February 3, 2021 at the CAU Workshop on Beyond Standard Model, Online

Toward waveform modeling for gravitational waves from black hole encounters

Gungwon Kang (Chung-Ang University)

Outline

- I. Motivation
- II. NR Results for GW Capture
- III. Waveform modeling with general eccentricity
- IV. Conclusion

I. Motivation

✓ BBHs are important sources for GW observations

- 50 observations so far
 - O1 (2015/09/12~2016/01/13): 3 BBH
 - O2 (2016/11/30~2017/08/25): 7 BBH +1 BNS
 - O3a (2019/04/01~2019/10/01): 36 BBH +3 others
- NR simulations and waveforms modeling have mostly focused on the last stage of coalescences, *e.g.*, quasi-circular orbits.

• "Circularization":

Peters (1964): Evolution of eccentricity ('2.5'PN)

Cao & Han (2017)

 V_{eff}

• Higher-order (3.5) PN calculation: Kocsis & Levin ('12)

- So, eccentric BBH mergers (e.g., $e \neq 0$) might be relevant, and we may need to develop waveform models with a finite eccentricity.
- BBH waveforms with eccentricity for inspiral phase only:
 - → TaylorF2ecc (e: 0.0001~0.2) by C. Kim, J. Kim, H. Lee +, ...
- What kind of waveforms in general for two body encounters?

• Gold & Brugmann ('13):

-0.10 ¤ _0,15 -0.20 L

 • How weak?: w/ J. Hansen, P. Diener, F. Loefler & H. Kim ('13)

✓ Masses in BBHs:

Abbott+19 (arXiv:1811.12940)

- No BBH of stellar origin $> 50 M_{\odot}$?
- Similarly, no BBH < $5M_{\odot}$?
 - → "Mass Gap" (?):

Belczynski+2011, Sathya+2019

✓ Effective spins of binary objects:

$$\chi_{\text{eff}} = \frac{(m_1 \vec{\chi_1} + m_2 \vec{\chi_2}) \cdot \hat{L}_N}{M}$$

- So, some GWs from BH encounters could be detected in the future detectors, e.g., cosmic explorer or Einstein telescope!
 - → We need to prepare waveform models for highly eccentric BBH mergers.
- What are the origins of non-stellar binary black holes?

→ What is the whole life of a two-body system and the evolution of the waveform associated?

✓ The whole life of a BBH system:

Encounters

 "Inspiral-Merger-Ringdown" is just a tiny part at the last moment of binary coalescences!

Formation of binary: Unbound → Bound (Hyperbolic → Elliptic)

"Construct a waveform model covering all of it, in particular, highly eccentric phases!"

Precessions

Coalescence-IMR

- Binary formation through gravitational radiation capture
 - Formation of compact binaries:
 - Primordial binaries (Postnov & Yungelson 06)
 - Three-body interactions (Aarseth & Heggie '76, Bae et al. 14)
 - Gravitational radiation capturing processes
 - Gravitational radiation captures:
 - Hansen '72, Quinlan & Shapiro '87, '89; Lee '95, O'Leary et al. 09, Hong & Lee 15
 - All in the context of Post-Newtonian theory
 - How good are the Post-Newtonian results? When do they break down?
 - → Numerical studies at the level of full general relativity

- How often such captures occur?
 - Direct capture could be rare: 0.02 ~ 5 yr¹ Gpc⁻³ (Hong & Lee '15)
 - How many binaries would be formed at a galaxy center w/ a SMBH?: O'Leary, Kocsis, Loeb ('09)

N-body simulations (Hong & Lee '13): ~ 0.02~20/yr

✓ NR simulations

Gravitational Radiation Capture: "through GW emissions"

- The marginal capturing gives

$$\begin{split} b_{\max} &= \frac{L_{\rm cr}(E)}{\mu v_{\infty}} = \frac{L_{\rm cr}(E)}{\sqrt{2\mu E}} \\ \sigma_{\rm cap} &= \pi b_{\max}^2 \end{split}$$

"Capturing Cross-section"

✓ Two non-spinning equal mass black holes: w/ J. Hansen, P. Diener, F. Loefler & H. Kim ('13)

• Features of orbits and waveforms:

Real part of *ψ*₄ l=2,m=2 mode

• Eccentric orbits → Non-negligible multi mode contributions?

$$\Psi_4 = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} A^{l,m} \left({}_{-2}Y^{l,m}(\theta,\phi) \right)$$

$$\frac{dE}{dt} = \lim_{r \to \infty} \frac{r^2}{16\pi} \oint \left| \int_{-\infty}^t \Psi_4 \, dt' \right|^2 d\Omega$$
$$= \lim_{r \to \infty} \frac{r^2}{16\pi} \sum_{l,m} \left| \int_{-\infty}^t A^{l,m} \, dt' \right|^2$$

Energy budget (L=1.00):

I=2: ~98.9%
I=3: ~0.1%
I=4: ~1%
Rest: less than 0.01%

Maximum impact parameter or capturing cross-section:

- Less capturing for large initial energies
- 2.5PN deviates from NR as E increases: <u>~40% maximally</u>
- But, 3.5PN is still in good agreement with <u>error less</u> <u>than ~4%</u>
- For any given energy, the GR result gives the strongest capturing.

✓ Un-equal masses without spin: w/ Y. Bae, H. Lee & J. Hansen ('17)

✓ Effects of spin with equal masses: w/ Y. Bae & H. Lee ('20)

- How to design the parameter space?:
 - Energy flux emitted at 2.5PN order

$$\mathcal{F} = \frac{G^3}{c^5} \left\{ f_{\rm NS} + f_{\rm SO} + f_{\rm SS} + \mathcal{O}\left(\frac{1}{c^6}\right) \right\}$$
$$\mathcal{F}_{\rm SO} = AM\chi_{\rm eff}^{(+)} + B\delta m\chi_{\rm eff}^{(-)} + \cdots$$

$$S_i = m_i^2 \chi_i$$

$$\delta m = m_1 - m_2,$$

Radiated energy through a single encounter

- Two BHs with anti-aligned spins will be captured or form a binary more easily.
- The EPO approximation underestimates the capture cross-section.
- Error for the EPO approximation goes about 5% at $v_{\infty} = 0.01 c \sim about$ 35% at $v_{\infty} = 0.2 c$ with antialigned spins.

III. Waveform modeling with general eccentricity

- IMR waveforms with eccentricity:
 - Cao & Han 2017; Hinderer & Babak 2017; Hinder et al. 2018; Huerta et al. 2018; Ireland et al. 2019
 - Klein+2018, Tiwari+2019 (PN), <u>Chiaramello & Nagar 2020 (EOB)</u>
- Ex) Cao & Han 2017: works up to e~0.2 with overlap factor ≥ 0.98, compared to NR simulations. <u>Near circular orbit though...</u>

$$\vec{r} = \frac{\partial H}{\partial \vec{p}}, \qquad \vec{\tilde{p}} = -\frac{\partial H}{\partial \vec{r}} + \vec{F}. \qquad \vec{F} = \frac{1}{M\eta\omega_{\Phi}|\vec{r}\times\vec{\tilde{p}}|} \frac{dE}{dt}\vec{p}, \qquad -\frac{dE}{dt} = \frac{1}{16\pi} \sum_{\ell} \sum_{m=-\ell}^{\ell} |\dot{h}_{\ell m}|^2.$$

$$H = M\sqrt{1 + 2\eta\left(\frac{H_{\text{eff}}}{M\eta} - 1\right)}, \qquad \qquad |=2, 3, ..., 8$$

$$h_{22}^{\text{insp-plun}} = h_{22}^{(C)} + h_{22}^{(PNE)}, \qquad h_{22}^{(PNE)} = h_{22} - h_{22}|_{\vec{r}=0},$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
for a circular orbit circular + eccentricity
$$h_{\ell m}^{\text{merger-RD}} = \sum_{n=0}^{N-1} A_{\ell mn} e^{-i\sigma_{\ell mn}(t - t_{\text{match}}^{\ell m})}$$

$$M_{\text{final}} = M[1 + 4(m^0 - 1)\eta + 16m^4\eta^2(\chi_1 + \chi_2)].$$

$$\chi_{\text{final}} = \frac{d_{\text{final}}}{M_{\text{final}}} = x^0 + y^0(tx^0 + ts\eta + t_0)$$

$$+ y^{2}\sqrt{3} + 5m + ty^2),$$

✓ 3PM Hamiltonian:

- Recently, Bern et al (PRL, '19) have obtained the Hamiltonian at the third post-Minkowskian (3PM) order describing the scattering amplitude for two massive spinless particles in the context of effective field theory.

$$\begin{split} H(\pmb{p},\pmb{r}) &= \sqrt{\pmb{p}^2 + m_1^2} + \sqrt{\pmb{p}^2 + m_2^2} + V(\pmb{p},\pmb{r}), \qquad V(\pmb{p},\pmb{r}) = \sum_{i=1}^{\infty} c_i(\pmb{p}^2) \left(\frac{G}{|\pmb{r}|}\right)^i, \\ m_2 & c_1 = \frac{\nu^2 m^2}{\gamma^2 \xi} (1 - 2\sigma^2), \qquad c_2 = \frac{\nu^2 m^3}{\gamma^2 \xi} \left[\frac{3}{4}(1 - 5\sigma^2) - \frac{4\nu\sigma(1 - 2\sigma^2)}{\gamma \xi} - \frac{\nu^2(1 - \xi)(1 - 2\sigma^2)^2}{2\gamma^3 \xi^2}\right], \\ c_3 &= \frac{\nu^2 m^4}{\gamma^2 \xi} \left[\frac{1}{12}(3 - 6\nu + 206\nu\sigma - 54\sigma^2 + 108\nu\sigma^2 + 4\nu\sigma^3) - \frac{4\nu(3 + 12\sigma^2 - 4\sigma^4)\operatorname{arcsinh}\sqrt{\frac{\sigma-1}{2}}}{\sqrt{\sigma^2 - 1}} - \frac{3\nu\gamma(1 - 2\sigma^2)(1 - 5\sigma^2)}{2(1 + \gamma)(1 + \sigma)} - \frac{3\nu\sigma(7 - 20\sigma^2)}{2\gamma \xi} - \frac{\nu^2(3 + 8\gamma - 3\xi - 15\sigma^2 - 80\gamma\sigma^2 + 15\xi\sigma^2)(1 - 2\sigma^2)}{4\gamma^3 \xi^2} + \frac{2\nu^3(3 - 4\xi)\sigma(1 - 2\sigma^2)^2}{\gamma^4 \xi^3} + \frac{\nu^4(1 - 2\xi)(1 - 2\sigma^2)^3}{2\gamma^6 \xi^4}\right], \\ E_{1,2} &= \sqrt{\pmb{p}^2 + m_{1,2}^2}, \qquad m = m_1 + m_2, \quad \nu = m_1m_2/m^2 \quad E = E_1 + E_2, \quad \xi = E_1 E_2/E^2, \end{split}$$

 $\gamma = E/m, \quad \sigma = p_1 \cdot p_2/m_1 m_2.$

- An EOB Hamiltonian for a system of two BHs in general

$$H^{\rm EOB} = M \sqrt{1 + 2\nu \left(\frac{H^{\rm eff}}{\mu} - 1\right)}$$

For $\nu = \frac{m_1 m_2}{(m_1 + m_2)^2} \rightarrow 0$, i.e., $m_1 \gg m_2$, we know the answer $H_S^2 = \left(1 - \frac{2GM}{r}\right) \left[\mu^2 + \frac{L^2}{r^2} + \left(1 - \frac{2GM}{r}\right)p_r^2\right]$

✓ Antonelli, Buonanno+ 2019:

Then, the post-Schwazschild EOB Hamiltonian at 3PM would be

$$(\hat{H}^{\text{eff},\text{PS}})^2 = \hat{H}_{\text{S}}^2 + (1 - 2u)[u^2 q_{2\text{PM}} + u^3 q_{3\text{PM}} + \mathcal{O}(G^4)] \qquad \hat{H}^{\text{eff}} = \frac{H^{\text{eff}}}{\mu}, \quad \dots$$

$$q_{2\text{PM}} = \frac{3}{2}(5\hat{H}_{\text{S}}^2 - 1)\left(1 - \frac{1}{\sqrt{1 + 2\nu(\hat{H}_{\text{S}} - 1)}}\right), \quad q_{3\text{PM}} = -\frac{2\hat{H}_{\text{S}}^2 - 1}{\hat{H}_{\text{S}}^2 - 1}q_{2\text{PM}} + \frac{4}{3}\nu\hat{H}_{\text{S}}\frac{14\hat{H}_{\text{S}}^2 + 25}{1 + 2\nu(\hat{H}_{\text{S}} - 1)}$$
Angular momentum: $l \equiv |L|/(GM\mu)$.
$$+\frac{8\nu}{\sqrt{\hat{H}_{\text{S}}^2 - 1}}\frac{4\hat{H}_{\text{S}}^4 - 12\hat{H}_{\text{S}}^2 - 3}{1 + 2\nu(\hat{H}_{\text{S}} - 1)}\sinh^{-1}\sqrt{\frac{\hat{H}_{\text{S}} - 1}{2}}$$

- PN/PM corrected:

 $q_{3\text{PM}} =$

+

$$\begin{split} H^{\text{EOB}} &= M \sqrt{1 + 2\nu \left(\frac{H^{\text{eff}}}{\mu} - 1\right)}, \qquad H_{\text{S}}^{2} = \left(1 - \frac{2GM}{r}\right) \left[\mu^{2} + \frac{L^{2}}{r^{2}} + \left(1 - \frac{2GM}{r}\right)p_{r}^{2}\right] \\ \hat{n}^{\text{eff}} &= \frac{H^{\text{eff}}}{\mu}, \qquad \hat{n}_{\text{S}} = \frac{H_{\text{S}}}{\mu}, \qquad u = \frac{GM}{r}, \quad \hat{p}_{r} = \frac{p_{r}}{\mu}, \qquad l \equiv \hat{p}_{\phi} = \frac{L}{GM\mu}, \\ \left[\hat{H}^{\text{eff},\text{PS}}(u, \hat{p}_{r}, l)\right]^{2} = \hat{H}_{\text{S}}^{2} + (1 - 2u)\hat{Q}^{\text{PS}}(u, \hat{H}_{\text{S}}, \nu) \\ \hat{H}_{\text{S}}^{2} = (1 - 2u)[1 + l^{2}u^{2} + (1 - 2u)\hat{p}_{r}^{2}] \\ \hat{Q}^{\text{PS}} &= u^{2}q_{\text{2PM}}(\hat{H}_{\text{S}}, \nu) + u^{3}q_{\text{3PM}}(\hat{H}_{\text{S}}, \nu) \\ + \Delta_{\text{3PN}}(u, \hat{H}_{\text{S}}, \nu) + \Delta_{\text{4PN}}(u, \hat{H}_{\text{S}}, \nu) + \mathcal{O}(\text{5PN}) \\ \end{pmatrix}$$

$$\begin{aligned} \alpha_{42} &= \left(-\frac{1027}{12} - \frac{147432}{5} \ln 2 + \frac{1399437}{160} \ln 3 + \frac{1953125}{288} \ln 5 \right) \nu, \\ \alpha_{43} &= \left(-\frac{78917}{300} - \frac{14099512}{225} \ln 2 + \frac{14336271}{800} \ln 3 + \frac{4296875}{288} \ln 5 \right) \nu, \\ \alpha_{44} &= \left(-\frac{43807}{225} + \frac{296\gamma_{\rm E}}{15} - \frac{33601\pi^2}{6144} - \frac{9771016}{225} \ln 2 + \frac{1182681}{100} \ln 3 + \frac{390625}{36} \ln 5 \right) \nu + \left(-\frac{405}{4} + \frac{123}{54} \pi^2 \right) \nu^2 + \frac{13}{2} \nu^3, \\ \alpha_{45} &= \left(-\frac{34499}{1800} + \frac{136}{3} \gamma_{\rm E} - \frac{29917}{6144} \pi^2 - \frac{254936}{25} \ln 2 + \frac{1061181}{400} \ln 3 + \frac{390625}{144} \ln 5 \right) \nu + \left(-\frac{2387}{24} + \frac{205}{64} \pi^2 \right) \nu^2 + \frac{9}{4} \nu^3, \end{aligned}$$
 and

$$\alpha_{44,\ln} = \frac{148}{15}\nu, \qquad \alpha_{45,\ln} = \frac{68}{3}\nu$$

 γ_E = 0.57721... is the Euler-Mascheroni constant.

- Scattering angles: NR vs Newtonian vs EOB vs 3PM

$$H(r, p_r, L) = E$$

$$p_r(r, E, L)$$

$$\left(\frac{\partial H}{\partial L}\right)(r, p_r, \frac{\partial p_r}{\partial L}, L) = 0$$

$$\Delta \phi = \pi + \chi(E, L) = -2 \int_{r_{\min}}^{\infty} dr \frac{\partial}{\partial L} p_r(r, E, L)$$

- Results:

Case: $\vec{P} = (P_x, P_y)$	NR	Newtonian	3PM	EOB	∆χ/χ (%)
(0.090, 0.099)	90.13	87.97	90.34	89.78	-0.388
(0.214, 0.058)	165.11°	155.00°	165.73°	165.30	0.115
(0.0326, 0.015)	300.11°	258.51	299.98	300.52	0.137
(0.0331, 0.015)	299.08	257.63	299.12	299.67	0.197
(0.0376, 0.012)	356.05	273.65	370.20	359.91	1.084
(0.043, 0.0185)	376.41	262.64	359.44	384.72	2.208

- ✓ Design the parameter space in which we can check the validity of our EOB Hamiltonian:
 - High velocity and strong interaction

							\frown								
b	θ	px=pr	ру	J	$\textbf{E_{5PNlog}} \rightarrow$	$\chi^{\rm Heob}_{\rm 5\ PNlog}$	$\chi_{ m 3~PM+4~PN}^{ m Heob}$	$\chi^{\rm Heob}_{\rm 3~PM}$	$\chi^{\rm H}_{\rm 3~PM}$	$\chi_{ m 4~PN}$	$\chi_{ m 3~PN}$	$\chi^{\rm Heob}_{ m 4~PN}$	$\chi^{\rm Heob}_{\rm 3\ PN}$	$\chi^{\rm Heob}_{\rm 2~PN}$	$\chi_{\rm 1PN}^{\rm Heob}$
3.75	2.15	-0.666	0.025	2.5	1.377699	0	0	0	0	163.4	126.4	0	0	0	0
4.	2.29	-0.666	0.0267	2.67	1.3777	0	0	0	0	145.5	112.2	0	0	0	0
4.25	2.44	-0.666	0.0283	2.83	1.377701	0	0	0	0	130.9	100.6	0	0	0	0
4.5	2.58	-0.666	0.03	з.	1.377702	177.2	169.7	0	0	118.7	91.14	219.	0	0	0
4.75	2.72	-0.666	0.0317	3.17	1.377703	119.7	114.9	247.3	0	108.4	83.21	125.8	255.7	0	0
5.	2.87	-0.666	0.0333	3.33	1.377704	98.1	94.7	131.5	0	99.69	76.5	100.8	133.1	0	0
5.25	3.01	-0.666	0.035	3.5	1.377705	85.08	82.68	104.	0	92.15	70.76	86.58	103.8	206.3	0
5.5	3.15	-0.666	0.0367	3.67	1.377706	75.89	74.28	88.66	0	85.61	65.8	76.82	87.66	126.2	162.3
5.75	3.3	-0.666	0.0383	3.83	1.377707	68.87	67.9	78.32	0	79.87	61.48	69.48	76.88	99.79	117.1
6.	3.44	-0.665	0.04	4.	1.377708	63.24	62.78	70.68	0	74.8	57.68	63.66	68.96	84.57	95.91
6.25	3.58	-0.665	0.0417	4.17	1.377709	58.59	58.54	64.69	0	70.3	54.31	58.89	62.82	74.24	82.58
6.5	3.73	-0.665	0.0433	4.33	1.377711	54.66	54.93	59.83	0	66.27	51.32	54.88	57.87	66.62	73.15
6.75	3.87	-0.665	0.045	4.5	1.377712	51.27	51.79	55.77	0	62.65	48.63	51.44	53.76	60.68	66.01

- We have finished NR simulations for these parameters.
- The analysis and comparisons with the predictions of the known waveform models, which are valid in the limited regimes, are currently work in progress.

IV. Conclusion

- Gravitational radiation capture processes for two BHs have been analyzed numerically.
- Effects of unequal masses (upto $m_1: m_2 = 1:16$) and spin configurations ($\chi_{eff}^{(+)}$) are shown.
- Scattering angles for BH encounters with arbitrary eccentricities are calculated in NR.
- A 3PM/4PN EOB Hamiltonian for arbitrary eccentricities has been constructed and various tests with NR simulations are work in progress. (w/ Y.-H. Hyun & Y.-B. Bae)

THANKS!