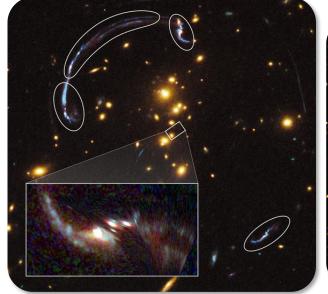
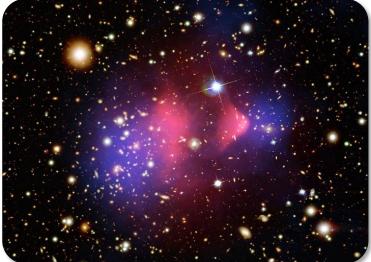
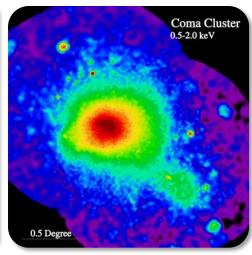
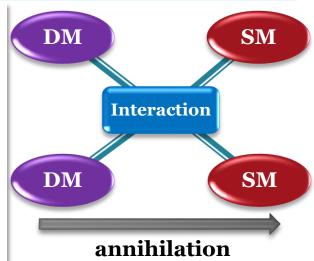

Detecting Super-Light Dark Matter with Graphene Josephson Junction


with D. Kim, K.C. Fong & G.-H. Lee [arXiv: 2002.07821]




Observational Evidence for DM

Classic Solution*: WIMP


Cosmological Lower Bound on Heavy-Neutrino Masses

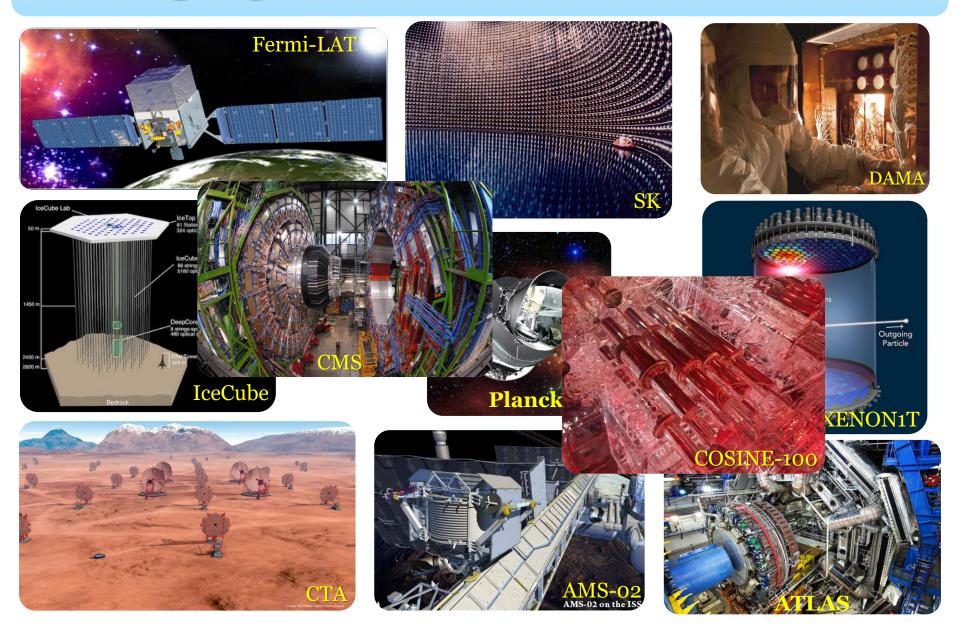
Benjamin W. Lee^(a)
Fermi National Accelerator Laboratory, (b) Batavia, Illinois 60510

and

Steven Weinberg^(c)
Stanford University, Physics Department, Stanford, California 94305
(Received 13 May 1977)

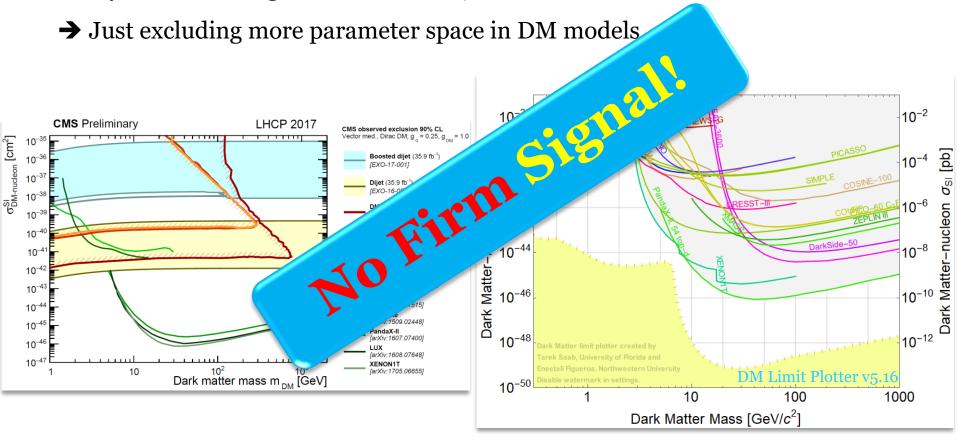
The present cosmic mass density of possible stable neutral heavy leptons is calculated in a standard cosmological model. In order for this density not to exceed the upper limit of 2×10^{-29} g/cm³, the lepton mass would have to be *greater* than a lower bound of the order of 2 GeV.

> Correct thermal relic abundance:

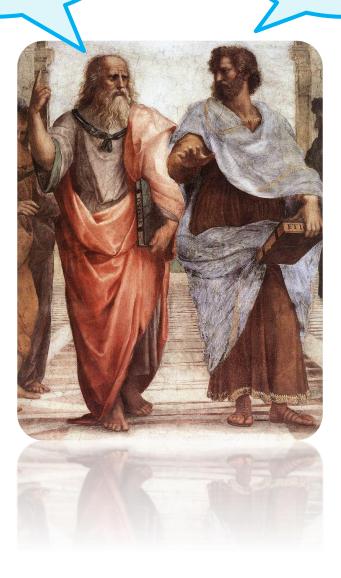

 $\Omega h^2 \sim \frac{0.1 \ pb}{\langle \sigma v \rangle}$ with $\langle \sigma v \rangle \sim \frac{\alpha_X^2 m_\chi^2}{M^4}$ (*M*: dark scale/mediator)

- ➤ Weak coupling → naturally weak scale mass:
 - ~1 GeV 10 TeV mass range favored
 - → weak scale (new) physics

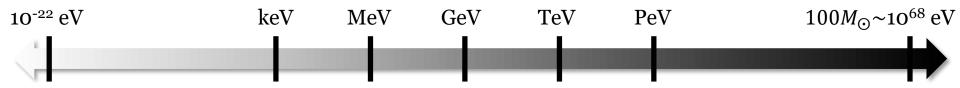
0.01 0.001 0.0001 10-5 Number Density Increasing $\langle \sigma_{A} v \rangle$ 10-10-8 10-9 10-11 Comoving Freeze-out Relic abundance 10-16 N_{EQ} 10-17 10-18 x=m/T (time \rightarrow)


Of course, **axion** is another classic solution.

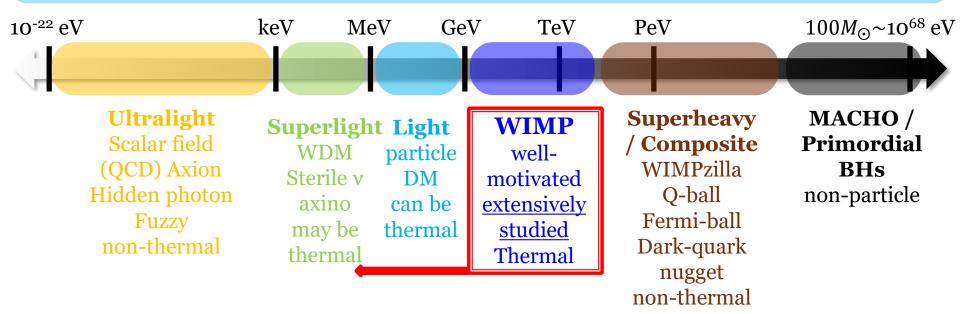
Diverging Efforts for WIMP Searches

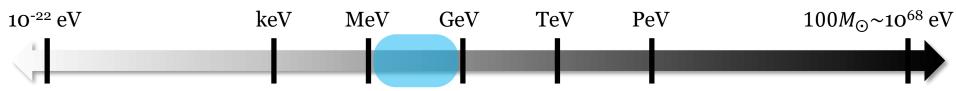

Current Status of Conventional DM Searches

- ❖ No (solid) observation of DM signatures via non-gravitational interactions
- ❖ Many searches designed under WIMP/minimal dark sector scenarios



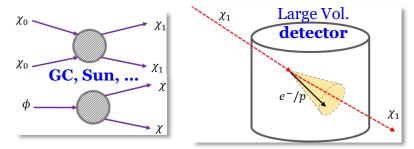
Only WIMP?


No!


DM Landscape: A Very Wide Mass Range

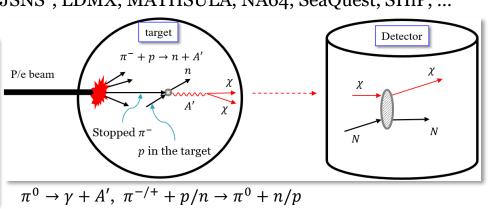
DM Landscape: A Very Wide Mass Range

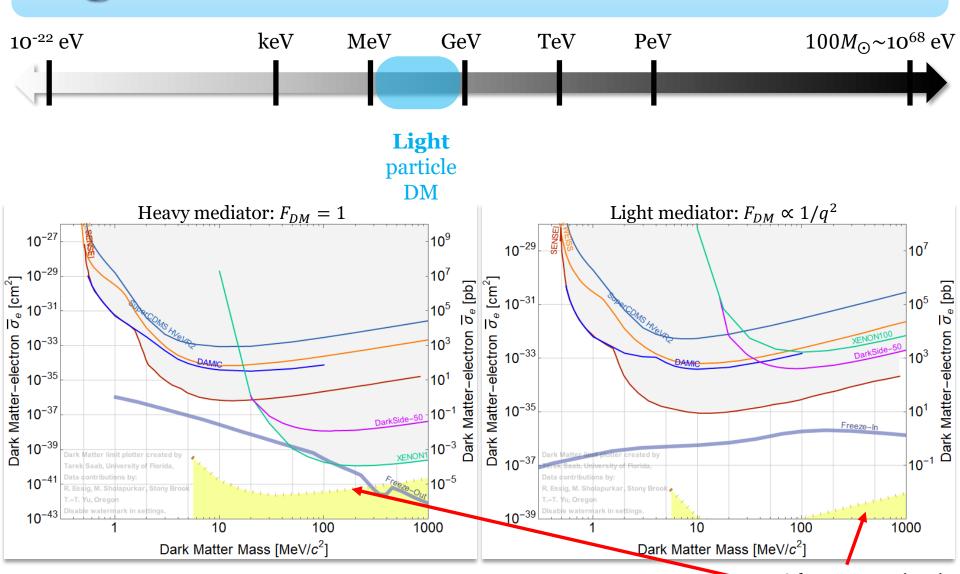
Light DM: Searches



- ❖ $E_k \sim mv^2 < O(\text{keV})$ with $v \sim 10^{-3}$: Light $< E_r^{th}$ of typical DM direct detectors DM for nuclear recoils
- New ideas for $low E_r^{th} w / e$ -recoil are required!
 - ✓ Ionization by e-recoils (semiconductor)

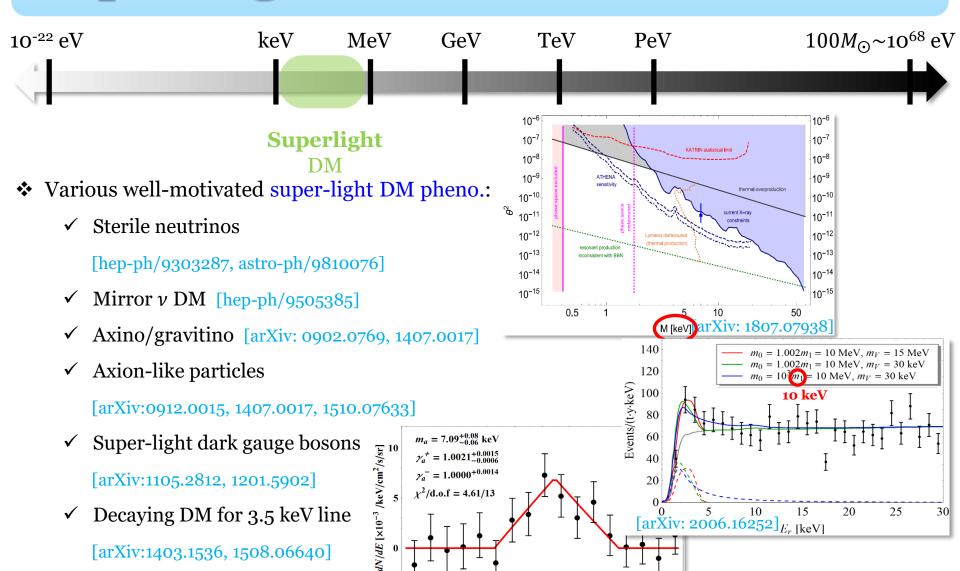
 [arXiv:1108.5383, 1509.01598]
 - ✓ Ejection of e's (graphene, C-nanotube)
 [arXiv:1606.08849, 1706.02487, 1808.01892]
 - ✓ Evaporation of He by nuclear-recoils


[arXiv:1706.00117]



❖ Beam-produced light DM/mediator searches:

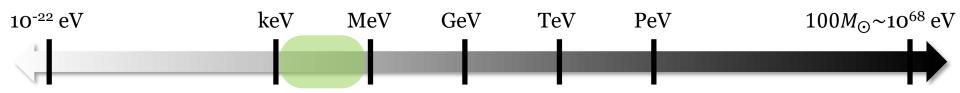
Babar, BDX, Belle-II, CCM, COHERENT, DUNE, FASER, JSNS², LDMX, MATHSULA, NA64, SeaQuest, SHiP, ...


Light DM: Direct Search Current Status

Super-Light DM: Main Focus

[arXiv:1403.1536, 1508.06640]

✓ keV DM for XENON1T, ...

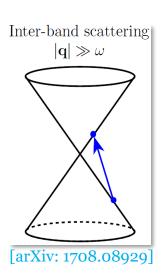


[arXiv: 1508.06640] [keV]

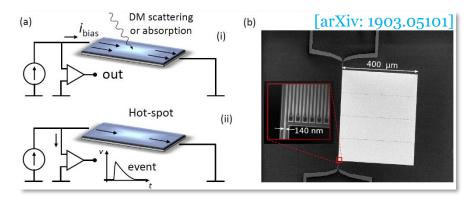
3.8

4.0

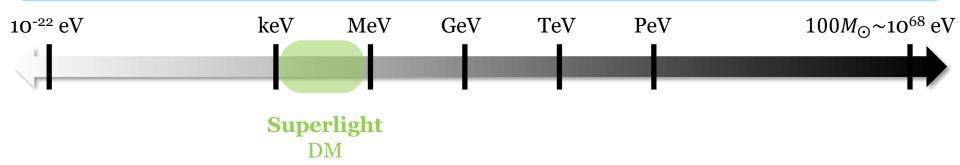
Super-Light DM: Search Ideas



- **♦** $E_k \sim mv^2 < O(eV)$ Superlight DM
- \rightarrow Very low E_r^{th} required!
- \bullet New ideas for **very low** E_r^{th} w/ e-recoil:
 - ✓ Superconductor target w/ TES or MKID


 [arXiv:1504.07237, 1512.04533]
 - ✓ Superfluid He w/ TES or MKID

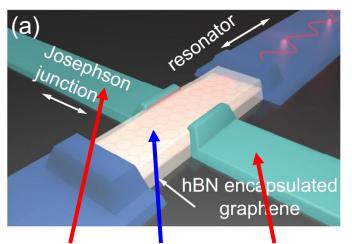
 [arXiv:1604.08206, 1611.06228]
 - ✓ 3D Dirac materials [arXiv:1708.08929]
 - ✓ Polar materials w/ TES or MKID


 [arXiv:1712.06598, 1807.10291]
 - ✓ Superconducting-nanowire single-photon detector [arXiv:1903.05101]
 - **√** ...

Super-Light DM: Technologies

- * Transition edge sensor (TES): X-ray ~ near-IR, E_{th} ~ sub-eV [Superconducting Devices in Quantum Optics (2016)]
- ❖ Microwave kinetic inductance device (MKID): X-ray ~ far-IR, E_{th} ~0(10 meV)

 [Annual Review of Condensed Matter Physics (2012)]
- ❖ Superconducting-nanowire single-photon detector (SNSPD): UV ~ mid-IR, E_{th} ~0 (100 meV) [Techno. (2018)]

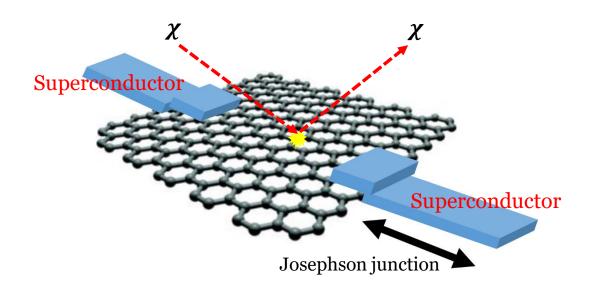

Well-developed in the laboratory in their respective E-bands.

But for the sensitivity to $E_{th} \lesssim O(10 \text{ meV})$, further R&D is needed!

We proposed a new super-light DM direct detection strategy adopting the graphene-based Josephson junction* (GJJ) microwave single photon detector.

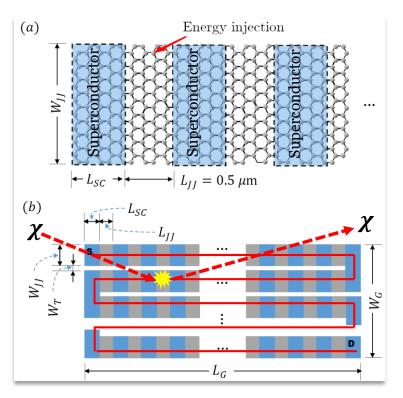
* A "state-of-the-art" technology: much lower $E_{th} \sim O(0.1 \text{ meV})$

Graphene Josephson Junction Device


The device consists of a sheet of mono-layer graphene two sides of which are joined to superconductor, forming a superconductor-normal metal-superconductor Josephson junction.

Superconductor-Graphene-Superconductor (SGS)

- ❖ A GJJ single-photon detector was proposed, covering from near-IR to microwave.


 [Phys. Rev. Applied (2017)]
- ❖ K.C. Fong, G.-H. Lee & their collaborators have demonstrated experimentally that the GJJ microwave bolometer can have sensitivity to E~0.1 meV energy deposit. [Nature (2020)]
- ❖ Currently, a GJJ single-photon detector is under testing in the laboratory.

Detection Principle

- I. DM scatters off (π -bond) free electrons, transferring some fraction of its incoming E_k .
- II. The recoiling e heats up & thermalizes with nearby e's rapidly via e-e interactions.
- III. The JJ is triggered: the temperature rise switches the zero-voltage of JJ to resistive state.
 - $E_k \sim mv^2 \sim 1 \text{ meV for } m_{DM} = 1 \text{ keV}$
 - → The GJJ device can posses the sensitivity to the signal induced even by sub-keV DM.

Conceptual Design Proposal

- I. Single graphene strip (a): the assembly of a graphene strip & a number of superconducting material strips → an array of SC-graphene-SC-graphene-SC-... (SGSGS...).
- II. Each sequence of SGS represents a single GJJ device.
- III. Full detector unit (b): all GJJs are connected in series so that even a single switched GJJ allows the series resistance measured between S & D to switch from 0 to a finite value.
- * E_{th} is determined by the strip width W_{JJ} : $W_{JJ} = 3 \, \mu \text{m} \, (30 \, \mu \text{m}) \rightarrow E_{th} \approx 0.1 \, \text{meV} \, (1 \, \text{meV})$.
- ❖ A much larger-scale detector can be made of a stack of such detector units.

To calculate experimental sensitivities, we should consider the scattering between DM traveling in 3D & free electrons living in 3D but confined in 2D graphene layer.

Calculating Signal Rates

- Goal: The event rate of DM scattering off free electrons in a 2-dimensional graphene sheet.
- ❖ Key point: An electron is still **confined** in the 2D graphene even after the collision.
 - \rightarrow No significant momentum change along the surface-normal (z-axis) direction.
 - → <u>Signal rate depending on the DM direction</u>
- ❖ We will calculate the number of events/unit detector mass/unit run time:

$$n_{\text{eve}} = \frac{N_{\text{eve}}^{\text{total}}}{M_T t_{\text{run}}}$$

($N_{\text{eve}}^{\text{total}}$: total number of events, M_T : total detector mass, t_{run} : total time exposure)

Calculation Procedure I

$$= \int_{E_r > E_{\text{th}}} dE_r dv_{\chi} f_{\text{MB}}(v_{\chi}) \frac{dn_e^{2D} \sigma_{e\chi} v_{\text{rel}}}{dE_r} \frac{1}{\rho_T^{3D}} \frac{\rho_{\chi}}{m_{\chi}}$$

$$= \int_{E_r > E_{\text{th}}} dE_r dv_{\chi \parallel} f_{\text{MB}}(v_{\chi \parallel}) \frac{dn_e^{2D} \sigma_{e\chi} v_{\text{rel} \parallel}}{dE_r} \frac{1}{\rho_T^{2D}} \frac{\rho_{\chi}}{m_{\chi}}$$
2D nature of graphene graphene

$$* n_e^{2D} = 2 \int \frac{d^2 p_{e,i}^{(xy)}}{(2\pi)^2} f_{e,i}(E_{e,i}) = 2 \int \frac{d^2 p_{e,i}^{xy}}{(2\pi)^2} \int \frac{d p_{e,i}^{z}}{(2\pi)} (2\pi) \delta(p_{e,i}^{z} - p_{e,f}^{z}) f_{e,i}(E_{e,i})$$

$$=2\int \frac{d^{3}p_{e,i}}{(2\pi)^{3}}(2\pi)\underline{\delta(p_{e,i}^{z}-p_{e,f}^{z})}f_{e,i}(E_{e,i})$$

Consistent with the assumption of no significant

momentum change along the surface-normal direction

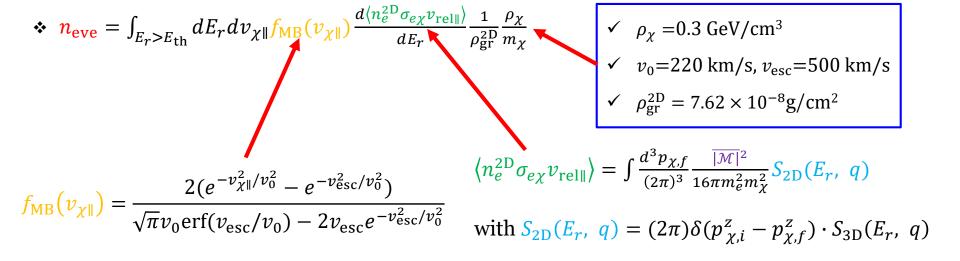
$$(E_{e,i})$$

✓
$$f_{e,i}(E_{e,i})=1/\{1+\exp(\frac{E_{e,i}-\mu}{T})\}$$
, $(\mu \sim E_F)$

→ Fermi-Dirac distribution function

Calculation Procedure II

- Graphene-surface-parallel DM velocity profile: $f_{\text{MB}}(v_{\chi\parallel}) = \frac{2(e^{-v_{\chi\parallel}^2/v_0^2} e^{-v_{\text{esc}}^2/v_0^2})}{\sqrt{\pi}v_0 \text{erf}(v_{\text{esc}}/v_0) 2v_{\text{esc}}e^{-v_{\text{esc}}^2/v_0^2}}$
 - → We take a plane-projection of a modified Maxwell-Boltzmann distribution.
- Event rate on a (sufficiently thin) 2D material: $\langle n_e^{\rm 2D} \sigma_{e\chi} v_{\rm rel} \rangle = \int \frac{d^3 p_{\chi,f}}{(2\pi)^3} \frac{\overline{|\mathcal{M}|^2}}{16\pi m_e^2 m_{\chi}^2} S_{\rm 2D}(E_r, q)$
- * Structure function for the 2D system: $S_{2D}(E_r, q)$

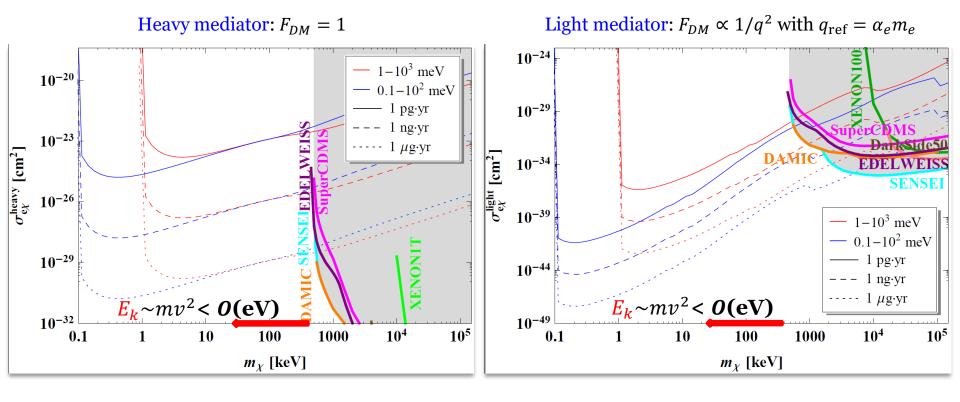

$$= 2 \int \frac{d^{3}p_{e,i}}{(2\pi)^{3}} \int \frac{d^{3}p_{e,f}}{(2\pi)^{3}} (2\pi) \delta(p_{e,i}^{z} - p_{e,f}^{z}) (2\pi)^{4} \delta^{(4)}(p_{\chi,i} + p_{e\,i} - p_{\chi,f} - p_{e,f}) f_{e,i}(E_{e,i}) \{1 - f_{e,f}(E_{e,f})\}$$

$$= (2\pi) \delta(p_{\chi,i}^{z} - p_{\chi,f}^{z}) \cdot \frac{1}{2\pi^{2}} \int d^{3}p_{e,i} \delta(E_{r} + E_{\chi,i} - E_{\chi,f}) f_{e,i}(E_{e,i}) \{1 - f_{e,f}(E_{e,f})\}$$

$$= (2\pi) \delta(p_{\chi,i}^{z} - p_{\chi,f}^{z}) \cdot S_{3D}(E_{r}, q)$$

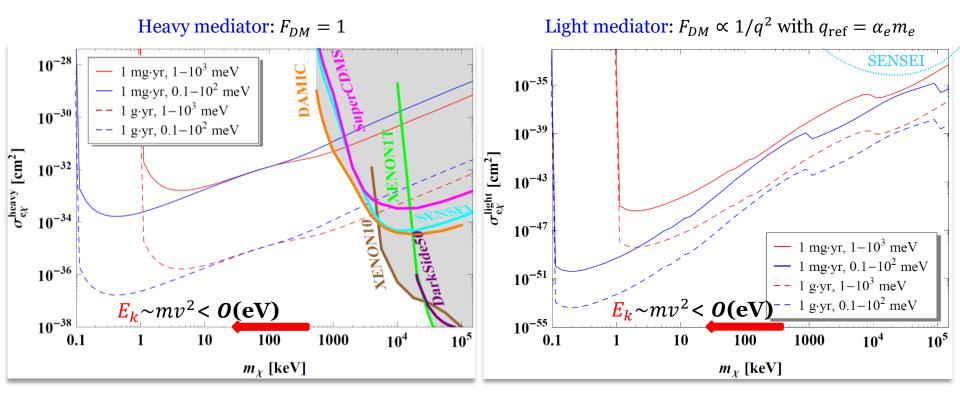
→ The Pauli blocking effects(=phase space suppression) are encoded in the structure function. The analytic expression for $S_{3D}(E_r, q)$ is available in the non-relativistic limit [astro-ph/9710115, 1512.04533].

Calculation Procedure III



* We assume that DM interacts with electrons via an exchange of mediator ϕ as done in many of the preceding studies:

$$\sigma_{e\chi} \approx \frac{g_e^2 g_\chi^2}{\pi} \frac{\mu_{e\chi}^2}{(m_\phi^2 + q^2)^2} \implies \sigma_{e\chi}^{\text{heavy}} \approx \frac{g_e^2 g_\chi^2}{\pi} \frac{\mu_{e\chi}^2}{m_\phi^4} \text{ for } (m_\phi^2 \gg q^2) \ \& \ \sigma_{e\chi}^{\text{light}} \approx \frac{g_e^2 g_\chi^2}{\pi} \frac{\mu_{e\chi}^2}{q^4} \text{ for } (m_\phi^2 \ll q^2)$$


- The matrix element $\overline{|\mathcal{M}|^2}$ is related to the scattering cross section as $\sigma_{e\chi} = \frac{\overline{|\mathcal{M}|^2}}{16\pi \, m_e^2 m_\chi^2} \mu_{e\chi}^2$.
- From the linear dispersion of graphene: $E_F = v_F \sqrt{\pi n_c}$ with $v_F \sim 10^8 \text{cm/s} \& n_c \sim 10^{12}/\text{cm}^2$.

Expected Sensitivities: Near Future

- ✓ We required N_{eve} =3.6 under the negligible background assumption.
- ✓ The proposed GJJ DM detector can improve the minimum detectable DM mass ($m_{\rm DM} \sim 0.1$ keV) by more than 3 orders of magnitude over the ongoing/existing experiments.
- ✓ Even capable of probing sub-keV DM with great expected reaches.

Expected Sensitivities: (Far) Future

- ✓ We required N_{eve} =3.6 under the negligible background assumption.
- ✓ The proposed GJJ DM detector can improve the minimum detectable DM mass ($m_{\rm DM} \sim 0.1$ keV) by more than 3 orders of magnitude over the ongoing/existing experiments.
- ✓ Even capable of probing sub-keV DM with great expected reaches.

Summary

- ➤ We have proposed a class of new DM detectors, adopting the GJJ device which has been implemented & demonstrated experimentally.
- For the <u>scattering between DM moving in 3D space & e's confined in 2D graphene</u>, we (for the first time) built an effective model and computed the event rate.
 - → <u>Signal rate depends on the DM incident direction!</u>
- ➤ The proposed detector is capable of sensing sub-keV (warm) DM scattering off electrons due to its outstanding $E_{\text{th}} \sim 0.1 \text{ meV}$. → Improving the minimum detectable DM mass ($m_{DM} \sim 0.1 \text{ keV}$) by more than 3 orders of magnitude.

The Test Run with the Existing GJJ Device samples is in progress.