Spontaneous breaking of Weyl quadratic gravity to Einstein action and inflation

D. Ghilencea

Beyond the Standard Model Workshop

Chung-Ang University, Seoul 1-3 Feb 2021

Based on: arxiv:2007.14733; JHEP 03(2019)049 [1812.08613] Phys.Rev.D101 (2020) 4, [1904.06596]; EPJC 80 (2020) 1147 [2003.08516]

- Plan of the talk:
 - From scale symmetry to Weyl conformal geometry
 - Weyl's original quadratic gravity: spontaneous breaking to Einstein action (no matter)
 - Similarities to Palatini gravity. Adding matter.
 - Testing Weyl gravity: inflation predictions.

[2]

• Symmetries beyond SM and GR?

- Best model so far: SM and Higgs mechanism confirmed @ LHC; origin of EW scale. [no SUSY @ TeV, why $m_h \ll M_P$?]. But what is the origin of Planck scale M_P ?

• Scale symmetry: discrete/self-affinity, global, local, quantum; gauged scale symmetry [scales from vev's] In this talk \Rightarrow gauged scale symmetry=Weyl gauge symmetry \rightarrow Weyl conformal geometry [Weyl 1918] \rightarrow Weyl quadratic gravity

• Why scale symmetry?

- scale symmetry may play a role in early cosmology; EFT at short distance may be scale inv/conformal \Rightarrow show: spontaneous breaking of Weyl theory [gauged scale symmetry] to Einstein action (no matter) Transition: Weyl to Riemannian geometry; M_P generated! Add ϕ [=Higgs?], testable inflation predictions [3]

• Discrete scale invariance in Nature: : self-similarity/self-affinity across different scales [fractals]

(c), (d): cluster of galaxies, stars, DM. astro-ph/0504097https://wwwmpa.mpa-garching.mpg.de/galform/millennium/

- self-repeating patterns at all length scales, new structure revealed.

Koch curve/snowflake

[4]

• Global scale invariance

$$x'_{\mu}=\rho\,x_{\mu}; \qquad \phi'(\rho\,x)=(1/\rho)\,\phi(x), \qquad \text{forbids} \quad \int d^4x\,m^2\phi^2$$

- SM with Higgs ϕ of mass $m_{\phi} = 0$ is scale invariant
- scales generated by vev's, e.g. $M_P \sim \langle \sigma \rangle$. Broken by quantum corrections (μ scale of DR)

- Quantum scale invariance: replace $\mu \to \sigma$ (dilaton) \Rightarrow scale invariance in $d=4-2\epsilon$; extra field!
- at one-loop [Englert et al 1976]; recently: [Shaposhnikov 0809.3406; D.G. 1508.00595] in SM [Z. Lalak, P. Olszewski, DG, 1612.09120]]
- two-loops [D.G., Z. Lalak, P. Olszewski, 1608.05336];
- three-loops [Gretsch, Monin 1308.3863; D.G. 1712.06024] protects a classical hierarchy of vevs $\phi \ll \sigma.$
- higher dimensional ops emerge ϕ^6/σ^2 , ϕ^8/σ^4 [D.G. 1508.00595, 1712.06024; D.G., Z. Lalak, P. Olszewski, 1612.09120]
- broken spontaneously; if σ decouples, usual results (breaking by DR) recovered.

Shortcomings....

- Gravity wanted \Rightarrow fine tuning higgs selfcoupling $\beta_{\lambda} \sim \lambda(..) + \xi(...)$ from $\xi h^2 R$.
- Global symmetries broken by black-hole physics; global charges eaten by BH which subsequently evaporate

[Bardeen 1995]

[5]

 $\hat{g}_{\mu\nu} = \Omega(x)^2 g_{\mu\nu}, \quad \hat{\sigma} = \frac{\sigma}{\Omega(x)}$ • Local scale invariance: L invariant under : (Ω real!)

[t'Hooft 1104.4543; 1410.6675; Bars, Steinhardt, Turok 1307.1848]

- Generating Einstein action:

$$L_0 = -\epsilon \frac{1}{2} \sqrt{g} \left[\frac{1}{6} \sigma^2 R + g^{\mu\nu} \partial_\mu \sigma \partial_\nu \sigma \right], \quad (\epsilon = 1) \qquad \Leftrightarrow \qquad L_0 = -\frac{1}{2} \sqrt{\hat{g}} M_P^2 \hat{R} \text{ generated spontaneously}$$

$$\Omega^2 = \frac{\epsilon \, \sigma^2}{6 \, M_P^2}, \quad M_P^2 \equiv \frac{\epsilon}{6} \langle \hat{\sigma} \rangle^2, \quad \text{"gauge fixing"}$$

Questions:

- a) negative kinetic term for σ ($\epsilon = 1$) or imaginary $\langle \sigma \rangle \sim \Omega$ ($\epsilon = -1$)
- b) Fake conformal symmetry? associated vanishing current
- c) Generating Planck scale requires adding a new scalar field in the spectrum $M_P \sim \langle \sigma \rangle$.
- d) Go to Einstein frame: $\langle \sigma \rangle$ fixed, σ decouples; d.o.f. changed (?)
- \Rightarrow We want to avoid a), b), c), d).... \Rightarrow gauged scale invariance.

[Jackiw, Pi 2015],

[6]

• Gauged scale invariance:
$$\hat{g}_{\mu\nu}(x) = \Omega(x)^2 g_{\mu\nu}(x), \quad \hat{\sigma}(x) = \frac{\sigma(x)}{\Omega(x)}, \quad \hat{\omega}_{\mu}(x) = \omega_{\mu}(x) - \partial_{\mu} \ln \Omega(x)^2 \quad (*)$$

Weyl geometry:
$$(g_{\mu\nu}, \omega_{\mu})$$
: $\tilde{\nabla}_{\mu} g_{\alpha\beta} = -\omega_{\mu} g_{\alpha\beta}$
 $\Rightarrow \tilde{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} + (1/2) \left(\delta^{\rho}_{\mu} \omega_{\nu} + \delta^{\rho}_{\nu} \omega_{\mu} - g_{\mu\nu} \omega^{\rho} \right)$ inv of (*); $\Gamma^{\rho}_{\mu\nu} = \text{Levi-Civita}; \nabla_{\mu} \text{ with } \Gamma$
 $\Rightarrow \tilde{R} = R - 3 \nabla_{\mu} \omega^{\mu} - 3/2 \omega^{\mu} \omega_{\mu}. \Rightarrow \hat{R} = \frac{\tilde{R}}{\Omega^{2}}, \text{ covariant tr!}$
 $\Rightarrow \tilde{D}_{\mu} \sigma = (\partial_{\mu} - 1/2 \omega_{\mu}) \sigma \Rightarrow \hat{D}_{\mu} \hat{\sigma} = (1/\Omega) \tilde{D}_{\mu} \sigma;$

 $\Rightarrow F_{\mu\nu} = \tilde{\nabla}_{\mu} \omega_{\nu} - \tilde{\nabla}_{\nu} \omega_{\mu} = \partial_{\mu} \omega_{\nu} - \partial_{\nu} \omega_{\mu} \text{ inv (*). Also } \omega_{\mu} = (1/2)(\tilde{\Gamma}_{\mu} - \Gamma_{\mu}) \text{ deviation from Levi-Civita.}$ $\Rightarrow \text{ if } \omega_{\mu} \rightarrow 0: \quad \tilde{\Gamma} \rightarrow \Gamma, \quad \text{Weyl geometry} \rightarrow \text{Riemannian}; \quad \tilde{R} \rightarrow R, \quad \text{Weyl tensor } \tilde{C}_{\mu\nu\rho\sigma} \rightarrow C_{\mu\nu\rho\sigma}$ $\Rightarrow \text{ All invariants (*): } \sqrt{g} \tilde{R}^{2}, \quad \sqrt{g} \sigma^{2} \tilde{R}, \quad \sqrt{g} F_{\mu\nu}^{2}, \quad \sqrt{g} \tilde{C}_{\mu\nu\alpha\beta}^{2}; \quad \sqrt{g} (\tilde{D}_{\mu}\sigma)^{2}. \text{ no higher dim ops (no scale!)}$ $\tilde{Y} (X) \text{ station in Weyl (Binnersite) seconds.}$

 $\tilde{X}\left(X\right)$ notation in Weyl (Riemannian) geometry

[7]

• Weyl quadratic gravity: no matter

$$L_{0} = \sqrt{g} \left\{ \frac{\xi_{0}}{4!} \tilde{R}^{2} - \frac{1}{4} F_{\mu\nu}^{2} + \frac{1}{\eta} \tilde{C}_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right\}, \quad \xi_{0} > 0, \qquad \text{Weyl (1919)}$$
(**)

- Early critique:
 - Non-metricity $\tilde{\nabla}_{\mu} g_{\alpha\beta} = \omega_{\mu} g_{\alpha\beta}$; [parallel transport: vector norm & clock's rate: path dependent]
 - Einstein critique (1919) [massless ω_{μ}]. Weyl quadratic gravity abandoned [review: Scholz 1703.03187]
 - only solution so far: $\omega_{\mu} = 0$ or $\partial_{\mu}(..)$, metric, Weyl integrable = Riemann geom/Einstein gravity & local scale invariance
- Previous works: [Dirac 1973] introduced new "Weyl gravity" linear in \tilde{R} (no \tilde{R}^2) with extra matter ϕ : $\phi^2 \tilde{R}$, in this case ω_{μ} can become massive: [Smolin (1979)]. Subsequent studies followed this approach:

Cheng (1988), Nishino & Rajpoot (2009), Dreschler & Tann (1999); Ohanian (2016); DG & H. M. Lee (2018)]

 \Rightarrow Back to "quadratic" case (**), no matter: can ω_{μ} be massive, decouple ($\omega_{\mu} = 0$), so that metricity restored (below some scale) & critique avoided?

[8]

• Weyl quadratic gravity \Rightarrow Einstein gravity + massive ω_{μ} [D.G. arXiv:1812.08613, 1904.06596, 2007.14733]

$$L_1 = \sqrt{g} \left\{ \frac{\xi_0}{4!} \tilde{R}^2 - \frac{1}{4q^2} F_{\mu\nu}^2 \right\} = \sqrt{g} \left\{ \frac{\xi_0}{4!} \left(-2\sigma^2 \tilde{R} - \sigma^4 \right) - \frac{1}{4q^2} F_{\mu\nu}^2 \right\} \quad \text{eom:} \quad \sigma^2 = -\tilde{R}; \quad \text{``dilaton'': } \ln \sigma^2 = -\tilde{R};$$

Go to Riemannian notation: $\tilde{R}(\tilde{\Gamma}, g) = R(g) - 3 \nabla_{\mu} \omega^{\mu} - 3/2 \omega_{\mu} \omega^{\mu}$

$$L_{1} = \sqrt{g} \left\{ -\frac{\xi_{0}}{2} \left[\frac{1}{6} \sigma^{2} R + (\partial_{\mu} \sigma)^{2} \right] - \frac{\xi_{0}}{4!} \sigma^{4} + \frac{1}{8} \xi_{0} \sigma^{2} \left(\omega_{\mu} - \partial_{\mu} \ln \sigma^{2} \right)^{2} - \frac{1}{4 q^{2}} F_{\mu\nu}^{2} \right\}$$

Use (*) of "gauge fixing": $\Omega^2 = \xi_0 \sigma^2 / (6M_P^2) \Rightarrow \hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \quad \hat{\sigma}^2 = 6 M_P^2 / \xi_0, \quad \hat{\omega}_\mu = \omega_\mu - \partial_\mu \ln \sigma^2$

$$L_1 = \sqrt{\hat{g}} \left\{ -\frac{1}{2} M_P^2 \hat{R} - \frac{3 M_P^4}{2\xi_0} + \frac{3}{4} \frac{q^2 M_P^2 \hat{\omega}_\mu \hat{\omega}^\mu}{q^2 M_P^2 \hat{\omega}_\mu \hat{\omega}^\mu} - \frac{1}{4} \hat{F}_{\mu\nu}^2 \right\}. \qquad M_P^2 \equiv \frac{\xi_0}{6} \langle \hat{\sigma} \rangle^2$$

- \Rightarrow Stueckelberg mechanism: σ eaten by $\omega_{\mu} \rightarrow$ massive ω_{μ} ; dof=3 conserved! no ghost.
- \Rightarrow Einstein-Proca action of ω_{μ} ; mass of $m_{\omega} \propto q M_P$, decouples; \Rightarrow metricity restored below $m_{\omega}!$
- \Rightarrow Einstein action: "low energy"/broken phase of Weyl's theory. No scalar in spectrum.

[9]

• Weyl quadratic gravity \Rightarrow Einstein gravity + massive ω_{μ}

- Previous result remains true for most general Weyl quadratic gravity (below) which is $L_1 + L_C$: since Weyl tensor $\tilde{C}_{\mu\nu\rho\sigma}$, $(C_{\mu\nu\rho\sigma})$ invariant under previous transformations.

$$L_{1} = \sqrt{g} \left\{ \frac{\xi_{0}}{4!} \tilde{R}^{2} - \frac{1}{4q^{2}} F_{\mu\nu}^{2} \right\}$$
$$L_{C} = \frac{\sqrt{g}}{\eta} \tilde{C}_{\mu\nu\rho\sigma} \tilde{C}^{\mu\nu\rho\sigma} = \frac{\sqrt{g}}{\eta} \left[C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} + \frac{3}{2} F_{\mu\nu}^{2} \right]$$
Weyl geometry Riemannian geometry

 $\Rightarrow \text{ After Weyl gauge symmetry breaking } \omega_{\mu} \text{ massive, decouples. Weyl geometry} \Rightarrow \text{Riemannian}$ $\Rightarrow \text{ Planck scale generation is a geometric transition from Weyl to Riemannian geometry!}$ $\Rightarrow \sigma \rightarrow \langle \sigma \rangle \sim M_P, \text{ dynamically in FRW universe:} \qquad [GG Ross et al 1801.07676]$ non-trivial, conserved current $\partial^{\mu} J_{\mu} = 0$, if ω_{μ} dynamical: $\partial^{\alpha} (F_{\alpha\mu} \sqrt{g}) + \underbrace{\frac{1}{2} \sqrt{g} \xi_0 \sigma \left[\partial_{\mu} - \frac{q}{2} \omega_{\mu}\right] \sigma}_{=J_{\mu}} = 0$

 \Rightarrow Weyl quadratic gravity: an embedding of Einstein gravity. Renormalizable?

[K. Stelle 1979]

[10]

• Weyl gravity: adding matter

 ϕ - scalar field, higgs-like, inflaton, etc

$$L_{2} = \sqrt{g} \left\{ \frac{\xi_{0}}{4!} \tilde{R}^{2}(\tilde{\Gamma}, g) - \frac{1}{4q^{2}} F_{\mu\nu}^{2} - \frac{1}{12} \xi_{1} \phi^{2} \tilde{R}(\tilde{\Gamma}, g) + \frac{1}{2} (\tilde{D}_{\mu} \phi)^{2} - \frac{\lambda}{4!} \phi^{4} \right\}, \quad \tilde{R}^{2} \to -2\sigma^{2} \tilde{R} - \sigma^{4}$$
$$= \sqrt{g} \left\{ -\frac{1}{12} (\xi_{0} \sigma^{2} + \xi_{1} \phi^{2}) \tilde{R}(\tilde{\Gamma}, g) - \frac{1}{4q^{2}} F_{\mu\nu}^{2} + \frac{1}{2} (\tilde{D}_{\mu} \phi)^{2} - \frac{1}{4!} (\lambda \phi^{4} + \xi_{0} \sigma^{4}) \right\}, \quad \rho^{2} = \frac{1}{6} (\xi_{0} \sigma^{2} + \xi_{1} \phi^{2}) \tilde{R}(\tilde{\Gamma}, g) - \frac{1}{4q^{2}} F_{\mu\nu}^{2} + \frac{1}{2} (\tilde{D}_{\mu} \phi)^{2} - \frac{1}{4!} (\lambda \phi^{4} + \xi_{0} \sigma^{4}) \right\}, \quad \rho^{2} = \frac{1}{6} (\xi_{0} \sigma^{2} + \xi_{1} \phi^{2}) \tilde{R}(\tilde{\Gamma}, g) - \frac{1}{4q^{2}} F_{\mu\nu}^{2} + \frac{1}{2} (\tilde{D}_{\mu} \phi)^{2} - \frac{1}{4!} (\lambda \phi^{4} + \xi_{0} \sigma^{4}) \right\}, \quad \rho^{2} = \frac{1}{6} (\xi_{0} \sigma^{2} + \xi_{1} \phi^{2}) \tilde{R}(\tilde{\Gamma}, g) - \frac{1}{4q^{2}} F_{\mu\nu}^{2} + \frac{1}{2} (\tilde{D}_{\mu} \phi)^{2} - \frac{1}{4!} (\lambda \phi^{4} + \xi_{0} \sigma^{4}) \right\},$$

Riemannian language $(\tilde{\Gamma} \rightarrow \Gamma + \cdots)$

$$L_{2} = \sqrt{g} \left\{ -\frac{1}{2} \left[\rho^{2} R + 6 \left(\partial_{\mu} \rho \right)^{2} \right] + \frac{3}{4} \rho^{2} \left(\omega_{\mu} - \partial_{\mu} \ln \rho^{2} \right)^{2} - \frac{1}{4 q^{2}} F_{\mu\nu}^{2} + \frac{1}{2} (\tilde{D}_{\mu} \phi)^{2} - V(\phi, \rho) \right\}.$$

Stueckelberg: radial direction $\ln \rho$ eaten by ω_{μ} . "Gauge fixing" (*): $\Omega = \frac{\rho^2}{M_P^2}, \ \hat{\rho} = M_P, \ \hat{\omega}_{\mu} = \omega_{\mu} - \partial_{\mu} \ln \rho^2$ number d.o.f. conserved (2+1) vs (3)

$$\Rightarrow \text{Einstein-Proca action } (\omega_{\mu}): \qquad L_{2} = \sqrt{\hat{g}} \left\{ -\frac{1}{2} M_{P}^{2} \hat{R} + \frac{3}{4} M_{P}^{2} \hat{\omega}_{\mu} \hat{\omega}^{\mu} - \frac{1}{4 q^{2}} \hat{F}_{\mu\nu}^{2} + \frac{1}{2} (\hat{\tilde{D}}_{\mu} \hat{\phi})^{2} - V \right] \right\},$$

[D.G. arXiv:1812.08613, 1904.06596, 2007.14733]

[11]

• The action, "unitarity gauge":

[D.G. arXiv:1812.08613, 1904.06596, 2007.14733]

 $\hat{\phi} \to M\sqrt{6}\sinh \varphi/(M\sqrt{6}), \quad \hat{\omega}_{\mu} \to \hat{\omega}_{\mu} + \partial_{\mu}\ln\cosh^2 \varphi/(M\sqrt{6}):$

$$\Rightarrow L_2 = \sqrt{\hat{g}} \left\{ -\frac{1}{2} M_P^2 \hat{R} + \frac{3}{4} M_P^2 \hat{\omega}_\mu \hat{\omega}^\mu \cosh^2 \frac{\varphi}{M\sqrt{6}} - \frac{1}{4 q^2} \hat{F}_{\mu\nu}^2 + \frac{1}{2} (\partial_\mu \varphi)^2 - V(\varphi) \right] \right\},$$

• The potential

$$V(\varphi) = \frac{3}{2} \frac{M_P^4}{\xi_0} \Big\{ \Big[1 - \xi_1 \sinh^2 \frac{\varphi}{M_P \sqrt{6}} \Big]^2 + \lambda \xi_0 \sinh^4 \frac{\varphi}{M_P \sqrt{6}} \Big\},$$
$$= \frac{3M_P^4}{2\xi_0} \Big[1 - \frac{\xi_1 \varphi^2}{6M_P^2} \Big]^2 + \frac{\lambda}{4!} \varphi^4 + \mathcal{O}\Big(\frac{\varphi^2}{M_P^2}\Big), \quad \varphi \ll M_P.$$

 \Rightarrow gravitational higgs mechanism, if $\varphi =$ higgs. Also $m_{\phi}^2 = (-\xi_1/\xi_0) M_P^2$.

 \Rightarrow with M_P phase transition scale: $\phi \ge M_P$ natural.

 \Rightarrow Weyl inflation? similarities to Starobinsky inflation, but note $\varphi^2 \, \omega^{\mu} \omega_{\mu}$ coupling.

[12]

• Weyl vs Palatini quadratic gravity

[D.G. arxiv:2003.08516; 2007.14733]

- Palatini approach to gravity [Einstein 1925]: $\tilde{\Gamma}$ unknown, fixed by eqs of motion (action).
- apriori $\tilde{\Gamma}$ independent of $g_{\mu\nu} \Rightarrow$ invariant under (*); define $\omega_{\mu} = (1/2)(\tilde{\Gamma}_{\mu} \Gamma_{\mu})$.
- in previous Weyl action, replace $\tilde{\Gamma}$ of Weyl $\rightarrow \tilde{\Gamma}$ of Palatini (still Weyl gauge inv):

$$L_{2} = \sqrt{g} \left\{ \frac{\xi_{0}}{4!} \tilde{R}^{2}(\tilde{\Gamma}, g) - \frac{1}{4q^{2}} F_{\mu\nu}^{2}(\tilde{\Gamma}) - \frac{1}{12} \xi_{1} \phi^{2} \tilde{R}(\tilde{\Gamma}, g) + \frac{1}{2} (\tilde{D}_{\mu} \phi)^{2} - \frac{\lambda}{4!} \phi^{4} \right\},$$

Solve for $\tilde{\Gamma}$ (difficult!) $\Rightarrow \tilde{\nabla}_{\lambda} g_{\mu\nu} = (-2)(g_{\mu\nu} \omega_{\lambda} - g_{\mu\lambda} \omega_{\nu} - g_{\nu\lambda} w_{\mu})$ non-metricity \neq Weyl geometry. \Rightarrow Onshell $\tilde{\Gamma}$: Stueckelberg breaking, same steps as before, etc:

$$L_{2} = \sqrt{g} \left\{ -\frac{1}{2} \left[\rho^{2} R + 6 \left(\partial_{\mu} \rho \right)^{2} \right] + \frac{3}{4} \theta \rho^{2} \left(\omega_{\mu} - \partial_{\mu} \ln \rho^{2} \right)^{2} - \frac{1}{4 q^{2}} F_{\mu\nu}^{2} + \frac{1}{2} (\tilde{D}_{\mu} \phi)^{2} - V(\phi, \rho) \right\}.$$

⇒ onshell, gauge fixing: again Einstein-Proca action, similar to Weyl theory but $\theta = 4$ (Weyl: $\theta = 1$.). ⇒ similar structure of V, θ different (due to different non-metricity)

In Palatini quadratic gravity: additional operators can be present...

• Weyl R^2 -inflation ($\theta = 1$) $V = V_0 \left\{ \left[1 - \theta \xi_1 \sinh^2 \frac{\varphi}{2M_P \sqrt{6\theta}} \right]^2 + \lambda \xi_0 \theta^2 \sinh^4 \frac{\varphi}{2M_P \sqrt{6\theta}} \right\}$

$$\lambda \xi_0 \ll \xi_1^2 \ll 1: \quad \epsilon = \frac{M_P^2 V'^2}{2V^2} = \frac{\xi_1^2}{3} \,\theta \sinh^2 \frac{2\phi}{M_P \sqrt{6\theta}} + \mathcal{O}(\xi_1^3); \quad \eta = M_P^2 \frac{V''}{V} = -\frac{2\xi_1}{3} \cosh \frac{2\phi}{M_P \sqrt{6\theta}} + \mathcal{O}(\xi_1^2);$$

$$n_s = 1 + 2\eta - 6\epsilon = 1 - \frac{4}{3}\xi_1 \cosh \frac{2\phi_*}{M_P\sqrt{6\theta}} + \mathcal{O}(\xi_1^2); \quad \Rightarrow \quad r = 3\theta (1 - n_s)^2 + \mathcal{O}(\xi_1^2)$$

 $0.002567 \le r \le 0.00303$ if $n_s = 0.9670 \pm 0.0037$ (N = 60). Upper limit on r: Starobinsky: ($n_s \approx 0.968$) [D.G. arxiv:2007.14733, 1906.11572; G. Ross, C. Hill, P. Ferreira, J. Noller 1906.03415] [14]

• Palatini
$$R^2$$
-Inflation ($\theta = 4$) $V = V_0 \left\{ \left[1 - \theta \,\xi_1 \sinh^2 \frac{\varphi}{2 \,M_P \sqrt{6 \,\theta}} \right]^2 + \lambda \xi_0 \,\theta^2 \sinh^4 \frac{\varphi}{2 M_P \sqrt{6 \,\theta}} \right\}$

$$\lambda \xi_0 \ll \xi_1^2 \ll 1: \quad \epsilon = \frac{M_P^2 V'^2}{2V^2} = \frac{\xi_1^2}{3} \,\theta \sinh^2 \frac{2\phi}{M_P \sqrt{6\theta}} + \mathcal{O}(\xi_1^3); \quad \eta = M_P^2 \frac{V''}{V} = -\frac{2\xi_1}{3} \cosh \frac{2\phi}{M_P \sqrt{6\theta}} + \mathcal{O}(\xi_1^2)$$

$$n_s = 1 + 2\eta - 6\epsilon = 1 - \frac{4}{3}\xi_1 \cosh \frac{2\phi_*}{M_P\sqrt{6\theta}} + \mathcal{O}(\xi_1^2); \quad \Rightarrow \quad r = 3\theta (1 - n_s)^2 + \mathcal{O}(\xi_1^2)$$

 $0.00794 \le r \le 0.01002 \quad \text{if } n_s = 0.9670 \pm 0.0037; (N = 60); \ r(n_s) \text{ different from Starobinsky: } (n_s \approx 0.968)$ [D.G. arxiv: 2007.14733, 2003.08516]

• Weyl versus Palatini: testing inflation predictions

- tensor-to-scalar ratio r versus spectral index n_s with yellow (orange) values of n_s at 68% (95%) CL.
- the difference (θ) due to different non-metricity of these theories.
- such values of r reachable by future CMB experiments (0.0005 precision; LiteBIRD, CMB-S4).
- \Rightarrow One will be able test and discriminate between these models

• Conclusions:

- In the absence of matter: Weyl quadratic gravity broken via Stueckelberg to Einstein-Proca for ω_μ
- $M_\omega \sim q M_P \sim q \langle \sigma \rangle$, decouples; Einstein action: "low energy"/broken phase of Weyl quadratic gravity
- M_P generation has geometric interpretation: transition Weyl \Rightarrow Riemann geometry
- non-metricity criticism of Weyl/Palatini quadratic gravity: avoided, metricity restored below $m_{\omega} \propto q M_P$ Non-metricity bounds (m_{ω}) are low (\sim TeV).
- Weyl's quadratic theory of gravity: viable theory! renormalizable?
- In the presence of scalars (Higgs-like), successful inflation, similar to Starobinsky Weyl gravity/inflation: testable prediction: $0.00257 \le r \le 0.00303$ (N = 60, n_s = measured 68%CL).