

)
(
CS E ∼ logε , ε¿ 1

)
Typically 5.∆Ndec . 10 for a wide range of r and CS E
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Take-home message #1

Non-linearity is essential for classicalization
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Wigner function

Analogue of phase space distribution

“Classical” probability distribution

Function of both position and momentum

W (q,p) =
∫ ∞

−∞
dse−ips

〈
q+ s

2

∣∣∣ρ∣∣∣q− s

2

〉
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Wigner function for harmonic oscillator

W (q,p) is positive definite only for a Gaussian wavefunction

N.B. Positive W (q,p) 6= no quantum effect (e.g. (((((((
Bell inequality)
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Wavefunction for tensor perturbations

Ûk(τ,τ0) =
“Rotation” operator, only phase shift︷ ︸︸ ︷

R̂k(τ,τ0) Ŝk(τ,τ0)︸ ︷︷ ︸
“Squeezing” operator, responsible for 2-mode squeezing

The state |Ψ〉 evolved from |0〉 at τ0: |Ψ〉 = Û(τ,τ0)|0〉

Ψ(qk,q−k) = eA(rk ,ϕk)
(
q2

k+q2
−k

)−B(rk ,ϕk)qkq−k

cosh(rk/2)
p
π

√
1−e4iϕk tanh2(rk/2)
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Wigner function for tensor perturbations

W
(
qk,q−k;pk,p−k

)= ∫
dxdy e−ipkxe−ip−ky

×
〈

qk +
x

2
,q−k +

y

2

∣∣∣ρ ∣∣∣qk −
x

2
,q−k −

y

2

〉

W00 = 4(1−ρ00)wk ≥ 0

W11 = 4ρ11wk(−1+·· · ), negative for small
(
qk,q−k,pk,p−k

)
W20 = 2ρ20wk(· · · )e−3iθk

N.B. W (0,0;0,0) = 4(1−2ρ00), IR divergent
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Take-home message #2

Classicality includes quantum nature
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Hawking radiation in dS
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Hawking radiation in dS
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Radiation from dS horizon

ds2 =−(
1−H2r2

s

)
dt2

s +
dr2

s

1−H2r2
s
+ r2

s dΩ

I IV

III

II
u v

H�

H+

Rin
!`

Rout
!`

Figure 5: Penrose diagram of dS. An observer at rest is located at rs = 0 of Region I (leftmost
side), in which u > 0 and v < 0. We also show the behavior of the plane wave solutions in dS.
The thick vertical line indicates the e↵ective potential wall around rs = 0.

3 Energy-momentum tensor in dS vacua

3.1 Bogoliubov transformation

The static coordinates as defined in (5) just cover Region I in Figure 5 which is surrounded by
the past (H�) and the future (H+) horizon. On the other hand, the extension to the whole dS
manifold can be achieved through the Kruskal-Szekeres null coordinates. In Region I, they are
defined in terms of the Eddington-Finkelstein coordinates u = ts � r⇤ and v = ts + r⇤ by4

u ⌘ 1

H
eHu =

1

H
eHts

r
1 � Hrs

1 + Hrs

,

v ⌘ � 1

H
e�Hv = � 1

H
e�Hts

r
1 � Hrs

1 + Hrs

,

(17)

which give

Hrs =
1 + H2uv

1 � H2uv
and e2Hts = �u

v
, (18)

so that the dS metric (5) is written as

ds2 = � 4

(1 � H2uv)2
dudv +

(1 + H2uv)2

H2(1 � H2uv)2

�
d✓2 + sin2 ✓d�2

�
. (19)

4Our definition coincides with [49], which denotes propagations incoming “toward” and outgoing “from”
rs = 0 in a consistent way. In [5, 16], u (v) is defined in terms of ts + r⇤ (ts � r⇤). These definitions are
advantageous in specifying the directions of propagation with respect to the inaccessible region, i.e., whether
the wave propagates into or out of the horizon.

9

+-frequency modes w.r.t. ts and u are related by Bogoliubov x-form

bout
ω`m︸ ︷︷ ︸

for ts

∼ eπω/(2H) aout
ω`m︸ ︷︷ ︸

for u

+h.c.

cf. Talk by Y. Tsai today
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Vacuum states and horizon thermal flux

Different sets of operators define different vacua

1 Annihilated by bin
ω`m and bout

ω`m: |B〉
2 Annihilated by ain

ω`m and aout
ω`m: |H〉

3 Annihilated by ain
ω`m and bout

ω`m

(
by aout

ω`m and bin
ω`m

)
: |U〉 (|U ′〉)

“Luminorsity” L at rs: thermal flux from / into the surface at rs

〈Ttsr∗〉 =− L

4πr2
s

→ L(rs = 1/H) =
 0 for |B〉 and |H〉

∓H2

12
|Y`m|2 for |U〉 and |U ′〉

Only |U〉 and |U ′〉 allow a non-zero flux from thermal radiation
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Raychaudhuri equation and evolution of dS

Change of the horizon area A can be found from Raychaudhuri eq

ε=∓ H2

384π2m2
Pl

for |U〉 and |U ′〉 (s-wave contribution)

∆Srad =±1/24 per one e-fold

Adiabaticity demands ∆SdS =∓1/24 (cf. ∆SdS À 1 for SR inf)

Quantum break-time: dS evolution due to thermal radiation

H(t) = H0

(
1± 1

128π2

H3
0

m2
Pl

t

)−1/3
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Take-home message #3

Quantum fluctuations destabilize dS geometry

Quantum aspects of inflationary GWs Jinn-Ouk Gong



Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs Conclusions

1 Introduction

2 Quantum non-linear evolution
Lindblad equation
Elements of the reduced density matrix

3 Quantum nature of inflationary GWs

4 Quantum origin of inflationary GWs
Black hole analogy
Instability of dS

5 Conclusions

Quantum aspects of inflationary GWs Jinn-Ouk Gong



Introduction Quantum non-linear evolution Quantum nature of inflationary GWs Quantum origin of inflationary GWs Conclusions

Conclusions

Studying quantum origin may be relevant

Pure tensor perturbations are of physical interest

Non-linear evolution allows system-environment interactions
1 Generation of classical probability for other states
2 Classicality inherits quantum nature
3 dS is unstable due to quantum fluctuations

Many more questions to be answered
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