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• Feels Gravity > Currently 
evidences come only thru this


• (Color) Charge neutral


• Its lifetime >> Age of Universe


•  (Nonrel.)


• 


• 


• It forms a halo, not a disk

ρ( ≃ m) ≫ p( ≃ 0)

ΩDM ∼ 5 ΩBaryon

ρlocal ∼ 0.3GeV/cm3

• Mass, Spin ?


• How many species ?


• Any internal quantum #’s ?


• Any internal structures ?


• Interactions w/ SM particles ?


• DM self int. ? (  )


• Almost nothing known about 
particle physics nature of DM

σχχ /mχ ≲ 1g/cm2

KNOWNS UNKNOWNS



DM models in the market : 
Mass & Couplings ?

• WIMP, SIMP, ELDERS,…


• Axion (axino), gravitino, sterile 


• PBH (Primordial Blackhole)


• Fuzzy DM (Scalar Field DM)


• Topological objects


• Some DM models also solve another 
particle physics problems (             ??) 


• More than Baskin Robbins 31…

ν



Portals to DM
• Higgs portal : 


• U(1) Vector portal : 


• Neutrino portal : 


• (Dark) Axion portal (HSLee et al)


• So on & on & on …


• Eventually “Portal” is what we observe in the experiments 

H†HS, H†HS2, H†Hϕ†ϕ

ϵBμνXμν

NR( H̃ lL + ϕ†ψ)

  : Dark Scalarsϕ

  : Dark photonXμ

  : Dark fermion

~ Sterile 

ψ
ν



Portals to DM
• Higgs portal : 


• U(1) Vector portal : 


• Neutrino portal : 


• (Dark) Axion portal (HSLee et al)


• So on, & on & on , …


• Eventually “Portal” is what we observe in experiments 

H†HS, H†HS2, H†Hϕ†ϕ

ϵBμνXμν

NR( H̃ lL + ϕ†X)

Singlet Portals to Dark sector w/ local dark gauge sym 
(Baek, Park, Ko, arXiv:1303.4280 [hep-ph] )

DM stability is guaranteed by 
Local gauge symmetry 

OR 
DM longevity is gauranteed by 

Accidental global sym



Search for WIMP
• Direct Detections ; Indirect Detections (Current Universe, 

Early Universe) ; Collider Searches


• Quantum Force and search for the 5th force


• DM EFT/Simplified model : Not good for collider searches 
  Dark Higgs is important for unitarity, gauge 

invariance, renormalizability (including anomaly free)


• Theoretical consistency important for DM model buildings 
and phenomenology study

⟶



Dark Gauge 
Symmetry



Z2 real scalar DM
• Simplest DM model with Z2 symmetry :  

• Global Z2 could be broken by gravity effects (higher dim 
operators)


• e.g. consider Z2 breaking dim-5 op :  


• Lifetime of EW scale mass “S” is too short to be a DM


• Similarly for singlet fermion DM 

S → − S

1
MPlanck

SO(4)
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3

not consider dim-3 operators, XRH†H or XIH†H, as-
suming the global dark symmetry GX is broken only by

nonrenormalizable operators.
Then the lifetime of XR or XI decaying into a pair or

photons would be

�(XR(or XI) ! ��) ⇠ 1
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This decay rate should be smaller than 10�52GeV, which
is possible only if mX . O(10) keV. If these nonrenor-
malizable operators are induced at lower energy scale
⇤ < MPl, then the DM mass should be lighter than the
above estimate, scaled by (⇤/MPl)2/3. Axion or light di-
lation DM is a good example of this. If these operators
were allowed with O(MPlanck), it would be disastrous for
dark matter physics.

The above argument also applies to global Z2 symme-
try which is invoked very often to stabilize the scalar dark
matter S with the following renormalizable lagrangian :

L =
1

2
@µS@

µS � 1

2
m2

S
S2 � �S

4!
S4 � �SH

2
S2H†H.

The Planck scale suppressed dim-5 operators will make
the weak scale dark matter S decay very fast in this
model too. Namely global Z2 discrete symmetry is not
strong enough to guarantee the stability or longevity of
the scalar dark matter. This is also true for the case of
fermion dark matter, as described in the following sec-
tion.

Local dark gauge symmetry

If dark symmetry U(1)X is unbroken, then the scalar
dark mater will be absolutely stable and there will be a
long range dark force between dark matters. The mass-
less dark photon can contribute to the extra dark radia-
tion at the level of ⇠ 0.06, making slight increase of the

SM prediction for�Ne↵ towards the WMAP9 data. This
issue has been addressed in detail in our recent paper [2],
and we don’t describe it here in any more detail.

If dark symmetry U(1)X is a local symmetry that is
broken spontaneously by h�Xi = v� 6= 0, then the e↵ect
would be similar to the global symmetry breaking with
suitable changes of couplings. The dim-5 operators which
were dangerous in case of global dark symmetry are now
replaced by dim-6 operators since the global dark sym-
metry is implemented to local dark symmetry :

L =
1

M2
Pl

�†
X
XO(4)

SM. (4)

After �X develops nonzero VEV, this operator predicts
that the CDM lifetime is long enough to be safe from
cosmological constraints: However there appears a dim-4
operator which is a disaster for the DM longevity:

L = �XH2�†
X
XH†H +H.c. (5)

After the U(1)X and EWSB, this operator induces a
nonzero VEV for X as well as X ! hh so that X can no
longer be a good CDM candidate.

In order to forbid the above dangerous dim-4 operator,
one has to assign di↵erent U(1)X charges to X and �X :
QX(X) = 1, QX(�X) = 2, for example. Then the model
would possess discrete local Z2 symmetry after U(1)X
breaking, and the lightest U(1)X -charged particle would
be absolutely stable due to the local Z2 symmetry.
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4
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Due to the µ term, the mass degeneracy between XR and
XI is lifted, and also there could be CP violation from
the µ phase. The model is not so simple compared with
the usual Z2 scalar CDM model:

L =
1

2
@µS@

µS � 1

2
m2

S
S2 � �S

4!
S4 � �SH

2
S2H†H.

Dark matter phenomenology in the model (6) is very rich
and beyond the scope of this letter [1]. On the other
hand, Higgs phenomenology is very simple. There will be
two neutral Higgs-like scalar bosons, the signal strengths
of which are less than 1 independent of decay channels.



Fate of CDM with Z2 sym

• Global Z2 cannot save EW scale DM from decay with long 
enough lifetime

Consider Z2 breaking operators such as

1

MPlanck
SOSM

The lifetime of the Z2 symmetric scalar CDM S is roughly given by

�(S) ⇠ mS

M2
Planck

⇠ (
mS

100GeV
)10�37

GeV

The lifetime is too short for ~100 GeV DM

keeping dim-4 SM 
operators only

3 3

(Baek,Ko,Park,arXiv:1303.4280 )



Fate of CDM with Z2 sym
Spontaneously broken local U(1)X can do the job to some 
extent, but there is still a problem

Let us assume a local U(1)X is spontaneously broken by h�Xi 6= 0 with

QX(�X) = QX(X) = 1

Then, there are two types of dangerous operators:

�†
XXH†H, and �†

XXO(dim�4)
SM

Problematic ! Perfectly fine !

Higgs is not good for DM stability/longevity

Have to choose dark Higgs charge judiciously 
Unless you can be patient with excessive fine tuning



• These arguments will apply to DM models based 
on ad hoc symmetries (Z2,Z3 etc.)


• One way out is to implement Z2 symmetry as local 
U(1) symmetry (arXiv:1407.6588 with Seungwon 
Baek and Wan-Il Park);


• See a paper by Ko and Tang on local Z3 scalar 
DM, and another by Ko, Omura and Yu on inert 
2HDM with local U(1)H


• DM phenomenology richer and DM stability/
longevity on much solider ground



Scalar dark matter stabilized by local Z2 symmetry
and the INTEGRAL 511 keV � ray

P. Ko
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We construct a scalar dark matter model where local Z2 symmetry guarantees the stability of
scalar dark matter. When we include the local U(1)X symmetry as the origin of the local Z2

symmetry, the dark matter appears from a complex scalar which has two real fields. After the
U(1)X ! Z2 symmetry breaking, the mass degeneracy between ..................

INTRODUCTION

If Z2 symmetry were global symmetry, it would be bro-

ken by quantum gravity e↵ects which can be described

by MPlanck scale suppressed nonrenormalizable operators

such as

1

MPlanck

�
SFµ⌫F

µ⌫ , S(H†H)
2, ..

�
(1)

MODEL

Let us assume the dark sector has a local U(1)X gauge

which is spontaneously broken into local Z2 symmetry.

This can be achieved with two complex scalar fields �X

and X ⌘ XR + iXI in the dark sector with the U(1)X

charges equal to 2 and 1, respectively, in the following

lagrangian:

QX(�) = 2, QX(X) = 1

L = LSM +�1
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After the U(1)X symmetry breaking by nonzero h�Xi =
v� 6= 0, the µ�term generates

(X2
+H.c.) = 2(X2

R
�X2

I
)

which lifts the mass degeneracy between XR and XI .

The lagrangian is invariant under X ! �X even after

U(1)X symmetry breaking.

The covariant derivative on X is defined as

DµX = @µX � igXXµX.

In terms of XI and XR, one has

DµX
†DµX = @µXR@

µXR + @µXI@
µXI + 2igXXµ

(XR@µXI �XI@µXR) + g2
X
XµX

µ
(X2

R
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I
) (3)

If the mass di↵erence of XR and XI is of ⇠ O(1) MeV

and the lifetime of the heavier state is ⇠ 10
26�29

sec,

then

XR ! XI�
⇤
h

followed by �⇤
h
! � ! e+e�

could generates the positrons which would be a source of

511 keV � ray lines observed by INTEGRAL.

Note that the local Z2 symmetry guarantees the sta-

bility of the dark matter even if we consider 1/MPlanck-

suppressed nonrenormalizable operators. This is in sharp

contrast with the case of global Z2. However the local

Z2 symmetry requires extra fields compared with a sin-

glet scalar dark matter model with unbroken global Z2

symmetry.

From the model lagrangian Eq. (2), we can work out

the particle spectra at the tree level:

m2
X

= g2
X
v2
�
, (4)
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etc.

Unbroken Local Z2 symmetry

Gauge models for excited DM

The heavier state decays into the lighter state

The local Z2 model is not that simple as 
the usual 


Z2 scalar DM model (also for the 
fermion CDM)

arXiv:1407.6588 w/ WIPark and SBaek
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Local dark gauge symmetry
• Better to use local gauge symmetry for DM stability 

(Baek,Ko,Park,arXiv:1303.4280 )

• Success of the Standard Model 
of Particle Physics lies in “local 
gauge symmetry” without 
imposing any internal global 
symmetries 


• Electron stability : U(1)em gauge 
invariance, electric charge 
conservation, massless photon


• Proton longevity : baryon # is an 
accidental sym of the SM


• No gauge singlets in the SM ; all 
the SM fermions chiral

• Dark sector with (excited) dark 
matter, dark radiation and force 
mediators might have the same 
structure as the SM


• “Chiral dark gauge theories 
without any global sym”


•Origin of DM stability/longevity 
from dark gauge sym, and not 
from dark global symmetries, as 
in the SM


• Just like the SM (conservative)



In QFT,
• DM could be absolutely stable due to  

unbroken local gauge symmetry (DM with 
local Z2, Z3 etc.) or topology (hidden sector 
monopole + vector DM + dark radiation)


• Longevity of DM could be due to some 
accidental symmetries (hidden sector 
pions and baryons)


• I will focus on the roles of (light) dark 
Higgs boson



Role of Dark Higgs



HP DM @ LHC

10�2  m�/GeV  70

102  m�/GeV  103

[arXiv: 1405.3530, S. Baek, P. Ko & WIPark, PRD]

Dashed curves:EFT,
ATLAS,CMS results

2 more relevant parameters in UV completions

5

nal strength ∼ 1, the other ons has the signal strength
! 0.1. Therefore it would require dedicated searches for
this singlet-like scalar boson at the LHC. In fact this sec-
ond scalar boson is almost ubiquitous in hidden sector
DM models, where DM is stabilized or long-lived due
to dark gauge symmetries [17–23]. In case this second
scalar is light, it could solve some puzzles in the CDM
paradigm, such as core cusp problem, missing satellite
problem or too-big-to-fail problem [22, 23]. And it
can help the Higgs inflation work [24] in light of the
recent BICEP2 results with large tensor-to-scalar ratio
r = 0.2+0.07

−0.05. Therefore it would be very important to
search for the singlet-like second scalar boson at the LHC
and elsewhere, in order to test the idea of dark gauge
symmetry stabilizing the DM of the universe. Since the
ILC can probe α down to a few ×10−3 only, there would
be an ample room for the 2nd scalar remaining undis-
covered at colliders unfortunately. It would be a tough
question how to probe the region below α ! 10−3 in the
future terrestrial experiments ( for example, see [25] for
a recent study).
The second point is that there is no unique correlation

between the LHC data on the Higgs invisible branch-
ing ratio and the spin-independent cross section of Higgs
portal DM on nucleon. One can not say that the former
gives stronger bound for low DM mass region compared
with the latter, which is very clear from the plots we have
shown. Therefore it is important for the direct detection
experiments to improve the upper bound on σSI for low
mDM, regardless of collider bounds. Collider bounds can
never replace the DM direct search bounds in a model
independent way, unlike many such claims.

CONCLUSION

In this letter, we have demonstrated that the effec-
tive theory approach in dark matter physics could lead
to erroneous or misleading results. For the Higgs portal
SFDM and VDM, there are at least two more impor-
tant parameters, the mass m2 of the 2nd scalar which is
mostly a SM singlet, and the mixing angle α between the
SM Higgs boson and the 2nd scalar boson:

σSI
p = (σSI

p )EFT c4αm
4
hF(mDM, {mi}, v) (27)

# (σSI
p )EFT c4α

(

1−
m2

h

m2
2

)2

(28)

where the function F is defined in Eq. (13) and m1 =
mh = 125 GeV. The second equation is obtained when
the momentum of DM is negligible relative to both
masses of Higgses. The usual EFT approach applies only
for the case m2 = mhcα/

√

1 + c2α or m2 → ∞ with
α → 0. For the finite m2, there is a generic cancel-
lation between H1 and H2 contribution due to the or-
thogonal nature of the rotation matrix from interaction

to mass eigenstates of two scalar bosons. The resulting
bound on σSI becomes even stronger if m2 > m1 = 125
GeV. On the other hand, for a light 2nd Higgs (m2 <
mhcα/

√

1 + c2α), the LHC bound derived from the invis-
ible Higgs decay width is weaker than the claims made
in both ATLAS and CMS collaborations. Especially, for
m2 ! mhcα/

√

12.3 + c2α, it can not compete with the
DM direct search bounds from XENON100, CDMS and
LUX, which is the main conclusion of this paper. Both
LHC search for the singlet-like 2nd scalar boson and the
DM direct search experiments are important to be con-
tinued, and will be complementary with each other.
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1 Introduction

The so-called Higgs portal cold dark matter (CDM) model is an interesting possibility for

the nonbaryonic dark matter of the universe. The dark matter fields are assumed to be the

standard model (SM) gauge singlets, and could be a scalar (S), a singlet fermion ( ) or

a vector boson (V ) depending on their spin. The Lagrangian of these CD-M’s are usually

taken as [1–4]

Lscalar =
1

2
@µS@

µS �
1

2
m2

SS
2
�
�HS

2
H†HS2

�
�S
4
S4 (1.1)

Lfermion =  [i� · @ �m ] �
�H 
⇤

H†H   (1.2)

Lvector = �
1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ +

1

4
�V (VµV

µ)2 +
1

2
�HV H

†HVµV
µ. (1.3)

Dark matter fields (S, , V ) are assumed to be odd under new discrete Z2 symmetry:

(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to

– 1 –
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Invisible H decay into 
a pair of  VDM 

4

LVDM = −
1

4
VµνV

µν +DµΦ
†DµΦ− λΦ

(

Φ†Φ−
v2Φ
2

)2

− λΦH

(

Φ†Φ−
v2Φ
2

)(

H†H −
v2H
2

)

(21)

where Φ is the dark Higgs field which generates nonzero
mass for the VDM through spontaneous U(1)X breaking,
and

DµΦ ≡ (∂µ + igXQΦVµ)Φ

After U(1)X breaking, we shift the field ΦX as follows:

Φ →
1√
2
(vΦ + φ(x))

where the field φ(x) is a SM singlet scalar similarly to
the singlet scalar in the SFDM case. Again there are two
scalar bosons which are mixtures of h and φ.
The invisible and non-SM branching fractions of the

Higgs decay are of the same forms as Eqs. (5) and (6),
but with

Γinv
i =

g2X
32π

m3
i

m2
V

(

1−
4m2

V

m2
i

+ 12
m4

V

m4
i

)(

1−
4m2

V

m2
i

)1/2

(22)
where mV is the mass of VDM, and Γjj

i with µ′
P = 0.

The spin-indenpendent cross section of VDM to proton is
also same as the one of Eq. (7) with λψ and mψ replaced
to gX and mV , respectively.
Again, let us compare these results with those in the

EFT:
(

Binv
h

)

EFT
is of the same form as Eq. (15) with

(Γinv
h )EFT =

λ2V H

128π

v2Hm3
h

m4
V

×

(

1−
4m2

V

m2
h

+ 12
m4

V

m4
h

)(

1−
4m2

V

m2
h

)1/2

(23)

and the VDM-nucleon scattering cross section is

(σSI
p )EFT =

m2
r

π

[

λV H mp

2mV m2
h

]2

f2
p (24)

In the renormalizable model of Eq. (21), the LHC bound
on Binv

h can be translated directly to a constraint on σSI
p

by the relation,

σSI
p = c4αm

4
hF(mV , {mi}, v)

×
Binv

h ΓSM
h

(

1−Binv
h

)

32m2
rm

2
V (mp/vH)2 f2

p

m7
hβV

(

1− 4m2

V

m2

h

+ 12
m4

V

m4

h

) (25)

where βV =
√

1− 4m2
V /m

2
h. On the other hand, in the

EFT of Eq. (3) one finds

(

σSI
p

)

EFT
=

Binv
h ΓSM

h

1−Binv
h

32m2
rm

2
V (mp/vH)2 f2

p

m7
hβV

(

1− 4m2

V

m2

h

+ 12
m4

V

m4

h

) (26)
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FIG. 2: σSI
p as a function of the mass of dark matter for SVDM

for a mixing angle α = 0.2. Same color and line scheme as
Fig. 1.

used in the analysis’s of ATLAS [1] and CMS [2]. Note
again that σSI

p of Eq. (25) has additional factors involving

(α, m2), compared to
(

σSI
p

)

EFT
of Eq. (26). Therefore,

similarly to the case of SFDM, one cannot make model-
independent connections between Binv

h and σSI
p in the

Higgs portal VDM model. Fig. 2, where σSI
p of Eq. (25)

and (σSI
p )EFT of Eq. (26) in VDM scenario are depicted

for comparison, shows clearly this discrepancy caused by
the different dependence on α and m2.

IMPLICATIONS FOR DM SEARCH AND

COLLIDER EXPERIMENTS

From our arguments based on the renormalizable and
unitary model Lagrangians, it is clear that one has to
seek for the singlet-like second scalar boson H2. It could
be either lighter or heavier than the observed Higgs bo-
son. Since the observed 125 GeV Higgs boson has a sig-
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From our arguments based on the renormalizable and
unitary model Lagrangians, it is clear that one has to
seek for the singlet-like second scalar boson H2. It could
be either lighter or heavier than the observed Higgs bo-
son. Since the observed 125 GeV Higgs boson has a sig-

Invisible H decay width : finite for  
in unitary/renormalizable model

NB: it is infinite in the effective VDM model

mV → 0

[arXiv: 1405.3530, S. Baek, P. Ko & WIPark, PRD]
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I. INVISIBLE DECAY WIDTH OF THE HIGGS BOSON

A. Renormalizable and gauge invariant theory
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Here mV / gxQ�v� [defined in the covariant derivative of � below Eq. (21).] Now we are

interested in the limit mV ! 0, but mV 6= 0. This limit can be achieved by taking gX ! 0

with a fixed v�. Then the prefactor in Eq. (2),
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Therefore �
inv
i

becomes finite when mV ! 0.

B. EFT prediction
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In this case there is no definite correlation between mV and �V H so that the invisible decay

width grows indefinitely when mV ! 0, unlike the case of Eq. (1). This is the well known

disaster in the Higgs portal VDM in the EFT approach.
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Fermi-LAT )-ray excess
• Gamma-ray excess in the direction of GC

GC : b ⇠ l . 0.1�

[1402.6703, T. Daylan et.al.]

GeV scale excess!猎
extended



• A DM interpretation
DM+DM ! bb̄ with �v = 1.7⇥ 10�26cm3/s

mDM = 35.25 GeV

* See “1402.6703, T. Daylan et.al.” for other possible channels

• Millisecond Pulars (astrophysical alternative)
It may or may not be the main source, depending on 
- luminosity func.
- bulge population
- distribution of bulge population
* See “1404.2318, Q. Yuan & B. Zhang” and “1407.5625, I. Cholis, D. Hooper & T. Linden”



GC gamma ray in VDM

V µ

V ν

b̄/τ̄

b/τ

H1,2

Figure 2. Dominant s channel b+ b̄ (and τ + τ̄ ) production

V µ

V ν

H1

H1

V µ

V ν

H1

H1

H1,2

V µ H1

V ν H1

V µ H1

V ν H1

Figure 3. Dominant s/t-channel production of H1s that decay dominantly to b+ b̄

3.4 Dark matter relic density

The observed GeV scale γ-ray spectrum may be explained if DM annihilates mainly into bb
with a velocity-averaged annihilation cross section close to the canonical value of thermal relic
dark matter. This implies that 30GeV ! mV ! 40GeV in case of the s-channel annihilation
(Fig. 2) scenario. It is also possible to produce bb̄ with the nearly same energy from the decay
of highly non-relativistic φ which is produced from the annihilation of DM having mass of
60GeV ! mV ! 80GeV (Fig. 3). In both cases, it is expected to have τ τ̄ and cc̄ productions
too in the final states, because H1 will decay into them with branching ratios about 7% and
3%.

In the process of Fig. 2, the thermally-averaged annihilation cross section of VDM is
given by

〈σvrel〉ff̄ =
∑

f

(gXsαcα)
2

3π
m2

X

∣

∣

∣

∣

∣

∑

i

1

s−m2
i + imiΓi

∣

∣

∣

∣

∣

2
(

mf

vH

)2
(

1−
4m2

f

s

)3/2

, (3.11)

where mf is the mass of a SM fermion f . Note that Eq. (3.11) is suppressed by a factor s2αm
2
f .

Hence a large enough annihilation cross section for the right amount of relic density can be
achieved only around the resonance region. However in the resonance region the annihilation
cross section varies a lot, as the Mandalstam s-variable varies from the value at freeze-out to
the value in a dark matter halo at present. Therefore, this process can not be used for the
GeV scale γ-ray spectrum from the galactic center.

On the other hand, in the process of Fig. 3 for mφ < mV ! 80GeV, the thermally-
averaged annihilation cross section of VDM is given by

〈σvrel〉tot = 〈σvrel〉ff̄ + 〈σvrel〉φφ (3.12)
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[1404.5257, P. Ko, WIP & Y. Tang] 
To appear in JCAP (2014) 

H2 : 125 GeV Higgs
H1 : absent in EFT   



Importance of VDM 
with Dark Higgs Boson
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 mV=40 GeV, mφ=59 GeV, VV→f f *2
mV=80 GeV, mφ=75 GeV, VV→φ φ
mV=80 GeV, mφ=50 GeV, VV→φ φ

Figure 5. Illustration of γ spectra from different channels. The first two cases give almost the same
spectra while in the third case γ is boosted so the spectrum is shifted to higher energy.

on the invisible decay of SM Higgs is irrelevant, but the mixing angle is still constrained by
the signal strength of SM channels such that α ! 0.4 [34].

A remark is in order for the present annihilation cross section to obtain observed GeV
scale γ-ray. Compared to the case of 30GeV ! mV ! 40GeV, the present number den-
sity of dark matter for 60GeV ! mV ! 80GeV is smaller by a factor of about a half, but
each annihilation produces two pairs of bb̄. Hence, the expected flux which is proportional
to the square of DM number density is smaller by about a half. However, there are various
astrophysical uncertainties in the estimation of required annihilation cross section. In par-
ticular, a small change of the inner slope of DM density profile is enough to compensate the
difference of about factor two. In addition, as discussed in Refs. [10], the GeV scale γ-ray
data fits well to cross sections proportional to the square of the mass of the final state SM
particles. This kind of flavor-dependence is an intrinsic nature of our SVDM scenario, thanks
to the Higgs portal interaction. Therefore, with these points in mind, SVDM with mass of
60GeV ! mV ! 80GeV can be a natural source of the GeV scale γ-ray excess from the
direction of the galactic center.

3.5 Comparison with other Higgs portal DM models

In regard of the GeV scale γ-ray excess from the galactic center, SSDM can work equally well
as our SVDM scenario. One difference from SVDM is the additional Higgs portal interaction
of SSDM with SM Higgs, which can improve the vacuum instability problem of SM Higgs
potential better than SVDM scenario.

Contrary to SSDM or SVDM, SFDM with a real scalar mediator results in p-wave s-
channel annihilation. In addition, the t-channel annihilation cross section is approximately

– 8 –

where

〈σvrel〉φφ #
1

16πs
|M|2

(

1−
4m2

φ

s

)1/2

(3.13)

with

|M|2 ≈
2

9

[

1 + 4

(

s

4m2
V

)2(

1−
2m2

V

s

)2
]

[(

2c2αg
2
X +M0

s

)

− 8c2αg
2
X

]2
(3.14)

M0
s = 2c4αm

2
V

(

6λΦ

s−m2
φ

−
tαλΦHvH/vΦ

s−m2
h

)

# 4c4αλΦ



1−
s2αm

2
V

(

m2
h −m2

φ

)

m2
φ

(

s−m2
h

)





∼ 2c4αg
2
X

[

1−
s2α
(

m2
h −m2

V

)

(

4m2
V −m2

h

)

]

(3.15)

Note that, if we consider the off-resonance region with 2mV ! mh, the contribution of the
s-channel H2 mediation can be ignored and 〈σvrel〉φφ does not depend neither sα nor mf .
Hence a right size of annihilation cross section can be obtained by adjusting mostly gX and
(mV −mφ) /mV , with the negligible mixing angle dependence. Fig. 4 shows the relic density

20 40 60 80 10010!4

0.001

0.01

0.1

1

10

mV!GeV"

"
h2

Figure 4. Relic density of dark matter as function of mψ for mh = 125, mφ = 75GeV, gX = 0.2,
and α = 0.1.

at present 5 as a function of mV for mφ = 75 GeV and gX = 0.2 and the mixing angle α = 0.1.
From Fig. 4, we note that the mass of our VDM is constrained to be mh/2 < mV , since SM-
Higgs resonance should be also avoided. And the velocity-averaged annihilation cross section
at present epoch can be close to that of freeze-out only for mφ ! mV . Note also that, as
shown in Fig. 5, in order to match to the observed γ-ray spectrum, we need mφ ∼ mV to
avoid boosted φ.

In the region of 60GeV ! mφ ∼ mV ! 80GeV, the SM Higgs boson decay into VDM
is suppressed by the phase space factor or kinematically forbidden. Hence the collider bound

5We adapted the micrOMEGAs package [37, 38] (ΩVDMh
2) to our model for numerical calculation.
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This mass range of VDM would have been 
impossible in the VDM model (EFT)



3

The 1/s suppressions from the s-channel resonance prop-
agators make the amplitude unitary, in compliance with
renormalizable and unitary QFT.
Finally let us discuss the indirect detection signatures

or thermal relic density from the full theory. In this case

we can assume the same amplitude (7), with approxima-
tion s ≈ (2mχ)2, and we can identify the scale for the
effective operator (1) as

| 1

Λ3
ann

| " 1

Λ3
dd

∣∣∣∣
m2

H1

4m2
χ −m2

H1
+ imH1ΓH1

−
m2

H1

4m2
χ −m2

H2
+ imH2ΓH2

∣∣∣∣ (9)

→ 1

Λ3
dd

∣∣∣∣
m2

H1

4m2
χ −m2

H1
+ imH1ΓH1

∣∣∣∣ %=
1

Λ3
dd

(10)

The last equation is obtained in the limit mH2 → ∞.
Again, due to its dependence on the DM mass mχ, the
scale Λann has nothing to do with the scale in the effective
operator for the direct detection, Λdd, Eq. (6).

COLLIDER STUDIES

To study the effect of nontrivial propagator of media-
tors, we consider following four cases between a standard
model sector and dark matter.

• EFT : Effective operator Lint =
mq

Λ3
dd
q̄qχ̄χ

• S.M.: Simple scalar mediator S of

Lint =
(

mq

vH
sinα

)
Sq̄q − λs cosαSχ̄χ

• H.M.: A case where a Higgs is a mediator

Lint = −
(

mq

vH
cosα

)
Hq̄q − λs sinαHχ̄χ

• H.P.: Higgs portal model as in eq. (2).

In S.M. and H.M. cases, we can regard α as a suppression
factor in interactions while H.P. case, it is a mixing angle
between H and a singlet scalar S. The kinematics of a
signature, i.e., a hardness of ISR jets, /ET , depend on the
scale of a hard interaction, which is proportional to the

invariant mass of a dark matter pair mχ̄χ. Thus there are
relations among EFT, S.M. H.M. and H.P as following,

H.P. −→
m2→∞

H.M. (11)

S.M. −→
m2→∞

EFF. (12)

Thus, an effective operator approach can not capture the
feature of an actual dark matter model, here a higgs
portal. To illustrate this point with Monte Carlo sim-
ulations, we follow ATLAS mono-jet and CMS tt̄ + /ET

searches [2, 3] in followings.
Monojet + !ET signatures

In this section, we discuss the monojet +
%ET signatures within the DM EFT and within the
full renormalizable theory. The scale in the full the-
ory for direct detection Λdd and Λ̄dd in the limit of
mH2 ' mH1 are defined as

Λ3
dd ≡

2vHm2
H1

m2
H2

λ sin 2α(m2
H2

−m2
H1

)
(13)

Λ̄3
dd ≡

2vHm2
H1

λ sin 2α
(14)

The applied cuts are as follows:

pjetT > 100GeV, |ηjet| < 2.4.

tt̄ + !ET signatures

In this section, we discuss the tt̄ + %ET signatures
within the DM EFT and within the full renormaliz-

able theory. Again one has to include the form factor,

5

TeV, and between S.M. with mS = 1 TeV and H.P. with
mH2 = 1 TeV, respectively.

Final search results will also depend on the production
cross section which depends on propagators of media-
tors. In Fig. 2, we illustrate the cross sections rescaled
by the dimensionless factor (2/�S sin 2↵)2 and the e�-
ciency ✏SR7 in the signal region SR7 (/ET > 500 GeV) at
ATLAS [11]. The rescaled cross sections are apparently
independent of the mixing angle ↵. The figure clearly
shows that the Higgs portal model cannot be described
by either the EFT or the S.M at all. Also in the limit
that mH2(mS) is much larger than the typical scale in
the process, the S.M approaches the EFT, whereas the
H.P. does the H.M., respectively.
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FIG. 2: Rescaled cross sections for the monojet+/ET in the
signal region SR7 (/ET > 500GeV) at ATLAS [11]. Each line
corresponds to the EFT approach (magenta), S.M. (blue),
H.M. (black), and H.P. (red), respectively. The solid and
dashed lines correspond to m� = 50 GeV and 400 GeV in
each model, respectively.

3.2 tt̄ + 6ET signatures: A (e↵ective) scalar operator
in Eq. (1) from the Higgs portal case is proportional to
the mass of quarks. Thus dark matter creations with top
quark pair will have better sensitivities compared to the
usual monojet search [18, 19]. Following the analysis of
CMS tt̄ + /ET search [12], we find similar features in the
monojet search in the previous section. The detail of this
analysis will be presented in the future publication [20],
but we will show the resulting bound on M⇤ in Fig. 3
(the lower pannel) in the following subsection.

3.3 Relation between a mediator and an e↵ective oper-
ator approach: By direct comparison between scattering
matrix elements from an e↵ective operator and from a
simple scalar mediator, we can have a similar relation to
Eq. (9)

M
3

⇤ =

✓
2vH

� sin 2↵

◆
m

2

S
. (16)

With this relation, the ATLAS collaboration showed that
the validity of the e↵ective operator when mS > 5 TeV
[11]. However as shown in Eq. (12), this validity holds

only for the S.M which does not respect the full SM gauge
symmetry, while the H.P. with the full SM gauge sym-
metry does not approach the EFT result.
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FIG. 3: The experimental bounds on M⇤ at 90% C.L. as a
function of mH2 (mS in S.M. case) in the monojet+/ET search
(upper) and tt̄ + /ET search (lower). Each line corresponds
to the EFT approach (magenta), S.M. (blue), H.M. (black),
and H.P. (red), respectively. The bound of S.M., H.M., and
H.P., are expressed in terms of the e↵ective mass M⇤ through
the Eq.(16)-(20). The solid and dashed lines correspond to
m� = 50 GeV and 400 GeV in each model, respectively.

In Fig. 3, we show that the experimental 90%
C.L. limits on the suppression scale M⇤ as a function of
a mediator mass mH2 (mS in the S.M. case) at the LHC
by using the results in the monojet+/ET search (upper)
at ATLAS [11] and in the tt̄+ /ET search (lower) at CMS
[12]. For the translation from the limit on the mass of
a mediator in a specific model to a limit on the M⇤ in
the e↵ective operator, we use a direct comparison be-
tween parameters in a model and an suppression scale
M⇤ in the limit where a collision energy becomes negli-
gible compared to the mediator’s mass. For S.M. case we
use the following relation

mq

M3
⇤

=
mq� sin ↵ cos ↵

vH

1

m
2

S

(17)

so that a limit on M⇤ can be obtained through a trans-
lation

"✓
1

M3
⇤

◆2 ✓
� sin 2↵

2vHm
2

S

◆�2

�(S.M.)

#
⇥✏(S.M.) =

Nobs

L . (18)

3

1

⇤3

dd

! 1

⇤̄3

dd


m

2

H1

ŝ � m
2

H1
+ imH1�H1

�
m

2

H1

ŝ � m
2

H2
+ imH2�H2

�
⌘ 1

⇤3

col
(ŝ)

, (10)

where ŝ ⌘ M
2

��
is the square of the invariant mass of the

DM pair. Note that ŝ � 4m
2

�
in the physical region for

DM pair creation, and that there is no single constant
scale ⇤col for an e↵ective operator that characterizes the
qq̄ ! ��̄, since ŝ varies in the range of 4m

2

�
 ŝ  s

with
p

s being the center-of-mass (CM) energy of the
collider. Also note that we have to include two scalar
propagators with opposite sign in order to respect the
full SM gauge symmetry and renormalizability. This is
in sharp contrast with other previous studies where only
a single propagator is introduced to replace 1/⇤2. The
two propagators interfere destructively for very high ŝ

or small t (direct detection), but for m
2

H1
< ŝ < m

2

H2
,

they interfere constructively. The 1/s suppressions from
the s-channel resonance propagators make the amplitude
unitary, in compliance with renormalizable and unitary
QFT.

If one can fix ŝ and m
2

H2
� ŝ, we can ignore the 2nd

propagator. But at hadron colliders, ŝ is not fixed, except
for the kinematic condition 4m

2

�
 ŝ  s (with s =

14TeV for example at the LHC@14TeV). Therefore we
cannot say clearly when we can ignore ŝ compared with
m

2

H2
at hadron colliders, unless m

2

H2
> s (not ŝ).

3. Collider Studies: There are two important factors
in the search for new physics at colliders: a total cross
section and the shape of di↵erential cross sections with
respect to various analysis “cut” variables. A mixing an-
gle ↵ between two scalars is related only to a total cross
section, not to the shape of di↵erential cross section. The
shape of di↵erential cross sections and e�ciencies from
various analysis cuts are related to the nontrivial propa-
gators coming from two mediators (H1, H2). Thus we can
single out the e↵ect of a mixing angle from collider anal-
yses when we try to understand whether we can recast
results of various analyses based on the e↵ective opera-
tor and a simplified model to our model here, the Higgs
portal case through the following set up:

• EFT : E↵ective operator Lint = mq

M3
⇤
q̄q�̄� defined

in Eq. (1)

• S.M.: Simplified model with a scalar mediator S

[3],

Lint =
⇣

mq

vH

sin ↵

⌘
sq̄q � �s�̄� cos ↵

• H.M.: A Higgs boson as a mediator,

Lint = �
⇣

mq

vH

cos ↵

⌘
hq̄q � �h�̄� sin ↵

• H.P.: Higgs portal model defined in Eq. (4) or (5).

In the S.M. and H.M. cases, we can regard ↵ as a sup-
pression factor in interactions while in the H.P. case, it
is a mixing angle between h and s. Note that the SM
gauge symmetry is not fully respected within EFT, S.M.
and H.M. cases.

The kinematics of a signature, i.e., PT of an initial
state radiation (ISR) jet and the size of /ET , depend on
the scale of a hard interaction, which is proportional to
the invariant mass of a dark matter pair, M��. With
following LHC studies, we show that there are relations
among EFT, S.M., H.M., and H.P:

H.P. �!
m

2
H2

�ŝ

H.M., (11)

S.M. �!
m

2
S

�ŝ

EFT, (12)

H.M. 6= EFT . (13)

In H.P., the limit m
2

H2
� ŝ can be achieved, for exam-

ple, by taking vS (the VEV of S in Eq. (4)) large while
keeping dimensionless couplings perturbative. The mix-
ing angle in this case is approximated to [6]

tan 2↵ ' 2vH (µHS
+ �HSvS)

2�Sv
2

S

. (14)

The perturbativity of e↵ective couplings obtained after
integrating out the heavy scalar particle (H2) requires
µHS + �HSvS . mH2 , constraining the mixing angle to
be upper-bounded as

↵ . 2

r
⇡

3

vH

mH2

. (15)

Hence, as H2 becomes heavier, impacts of H.P. at col-
lider experiments becomes more elusive. In any case, for
m

2

H2
� ŝ, the e↵ect of the heavy scalar propagator can be

ignored in relevant diagrams for collider searches. Then,
it is clear that H.P. reduces to H.M. with the angle ↵

given by Eq. (14), and this is what Eq. (11) means. On
the other hand, it should be clear that, S.M. is reduced
to EFT for m

2

S
� ŝ, as stated in Eq. (12), since there

is only one scalar mediator which can be very heavy in
S.M. [26]. Also, it should be clear that, since the mass of
SM-like Higgs is fixed, H.M. cannot be reduced to EFT
for m

2

h
. ŝ, as stated in Eq.(13).

Thus, an e↵ective operator approach cannot capture
the feature of an actual dark matter model, as shown
here in the context of the Higgs portal singlet fermion
DM as an example. We illustrate our point with the AT-
LAS monojet and the CMS tt̄ + /ET searches [11, 12].
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out the real scalar s. However there is always a mix-
ing between the SM Higgs h and the real singlet scalar
s, which results in two physical neutral scalars H1 and
H2 with the mixing angle ↵. Therefore one should take
into account the exchange of both H1 and H2 for DM di-
rect detection scattering [5]. Note that there is a generic
cancellation between two contributions from two neutral
scalars, which cannot be seen within EFT approach [5, 9].

2. Renormalizable Model with the full SM gauge sym-
metry:

The s-channel UV completion of the singlet fermion
DM with Higgs portal has been constructed in Ref. [5]:

L = �(i/@ � m� � �S)� +
1

2
@µS@

µ
S � 1

2
m

2

0
S

2 (4)

� �HSH
†
HS

2 � µHSSH
†
H � µ

3

0
S � µS

3!
S

3 � �S

4!
S

4
.

We note that the model defined by Eq. (4) is one possible
UV completion of the singlet fermion DM with e↵ective
interaction Eq. (1) [25].

Expanding both fields around their VEVs (hH0i =
vH , hSi = vs), we can derive the Lagrangian in terms
of h and s. After diagonalization of the mass matrix,
DM � couples with both H1 and H2.

The interaction Lagrangian of H1 and H2 with the SM
fields and DM � is given by

Lint = �(H1 cos ↵ + H2 sin ↵)

2

4
X

f

mf

vH

f̄f � 2m
2

W

vH

W
+

µ
W

�µ � m
2

Z

vH

ZµZ
µ

3

5 + �(H1 sin ↵ � H2 cos ↵)�̄� , (5)

following the convention of Ref. [5]. We identify the ob-
served 125 GeV scalar boson as H1. The mixing between
h and s leads to the universal suppression of the Higgs
signal strengths at the LHC, independent of production

and decay channels [5].
Let us start with the DM-nucleon scattering amplitude

at parton level, �(p) + q(k) ! �(p0) + q(k0), the parton
level amplitude of which is given by

M = �u(p0)u(p)u(k0)u(k)
mq

vH

� sin ↵ cos ↵


1

t � m
2

H1
+ imH1�H1

� 1

t � m
2

H2
+ imH2�H2

�
(6)

! u(p0)u(p)u(k0)u(k)
mq

2vH

� sin 2↵


1

m
2

H1

� 1

m
2

H2

�
⌘ mq

⇤3

dd

u(p0)u(p)u(k0)u(k), (7)

where t ⌘ (p0 � p)2 is the square of the 4-momentum
transfer to the nucleon, and we took the limit t ! 0 in
the second line, which is a good approximation to the
DM-nucleon scattering. The scale of the dim-7 e↵ective
operator, mq q̄q ��, describing the direct detection cross
section for the DM-nucleon scattering is defined in terms
of ⇤dd:

⇤3

dd
⌘

2m
2

H1
vH

� sin 2↵

✓
1 �

m
2

H1

m
2

H2

◆�1

, (8)

⇤̄3

dd
⌘

2m
2

H1
vH

� sin 2↵
, (9)

where ⇤̄dd is derived from ⇤dd in the limit mH2 � mH1 .
It is important to notice that the amplitude (6) was de-
rived from renormalizable and unitary Lagrangian with
the full SM gauge symmetry, and thus can be a good
starting point for addressing the issue of validity of com-
plementarity.

The amplitude for the monojet with missing transverse
energy(/ET ) signature at hadron colliders is connected to
the amplitude (6) by crossing symmetry s $ t. Com-
paring with the corresponding amplitude from the EFT
approach, we have to include the following form factor:
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e+(p1) + e−(p2) → h∗(q) + Z(pZ) → S(k1) + S(k2) + Z(pZ) (1)
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gZ
2
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The squared amplitude for the h∗Z production part is
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where rZ(s) = 1/(1−m2
Z/s+ imZΓZ/s).

3-body phase-space is given by
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CS is a symmetric factor, CS = 1/2.
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is the cross section for e+e− → h∗Z. By defining a form factor for the scalar
dark matter as,
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the t-distribution is given as

dσSD

dt
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σh∗Z(s, t) · FS(t). (9)

Note that, at lepton colliders, t is observable from the Z-boson momentum by
t = (p1 + p2 − pZ)2 = s+m2

Z − 2
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sEZ where EZ is the Z-boson energy in the
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CV = 1/2.

4 Decay widths of Higgs bosons

4.1 Scalar DM
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Γh = ΓSM
h + θ(mh − 2mD)Γ(h → SS).

For mh > 2mD, applying the experimental constraint of Br(h → inv.) < x,
an upper limit on λHS is derived by
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h . (21)
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Note that, at lepton colliders, t is observable from the Z-boson momentum by
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sEZ where EZ is the Z-boson energy in the

C.M. frame of e+e−. σh∗Z depends on t as well through β̂.
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With Hirosh Yokoya (2017)



General Comments
• One can calculate the collider signatures at 

high energy scale, since the amplitudes were 
obtained in renormalizable and unitary 
models for singlet fermion DM and VDM

• There are two scalar propagators for SFDM 
and VDM, because of the SM gauge sym, 
unitarity and renormalizability

• EFT results can be obtained only if H2 is 
much heavier than the ILC CM energy 
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If we ignored the 2nd scalar propagator and identified m1 = mH (the discovered Higgs

boson), the we would have

SFDM : G(t) ⇠ 1

(t�m
2
H
)2 +m

2
H
�2
H

�
t� 4m2

�

�
(5.12)

! 1

t
(as t ! 1) (5.13)

VDM : G(t) ⇠ 1

(t�m
2
H
)2 +m

2
H
�2
H


2 +

(t� 2m2
V
)2

4m4
V

�
(5.14)

! constant (as t ! 1) (5.15)

These results violate unitarity at high t or high s region, and the results become unreliable.

Note that ignoring the propagator of the 2nd Higgs, which would be justified if m2 �
p
s.

Therefore if we factor out the phase space factors from d�/dt and correct for detector

e�ciencies, etc., one would be able to determine the shape of the function G(t), since F (s)

will be the overall normalization. Having enough number of bins and data, we can test by

�
2minimization to determine whether the observed 6ET distribution follows that of scalar,

fermion or vector DM with Higgs portal. Note that this procedure is possible at ILC, and

not at LHC, since at ILC the CM energy
p
s is fixed so that one can factor out the phase

space factor. On the other hand, at hadron colliders, the parton-level CM energy
p
ŝ is

not fixed so that we cannot factor out the phase space factor in an unambiguous manner.

Note that for the scalar DM, G(t) is completely fixed by the SM Higgs propagator,

and there is no free parameter at all. Therefore it would be straightforward to check if the

observed 6ET distribution can be fit by the SM Higgs propagator or not.

For the SFDM or the VDM, the fitting would be more complicated, since in this case,

there are 5 parameters: namely,

sin↵, m2, �1, �2, mDM

Note that we have to regard �2 and sin↵ independently, since H2 ! H1H1 can be newly

open, which calls for a new parameter that could be traded with �2. With these 5 param-

eters, we can fit the 6ET spectrum and determine whether DM is SFDM or VDM.
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Asymtotic behavior in the full theory

Asymptotic behavior w/o the 2nd Higgs (EFT)

Unitarity
violated !



Inelastic DM for 
XENON1T excess



Motivations for XDM
• In the usual real scalar DM with Z2 symmetry, DM stability is not 

guaranteed in the presence of high dim op’s induced by gravity 
effects 


• Better to have local gauge symmetry for absolutely stable DM 
(Baek,Ko,Park,arXiv:1303.4280 )


• Then XDM appears quite naturally  for both scalar 
and fermion DM cases


• XDM : elementary or composite (dark mesons/baryons/atom…)


• NB : complex scalar DM for   [Ko, Tang, hep-
ph:1402.6449, JCAP ; hep-ph:1407.5492, JCAP]

U(1) → Z2

U(1) → Z3



Motivations for XDM
• XDM : phenomenologically interesting possibility, used for 

interpretation of DAMA, 511 keV -ray & PAMELA  excesses, and 
XENON1T excess, muon (g-2), etc


• Constraints from DD and Colliders are different


• Co-annihilation could be important for relic density calculations


• Usually the mass difference btw XDM & DM is put in by hand, by 
dim-2 for scalar and dim-3 for fermions DM cases, and dark photon is 
introduced 


• However such theories are mathematically inconsistent and unitarity 
will be violated in some channels, when (X)DM couples to dark photon

γ e+



Usual Approaches
For example, Harigaya, Nagai, Suzuki, arXiv:2006.11938 

Similarly for the fermion 
DM case

This term is 
problematic : 
Current is not 

conserved

  : breaks U(1) explicitlyΔ ψCψ



Without dark Higgs

• Only the first two diagrams if the mass gap is given by hand


• The third diagram if the mass gap is generated by dark Higgs 
mechanism


• Without the last diagram, the amplitude violates unitarity at 
large Eγ′ 

P.Ko, T.Matsui, Yi-Lei Tang, arXiv:1910.04311, Appendix A



XENON1T Excess 
(Scalar XDM, Fermion XDM)



XENON1T Excess
• Excess between 1-7 keV


• Expectated : 232  15 , Observed : 285 


• Deviation ~ 3.5 


• Tritium contamination


• Long half lifetime (12.3 years)


• Abundant in atmosphere and cosmogenically produced in 
Xenon


• Solar axion


• Produced in the Sun


• Favored over bkgd @ 3.5 


• Neutrino magnetic dipole moment


• Favored @ 3.2 

±

σ

σ

σ

Electron recoil



DD/CMB Constraints
• To evade stringent bounds from direct detection expt’s : 

sub GeV DM


• CMB bound excludes thermal DM freeze-out determined 
by S-wave annihilation :  DM annihiliation should be 
mainly in P-wave Planck 2018


R.K.Leane 35 al, PRD2018⟨σv⟩ ∼ a + bv2



Exothermic DM 
• Inelastic exothermic scattering of XDM 


•   by dark photon exchange + 
kinetic mixing


• Excess is determined by 


• Most works are based on effective/toy models where  is put in 
by hand, or ignored dark Higgs


• dim-2 op for scalar DM and dim-3 op for fermion DM : soft and 
explicit breaking of local gauge symmetry), and include massive 
dark photon as well  theoretically inconsistent !

XDM + eatomic → DM + efree

ER ∼ δ = mXDM − mDM

δ

→



Z2 DM models with dark Higgs

• We solve this inconsistency and unitarity issue with 
Krauss-Wilczek mechanism 


• By introducing a dark Higgs, we have many advantages:  


• Dark photon gets massive


• Mass gap  is generated by dark Higgs mechanism


• We can have DM pair annihilation in P-wave involving 
dark Higgs in the final states, unlike in other works

δ



Usual Approaches

• The model is not mathematically consistent, since there is no 
conserved current a dark photon can couple to in the massless limit


• The second term with  breaks  explicitly, although softly Δ2 U(1)X

For example, Harigaya, Nagai, Suzuki, arXiv:2006.11938 

Similarly for the fermion 
DM case

This term is 
problematic



Relic Density from 

   

(P-wave annihilation)

XX† → Z′ * → ff̄
For example, Harigaya, Nagai, Suzuki, arXiv:2006.11938 

pko
- Only scalar DM can be in P-wave annihilation w/o dark Higgs
- Fermion DM impossible unless dark Higgs is included



Scalar XDM ( )  XR & XI

role when mDM < mZ0 , as we shall demonstrate in the following. In order to explain the

XENON1T excess in terms of XDM+eatomic ! DM+efree with a kinetic mixing, both dark

photon and (X)DM mass should be sub-GeV, more specifically ⇠ O(100) MeV, in order to

avoid the stringent bounds on the kinetic mixing parameter. For such a light DM, one has

to consider the DM annihilation should be mainly in p-wave, and not in s-wave, in order to

avoid strong constraints from CMB (see [54, 55] and references therein).

For this purpose it is crucial to have dark Higgs (�), since they can play a key roles in

the p-wave annihilations of DM at freeze-out epoch:

XX†
! Z

0⇤
! Z

0
�,

�� ! ��,

where X and � are complex scalar and Dirac fermion DM, respectively. At freeze-out epoch,

the mass gap is too small (�m ⌧ T ) and we can consider DM as complex scalar or Dirac

fermion. In the present Universe, we have T ⌧ �m and so we have to work in the two

component DM picture for XENON1T electron recoil. It can not be emphasized enough

that these channels would not be possible without dark Higgs �, and it would be di�cult to

make the DM pair annihilation be dominated by the p-wave annihilation.

II. MODELS FOR (EXCITED) DM

A. Scalar DM model

The dark sector has a gauged U(1)X symmetry. There are two scalar particles in the dark

sector X and � with U(1)X charges 1 and 2, respectively. They are neutral under the SM

gauge group. After � gets VEV, h�i = v�/
p
2, the gauge symmetry is spontaneously broken

down to discrete Z2. The Z2-odd X becomes the DM candidate. The model Lagrangian is

in the form [51]

L = LSM �
1

4
X̂µ⌫X̂

µ⌫
�

1

2
sin ✏X̂µ⌫B̂

µ⌫ +Dµ�†Dµ�+DµX†DµX �m2
X
X†X +m2

�
�†�

���

�
�†�

�2
� �X

�
X†X

�2
� ��XX

†X�†�� ��H�
†�H†H � �HXX

†XH†H

�µ
�
X2�† +H.c.

�
, (1)

where X̂µ⌫ (Bµ⌫) is the field strength tensors of U(1)X (U(1)Y ) gauge boson in the interaction

basis.

3

Field

U(1) 
charge

2 1 1

ϕ X χ

We decompose the X as

X =
1
p
2
(XR + iXI), (2)

and H and � as

H =

0

@ 0

1p
2
(vH + hH)

1

A , � =
1
p
2
(v� + h�), (3)

in the unitary gauge.

The dark photon mass is given by

m2
Z0 ' (2gXv�)

2, (4)

where we neglected the corrections from the kinetic mixing, which is second order in ✏

parameter. The masses of XR and XI are obtained to be

m2
R
= m2

X
+

1

2
�HXv

2
H
+

1

2
��Xv

2
�
+

µ
p
2
v�,

m2
I
= m2

X
+

1

2
�HXv

2
H
+

1

2
��Xv

2
�
�

µ
p
2
v�, (5)

and the mass di↵erence, � ⌘ mR �mI ' µv�/
p
2mX . Since the original U(1)X symmetry

is restored by taking µ = 0, small µ does not give rise to fine-tuning problem. The mass

spectrum of the scalar Higgs sector can be calculated by diagonalising the mass-squared

matrix
0

@ 2�Hv2H ��HvHv�

��HvHv� 2��v2�

1

A , (6)

which is obtained in the (hH , h�) basis. We denote the mixing angle to be ↵H and the mass

eigenstates to be (H1, H2), where H1 is the SM Higgs-like state and H2(⌘ �) is mostly dark

Higgs boson. Since we work in the small ↵H in this paper, the VEV of � is approximated

to be, v� ' mH2/
p

2��, while ↵H ' ��Hv�/2�HvH .

The mass eigenstates Zµ and Z 0
µ
of the neutral gauge bosons can be obtained using the

procedure shown in Ref. [56]. In the linear order approximation in ✏ we can write the

covariant derivative as

Dµ ' @µ + ieQemAµ + i
⇣
gZ(T

3
�Qems

2
W
) + ✏gXQXsW

⌘
Zµ + i

⇣
gXQX � ✏eQemcW

⌘
Z 0

µ
, (7)

4

the kinetic mixing term given in (1) we get the dark-gauge interactions with the DM and

the electron [56]

L � gXZ
0µ(XR@µXI �XI@µXR)� ✏ ecWZ 0

µ
e�µe, (12)

where cW is the cosine of the Weinberg angle, Z and Z 0 are mass eigenstates, and we

assumed that ✏(⇠ 10�4) is small. The cross section for the inelastic scattering XRe ! XIe

for mX � me and small momentum transfer is given by

�e =
16⇡✏2↵em↵Xc2Wm2

e

m4
Z0

, (13)

where ↵em ' 1/137 is the fine structure constant and ↵X ⌘ g2
X
/4⇡. This can be used to

predict the di↵erential cross section of the dark matter scattering o↵ the xenon atom for the

DM velocity v, which reads

d�v

dER

=
�e

2mev

Z
q+

q�

a20qdqK(ER, q), (14)

where ER is the recoil energy, q is the momentum transfer, K(ER, q) is the atomic excitation

factor. From energy conservation we obtain the relation [9],

ER = � + vq cos ✓ �
q2

2mR

, (15)

where ✓ is the angle between the incoming XR and the momentum transfer q = p0
e
� p

e
.

The integration limits are [9],

q± ' mRv ±
q

m2
R
v2 � 2mR(ER � �), for ER � �,

q± ' ±mRv +
q

m2
R
v2 � 2mR(ER � �), for ER  �. (16)

Then we can obtain the di↵erential event rate for the inelastic scattering of DM with electrons

in the xenon atoms given by

dR

dER

= nTnR

d�v

dER

, (17)

where nT ⇡ 4⇥1027/ton is the number density of xenon atoms and nR ⇡ 0.15GeV/mR/cm3

is the number density of the heavier DM component XR, assuming nR = nI . Integrating

over ER, we get the event rate

R ⇡ 3.69⇥ 109 ✏2 g2
X

✓
1GeV

mR

◆✓
1GeV

mZ0

◆4

/ton/year. (18)
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Since XR is a dark matter component in our model with the same abundance with XI , its

lifetime should be much longer than the age of the universe. It can decay via XR ! XI���

as shown in [9]. Its decay into three-body final state, XR ! XI⌫⌫, is also possible in our

model. The relevant interactions are

L � ✏gXsWZµ(XR@µXI �XI@µXR)�
gZ
2
Zµ⌫L�

µ⌫L. (19)

The decay width is given by

� '
✏2↵Xs2W
5
p
2⇡2

GF �5

m2
Z

' 1.9⇥ 10�49 GeV
⇣ ✏

10�4

⌘2 ⇣ ↵X

0.078

⌘✓
�

2 keV

◆5

. (20)

Although this channel is much more e↵ective than XR ! XI��� considered in [9], the

lifetime of XR is still much longer than the age of the universe.

In the right panel of Fig. 1 , we show the allowed region in the (mZ0 , ✏) plane where we can

explain the XENON1T excess with correct thermal relic density of DM within the standard

freeze-out scenario. For illustration, we chose the DM mass to be mR = 0.1 GeV, and varied

the dark Higgs mass m� = 20, 40, 60, 80 MeV denoted with di↵erent colors. The sharp drops

on the right allowed region is from the kinematic boundary, mZ0+m� < 2mR. It is nontrivial

that we could explain the XENON1T excess with inelastic DM models with spontaneously

broken U(1)X ! Z2 gauge symmetry. In particular it is important to include light dark

Higgs for this explanation. It would be straightfoward to scan over all the parameters to get

the whole allowed region.

B. Fermion DM model

We start from a dark U(1) model, with a Dirac fermion dark matter (DM) � appointed

with a nonzero dark U(1) charge Q� and dark photon. We also introduce a complex dark

Higgs field �, which takes a nonzero vacuum expectation value, generating nonzero mass for

the dark photon. We shall consider a special case where � breaks the dark U(1) symmetry

into a dark Z2 symmetry with a judicious choice of its dark charge Q�.

Then the gauge invariant and renormalizable Lagrangian for this system is given by

L = �
1

4
X̂µ⌫X̂µ⌫ �

1

2
sin ✏X̂µ⌫B

µ⌫ + �
�
i /D �m�
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U(1) → Z2 by vϕ ≠ 0 : X → − X
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FIG. 1: (left) Feynman diagrams relevant for thermal relic density of DM: XX†
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the region in the (mZ0 , ✏) plane that is allowed for the XENON1T electron recoil excess and the
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! XRXI is

kinematically forbidden.

where X̂µ⌫ = @µX̂⌫ � @⌫X̂µ. Dµ = @µ + igXQXX̂µ is the covariant derivative, where gX is

the dark coupling constant, and QX denotes the dark charge of � and �: Q� = 2, Q� =

1, respectively. Then U(1)X dark gauge symmetry is spontaneously broken into its Z2

subgroup, and the Dirac DM � is split into two Majorana DM �R and �I defined as

� =
1
p
2
(�R + i�I), (22)

�c =
1
p
2
(�R � i�I), (23)

�c

R
= �R, �c

I
= �I , (24)

with

mR,I = m� ± yv� = m� ±
1

2
�. (25)

We assume y > 0 so that � ⌘ mR � mI = 2yv� > 0. Then the above Lagrangian is

written as

L =
1

2

X

i=R,I

�i

�
i/@ �mi

�
�i � i

gX
2
(Z 0

µ
+ ✏sWZµ) (�R�

µ�I � �I�
µ�R) (26)

�
1

2
yh� (�R�R � �I�I) , (27)

where h� is neutral CP-even component of � as defined in (3).
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P-wave annihilation x-sections

Scalar DM : XX† → Z′ * → Z′ ϕ
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Although this channel is much more e↵ective than XR ! XI��� considered in [9], the
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explain the XENON1T excess with correct thermal relic density of DM within the standard

freeze-out scenario. For illustration, we chose the DM mass to be mR = 0.1 GeV, and varied
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U(1) → Z2 by vϕ ≠ 0 : χ → − χ



0.05 0.10 0.50 1
10-9

10-8

10-7

10-6

10-5

10-4

0.001

mZ' [GeV]

�

NA64
mR=10MeV
�=2keV

m�=2MeV
m�=4MeV
m�=6MeV
m�=8MeV

FIG. 2: (top) Feyman diagrams for ��̄ ! ��. (bottom) the region in the (mZ0 , ✏) plane that is

allowed for the XENON1T electron recoil excess and the correct thermal relic density for fermion

DM case for � = 2 keV and the fermion DM mass to be mR = 10 MeV. Di↵erent colors represents

m� = 2, 4, 6, 8 MeV. The gray areas are excluded by various experiments, assuming Z 0
! �R�I

is kinematically allowed, and the experimental constraint is weaker in the ✏ we are interested in,

compared with the scalar DM case in Fig. 1 (right). We also show the current experimental bounds

by NA64 [66].

Note that the kinetic mixing ✏ ⇠ 10�7±1, which is much smaller than the scalar DM case.

We have checked if the gauge coupling gX and the quartic coupling of dark Higgs (��)

remain in the perturbative regime. The solid (dashed) lines denote the region where gX

satisfy (violate) perturbativity condition, depending ↵X < 1 or not. Within this allowed

region, �� remain perturbative. Again it is nontrivial that we could explain the XENON1T

excess with inelastic fermion DM models with spontaneously broken U(1)X ! Z2 gauge

symmetry. In particular it is important to include light dark Higgs for this explanation as

in the scalar DM case.
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P-wave annihilation x-sections

Scalar DM : XX† → Z′ * → Z′ ϕ

Fermion DM : χχ → ϕϕ

Crucial to include “dark Higgs” to have 
DM pair annihilation in P-wave



Determination of (M,spin)  
@ Belle2

Work in preparation with 
DongWoo Kang, Chih-Ting Lu



Search for long-lived particles in inelastic DM models at Belle II

The tracking resolution of electron/muon 
momenta in the drift chamber detector is 
given by

The resolution of photon momenta in the 
calorimeter

The resolution for the displaced vertex of 
lepton pair



Displaced signature examples in  
Belle II detector (xy-plane) 

Vertex 
detector

Drift 
chamber

Calorime
ter



Any difference for fermion and scalar 
boson pair productions @ colliders ?

1. The cross sections for fermion and scalar boson pair productions are 
scaled by    and        respectively, where  is the velocity of the final 
state particle in the center-of-mass frame.


2. Hence, one can expect the production of the scalar pair is suppressed by an 
extra factor of  compared with the fermionic case.

β1/2 β3/2 β

β



If   are long-lived, can we determine  
their spins at colliders ?

ϕ2, χ2

In the center of mass (CM) frame, the normalized differential cross section can be written as


for the scalar case  

for the fermion case  

where 

Note     is the direction of    relative to the beam direction. 

 

(e+e− → ϕ2ϕ1)

(e+e− → χ2 χ1)

ϕ2 , χ2

We need to know the 
direction of the 
displaced vertex



The differences are still 
obvious in the LAB frame!

If   are long-lived, can we determine  
their spins at colliders ?

ϕ2, χ2



If the excited DM is long-lived,  
can we determine its mass at colliders ?
In the center of mass (CM) frame for the process 


There are 8 unknown values from four-momentum of two dark matters in the 
final states.


However, we have 7 constraints for this process :


1. four-momentum conservation (4) 


2. two dark matters with the same mass (1) 


3. because of the charge neutrality of the excited DM, a three-momentum 
vector is proportional to the displaced vertex (2) : 


Therefore, we cannot get the unique solution for 8 unknown values. We need 
to find other ways to determine the mass of DM and mass splitting !

⃗pχ2
= | ⃗pχ2

| ̂rDV



In the center of mass (CM) frame for the process 


We can first write down the following equation with the help of four-momentum 
conservation,





where    is the direction of displaced vertex, E is half of the center of mass energy,


   are the visible energy and three-momentum in the final states, and 





For each event, we can receive a relation between the mass of DM and mass splitting.


 

e+e− → χ1χ2 → χ1χ1e+e−

m2
χ2

− m2
χ1

− 2E(1 + α)EV′ + E2
V′ − | ⃗pV′ |

2 + 2 (E(1 + α))2 − m2
χ2

( ̂rDV ⋅ ⃗pV′ ) = 0

̂rDV

EV′ , ⃗pV′ 

α =
m2

χ2
− m2

χ1

4E2

If the excited DM is long-lived,  
can we determine its mass at colliders ?



If the excited DM is long-lived,  
can we determine its mass at colliders ?

The crossing point from these events and kinematic endpoint 
measurement    can help us to determine the mass of DM and 
mass splitting. This method is based on “Kinematic focus point” from 
arXiv:1906.0282 (Kim,Matchev,Shyamsundar).


 

mmax
ff̄

event-1

event-2
event-3

 GeV(Δ, MD) = (0.05,0.5)



If the excited DM is long-lived, can we determine its mass at colliders ?

Assume we can have 100 signal events at the Belle II, then we will get 4950 solutions from 
each two events !  



If the excited DM is long-lived, can we determine its mass at colliders ?



Summary
• Local Z2 scalar/fermion DM : theoretically well defined & mathematically 

consistent models for XDM


• Can explain a number of phenomena including the recent XENON1T data


• One can discriminate the spin of (X)DM at Belle II from the polar angle 
distributions of the decaying points


• DM mass and the  can be determined with the focus point method


• Similar studies at ILC, CEPC, HL-LHC and FCC-hh in progress (The current 
version of FCC CDR does not include this interesting case.)

Δm



Dark Higgs search@colliders

Work in progress with Chih-Ting Lu, Youngjoon Kwon
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Dark pion DM :  
WIMP vs. SIMP



EWSB and CDM from Strongly 
Interacting Hidden Sector

Hur, Jung, Ko, Lee : 0709.1218, PLB (2011)
Hur, Ko : arXiv:1103.2517,PRL (2011) 

Proceedings for workshops/conferences
during 2007-2011 (DSU,ICFP,ICHEP etc.)

All the masses (including CDM mass) 
from hidden sector strong dynamics,

and CDM long lived by accidental sym



Nicety of QCD

• Renormalizable

• Asymptotic freedom : no Landau pole

• QM dim transmutation :

• Light hadron masses from QM dynamics

• Flavor & Baryon # conservations : 
accidental symmetries of QCD (pion is 
stable if we switch off EW interaction; 
proton is stable or very long lived)



h-pion & h-baryon DMs

• In most WIMP DM models, DM is stable 
due to some ad hoc Z2 symmetry

• If the hidden sector gauge symmetry is 
confining like ordinary QCD, the lightest 
mesons and the baryons could be stable or 
long-lived >> Good CDM candidates

• If chiral sym breaking in the hidden sector, 
light h-pions can be described by chiral 
Lagrangian in the low energy limit



!"
#$%%&'(
!&)*+,

"&--&'.&,

/0-$)(1$)*2,&

!$3$40,(*+(+,%$'0,5(678

(arXiv:0709.1218 with T.Hur, D.W.Jung and J.Y.Lee) 
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Key Observation
• If we switch off gauge interactions of the 

SM, then we find 

• Higgs sector ~ Gell-Mann-Levy’s linear 
sigma model which is the EFT for QCD 
describing dynamics of pion, sigma and 
nucleons

• One Higgs doublet in 2HDM could be 
replaced by the GML linear sigma model 
for  hidden sector QCD



Model-I

Potential for H1 and H2

V (H1, H2) = −µ2
1(H

†
1H1) +

λ1

2
(H†

1H1)
2 − µ2

2(H
†
2H2)

+
λ2

2
(H†

2H2)
2 + λ3(H

†
1H1)(H

†
2H2) +

av3
2

2
σh

Stability : λ1,2 > 0 and λ1 + λ2 + 2λ3 > 0

Consider the following phase:

H1 =

(

0
v1+hSM√

2

)

, H2 =

(

π+
h

v2+σh+iπ0
h√

2

)

Correct EWSB : λ1(λ2 + a/2) ≡ λ1λ′
2 > λ2

3

– p.34/50

Not present in the two-
Higgs Doublet model
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Relic DensityModel-I : Relic density of πh
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Model-I : Direct detection rate
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Model I (Scalar Messenger)

• SM - Messenger - Hidden Sector QCD

• Assume classically scale invariant lagrangian --> No 
mass scale in the beginning

• Chiral Symmetry Breaking in the hQCD generates a 
mass scale, which is injected to the SM by “S”

SM Hidden 
QCD

Singlet 
Scalar S

������������



Model-II

Introduce a real singlet scalar S

Modified SM with classical scale symmetry

LSM = Lkin −
λH

4
(H†H)2 −

λSH

2
S2 H†H −

λS

4
S4

+
(

Q
i
HY D

ij Dj + Q
i
H̃Y U

ij U j + L
i
HY E

ij Ej

+ L
i
H̃Y N

ij N j + SN iT CY M
ij N j + h.c.

)

Hidden sector lagrangian with new strong interaction

Lhidden = −
1

4
GµνG

µν +
NHF
∑

k=1

Qk(iD · γ − λkS)Qk

– p.42/50

Model-II

Introduce a real singlet scalar S

Modified SM with classical scale symmetry

LSM = Lkin −
λH

4
(H†H)2 −

λSH

2
S2 H†H −

λS

4
S4

+
(

Q
i
HY D

ij Dj + Q
i
H̃Y U

ij U j + L
i
HY E

ij Ej

+ L
i
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Hidden sector lagrangian with new strong interaction

Lhidden = −
1

4
GµνG

µν +
NHF
∑

k=1

Qk(iD · γ − λkS)Qk

– p.42/50
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Scale invariant extension of the SM
with strongly interacting hidden sector

Model considered by Meissner and Nicolai, hep-th/0612165



Model-II

Effective lagrangian far below Λh,χ ≈ 4πΛh

Lfull = Leff
hidden + LSM + Lmixing

Leff
hidden =

v2
h

4
Tr[∂µΣh∂µΣ†

h] +
v2
h

2
Tr[λSµh(Σh + Σ†

h)]

LSM = −
λ1

2
(H†

1H1)
2 −

λ1S

2
H†

1H1S
2 −

λS

8
S4

Lmixing = −v2
hΛ2

h

[

κH
H†

1H1

Λ2
h

+ κS
S2

Λ2
h

+ κ′
S

S

Λh

+ O(
SH†

1H1

Λ3
h

,
S3

Λ3
h

)

]

≈ −v2
h

[

κHH†
1H1 + κSS2 + Λhκ′

SS
]
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3 neutral scalars : h,  S and hidden sigma meson
Assume h-sigma is heavy enough for simplicity



Relic densityModel-II: Relic densities of Ωπh
h2

Ωπhh
2 in the (mh1

,mπh) plane for
(a) vh = 500 GeV and tan β = 1,

(b) vh = 1 TeV and tan β = 2.
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Direct Detection RateModel-II: Direct detection rates
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Comparison with the 
previous models

• Dark gauge symmetry is unbroken (DM could be 
absolutely stable if they appeared in the asymptotic 
states), but confining like QCD (No long range dark 
force, DM becomes composite)


• DM : composite hidden hadrons (mesons and baryons)


• All masses including CDM masses from dynamical sym 
breaking in the hidden sector


• Singlet scalar is necessary to connect the hidden sector 
and the visible sector


• Higgs Signal strengths : universally reduced from one



• Additional singlet scalar improves the 
vacuum stability up to Planck scale


• Can modify Higgs inflation scenario 
(Higgs-portal assisted Higgs inflation      
[arXiv:1405.1635, JCAP (2017) with Jinsu Kim, WIPark]


• The 2nd scalar could be very very elusive 


• Can we find the 2nd scalar at LHC ?


• We will see if this class of DM can survive 
the LHC Higgs data in the coming years



SIMP Scenario in 
Dark QCD



SIMP paradigm

The SIMP Miracle
====================================================================25% of the authors prefer the title: ‘SIMP Dark Matter’. They are uncomfortable with the term ‘miracle’ in this scenario. Damn democracy!==================================================================.
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We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

mDM ⇠ ↵ann (TeqMPl)
1/2

⇠ TeV , (1)

where ↵ann is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵ann ' 1/30 above, Teq is the matter-radiation
equality temperature and MPl is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵ann ' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

mDM ⇠ ↵e↵

�
T

2
eqMPl

�1/3
⇠ 100 MeV , (2)

where ↵e↵ is the e↵ective strength of the self-interaction
of the DM which we take as ↵e↵ ' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z2 symmetry, leads to DM in the keV

↵e↵ ' 1 ↵e↵ ' 1

SMDM
3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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SIMP Conditions
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FIG. 3: The bounds on ✏ vs. mDM. Left, coupling to electrons: The grey regions (outlined by thick dashed lines) represents
the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where the standard
2 ! 2 annihilation to the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the exclusion limits
from: direct-detection in Xenon10 [43] (purple region), along with the expected future bound from a germanium-based electron
recoil experiment [44] (dashed-purple); CMB and low red shift data constraints for electrons [45] (blue region); modification
of Ne↵ [46] (red region); indirect detection of �-rays [47] (green region); direct production at LEP for a variety of mediator
mass, M , and width, � (solid-gray) [18]. Right, coupling to photons: The grey regions (outlined by thick dashed lines)
represents the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where
the standard 2 ! 2 annihilation with the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the
exclusion limits from: indirect detection of �-rays [47] (green region); conservative CMB and low red shift data constraints [45]
(blue region); modification of Ne↵ [46] (red region).

There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]

✓
�scatter

mDM

◆

obs

= (0.1 � 10) cm2
/g . (25)

On the other hand, bullet-cluster constraints [24–26] as
well as recent simulations which reanalyze the constraints
from halo shapes [21, 23], suggest the limits on the DM
self-interacting cross section (at velocities & 300 km/sec)
are

�scatter

mDM
. 1 cm2

/g . (26)

The above constraint leaves a viable region for the pre-
ferred strength of DM self-interactions.

The SIMP scenario naturally predicts a sizable con-
tribution to the above 2 ! 2 scatterings. One may

parametrize it by defining a ⌘ ↵2!2/↵e↵ , such that

�scatter

mDM
=

a
2
↵

2
e↵

m
3
DM

, (27)

and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at

0.3
⇣

a

0.2

⌘2
. ↵e↵ . 8

⇣
a

0.2

⌘2
, (28)

where the lower bound above arises from the upper bound
of Eq. (26). The corresponding DM mass is in the range

of 8
�

a
0.2

�2
MeV . mDM . 200

�
a

0.2

�2
MeV. In Fig. 2

we show the full region preferred by the small-scale struc-
ture anomalies, and the region excluded by bullet-cluster
and halo-shape constraints. The colored regions show the
preferred region for a = 1, 0.05, 10�3. The region above
the corresponding gray-dashed lines is excluded by the
bullet-cluster and halo shape constraints, for each value
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FIG. 3: The bounds on ✏ vs. mDM. Left, coupling to electrons: The grey regions (outlined by thick dashed lines) represents
the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where the standard
2 ! 2 annihilation to the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the exclusion limits
from: direct-detection in Xenon10 [43] (purple region), along with the expected future bound from a germanium-based electron
recoil experiment [44] (dashed-purple); CMB and low red shift data constraints for electrons [45] (blue region); modification
of Ne↵ [46] (red region); indirect detection of �-rays [47] (green region); direct production at LEP for a variety of mediator
mass, M , and width, � (solid-gray) [18]. Right, coupling to photons: The grey regions (outlined by thick dashed lines)
represents the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where
the standard 2 ! 2 annihilation with the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the
exclusion limits from: indirect detection of �-rays [47] (green region); conservative CMB and low red shift data constraints [45]
(blue region); modification of Ne↵ [46] (red region).

There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]
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On the other hand, bullet-cluster constraints [24–26] as
well as recent simulations which reanalyze the constraints
from halo shapes [21, 23], suggest the limits on the DM
self-interacting cross section (at velocities & 300 km/sec)
are

�scatter

mDM
. 1 cm2

/g . (26)

The above constraint leaves a viable region for the pre-
ferred strength of DM self-interactions.

The SIMP scenario naturally predicts a sizable con-
tribution to the above 2 ! 2 scatterings. One may

parametrize it by defining a ⌘ ↵2!2/↵e↵ , such that
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, (27)

and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at
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where the lower bound above arises from the upper bound
of Eq. (26). The corresponding DM mass is in the range

of 8
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we show the full region preferred by the small-scale struc-
ture anomalies, and the region excluded by bullet-cluster
and halo-shape constraints. The colored regions show the
preferred region for a = 1, 0.05, 10�3. The region above
the corresponding gray-dashed lines is excluded by the
bullet-cluster and halo shape constraints, for each value



Dark QCD + WZW
• Dark flavor symmetry G=SU(Nf)L x SU(Nf)R is SSB into 

diagonal H=SU(Nf)V by dark QCD condensation


• Effective Lagrangian for NG bosons (dark pions) contain 5-

point self interaction : WZW term for ㅠ5 (G/H) = Z (Nf > 2)

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.

4

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.

4

Dark mesons & WZW term
• Dark flavor symmetry G=SU(Nf)x SU(Nf) is SSB into 

diagonal H=SU(Nf) by SU(Nc) QCD-like condensation. 

• Effective action for Goldstone bosons contains a 
5-point self-interaction from Wess-Zumino-
Witten term for π5(G/H)=Z (i.e. Nf ≥3).   

LWZW =
2Nc

15⇡2
✏µ⌫⇢�Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡]

Flavor symmetry ensures stability of dark 
mesons,  natural candidates for SIMP.

NC  : topological invariant 
of 5-sphere (Q+Q’) in SU(3)

U = e2i⇡/F , ⇡ ⌘ ⇡aT a

⇡Nf = 3 :

[Wess, Zumino,
1971;Witten, 1983]

Thursday, June 11, 15

in the absence of external gauge fields



SIMP Dark Mesons

• Large color group leads to strong 5-point interactions 
while satifying bounds on self-interactions [Hochberg, 
2014]

SIMP dark mesons
• Large color group leads to strong 5-point interactions 

while satisfying bounds on self-interactions (e.g. Bullet 
cluster, halo shape.)

,

K̃+

K̃�

⇡̃�

⇡̃+

⇡̃0

⇡̃0

⇡̃0

⇡̃0

⇡̃0

[Hochberg et al, 2014]

~const~const
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[Hochberg, Kuflik, Murayama, Volansky, Wacker, 1411.3727, PRL (2015)]



SIMP Parameter Space

• DM self scattering :                             


• Validity of ChPT : 
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FIG. 2: Solid curves: the solution to the Boltzmann equation of the 3 ! 2 system, yielding the measured dark matter relic
abundance for the pions, m⇡/f⇡ as a function of the pion mass (left axis). Dashed curves: the self-scattering cross section
along the solution to the Boltzmann equation, �scatter/m⇡ as a function of pion mass (right axis). All curves are for selected
values of Nc and Nf , for an SU(Nc) (top panel) or an O(Nc) (bottom panel) gauge group with a conserved (left panel)
or broken (right panel) SU(Nf ) or SO(Nf ) flavor symmetry, respectively. The solid horizontal line depicts the perturbative
limit of m⇡/f⇡ ⇠< 2⇡, providing a rough upper limit on the pion mass; the dashed horizontal line depicts the bullet-cluster and
halo shape constraints on the self-scattering cross section, Eq. (16), placing a lower limit on the pion mass. Each shaded region
depicts the resulting approximate range for m⇡ for the corresponding symmetry structure.

below those depicted exhibit a tension between the per-
turbativity regime m⇡/f⇡ ⇠

< 2⇡ and the self-interaction
constraint of Eq. (16).
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Issues in the SIMP w/ hQCD
• Dark flavor sym is not good enough to stabilize dark pion 

(We have to assume dim-5 operator is highly suppressed)


• Dark baryons can make additional contribution to DM of 
the universe (It could produce additional diagrams for 
SIMP)


• Validity region of ChPT : need to include resonances (dark 
rho meson, dark sigma meson, etc.              this talk)


• How to achieve Kinetic equilibrium with the SM ? (Dark 
sigma meson or adding singlet scalar S may help. Or 
lifting the mass degeneracy of dark pions can help.)



SIMP + VDM
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.

FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and

With Soo Min Choi, Hyun Min Lee, Alexander Natale, 
arXiv:1801.07726, PRD (2018)



SIMP + VM

3

vector meson masses are given by LB :

LB = m
2
V
TrVµV

µ
� 2igV ⇡⇡Tr (Vµ[@

µ
⇡,⇡]) (21)

m
2
V
= ag

2
f
2
⇡

(22)

gV ⇡⇡ =
1

2
ag (23)

In ordinary hadron system a ' 2, but this can be con-

sidered a free parameter in general. Before we show the

anomalous WZW Lagrangian, it is convenient to define

the following objects:

↵̂L = D⇠L · ⇠
†
L
= ↵L � igV + il̂ (24)

↵̂R = D⇠R · ⇠
†
R
= ↵R � igV + ir̂ (25)

↵L = d⇠L · ⇠
†
L
, (26)

↵R = d⇠R · ⇠
†
R

(27)

FV = dV � igV
2 (28)

The anomalous WZW in the presence of light vector

mesons are given by

�anom = �WZW +
4X

i=1

ciLi (29)

L1 = Tr
⇥
↵̂
3
L
↵̂R � ↵̂

3
R
↵̂L

⇤
(30)

L2 = Tr [↵̂L↵̂R↵̂L↵̂R] (31)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L)] (32)

L4 = iTr
h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
. (33)

Let us ignore the external gauge fields by setting lµ =

rµ = 0 and keep only the pions and vector mesons Vµ,

thus L3,4 are zero. Under these assumptions then

�anom = LWZW � 15C (c1L1 + c2L2)c1�c2=�1 (34)

with

C = �i
Nc

240⇡2
, (35)

and LWZW is the familiar Wess-Zumino-Witten term for

pions [10–12]:

LWZW =
2Nc

15⇡2f5
⇡

✏
µ⌫⇢�

Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡] (36)

Expanding ↵L,R in terms of ⇡ up to O(g/f3
⇡
) results in

L1 = �
4c1gC

f3
⇡

✏
µ⌫⇢�

Tr[@µ⇡@⌫⇡@⇢⇡V�] (37)

and

L2 =
4c2gC

f3
⇡

✏
µ⌫⇢�

Tr[Vµ@⌫⇡@⇢⇡@�⇡@⇢⇡] (38)

where C is defined in Eq. 35. These new vector meson

terms generate additional 3-to-2 interactions between the

pions, as illustrated in Fig. 1.

An important constraint on the model is the 2-to-

2 scattering cross section. The bullet cluster con-

straints place an upper limit of around 1 cm
2
/g on

�scatter/mDM [6]. In our model this 2-to-2 cross section

can be calculated by the ChPT Lagrangian:

�scatter =
m

2
⇡

192⇡f4
⇡
m

4
V

⇥

(81a4g4f4
⇡
+ 216a2f2

⇡
g
2
m

2
V
+ 154m4

V
)

(39)

where the degenerate pion (vector meson masses) are

given by m⇡ (mV ). In the limit where the vector mesons

decouple, �scatter reduces to the value found in Ref. [8].

The upper bounds on �scatter/m⇡ places a lower bound

on m⇡; in the minimal QCD-like model without vec-

tor mesons, this produces a tension between the require-

ments that m⇡/f⇡ < 2⇡ and the lower bound of m⇡ [8].

Relic Density.—In the SIMP model, where the 3 ! 2

number-changing processes are dominant, the resulting

Boltzmann equation for one species of DM is given by

dnDM

dt
+ 3HnDM = �h�v

2
i3!2(n

3
DM

� n
2
DM

n
eq

DM
).

In the presence of an exact flavor symmetry there are

N⇡ = 8 mass degenerate pions, and suppose n1 = n2 =

. . . = n8 = n, we can define nDM =
P8

i=1 ni. Thus the

resulting Boltzmann equation for the total DM density

is

Y
0
DM

= �
⇢⌃h�v2i

N3
⇡
x5

(Y 3
DM

� Y
2
DM

Y
eq

DM
). (40)

where ⌃h�v2i is the sum of the relevant sub-processes af-

ter thermal averaging, with Y = nDM/s, ⇢ = s
2(m⇡)
H(m⇡)

, and

x = m⇡/T . The SIMP paradigm requires that the dark

sector remains in kinetic equilibrium with the SM [7],

this is accomplished via a dark Higgs [13] or additional

dark gauge bosons such as the Z
0 [14, 15], which are not

discussed further in this work.

In the case of a resonance (mV ⇡ 3m⇡) the thermal av-

erage takes a Breit-Wigner form as discussed in Ref. [16]:

h�ijk!mnv
2
iR =

3

4
⇡x

3
1X

l=0

bl

l!
Gl(zR;x), (41)

with zR = ✏ + i�, � = mV �
9m2

⇡
, and ✏ = m

2
V �9m2

⇡
9m2

⇡
. In

the case of SIMP mesons with a significant vector meson

We choose a small epsilon [say, 0.1 (near resonance) ] 
and a small gamma (NWA)

New diagrams involving dark vector mesons

⇡+⇡�⇡0 ! ! ! K+K�(K0K0)

(for 3 pi resonance case)



Results

•The allowed parameter space is in a better 
shape now, especially for 2 pi resonance 
case
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.
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FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and



Conclusion
• Hidden (dark) QCD models make an interesting possibility 

to study the origin of EWSB, (C)DM


• WIMP scenario is still viable, and will be tested to some 
extent by precise measurements of the Higgs signal 
strength and by discovery of the singlet scalar, which is 
however a formidable task unless we are very lucky


• SIMP scenario using 3->2 scattering via WZW term is 
interesting, but there are a few issues which ask for 
further study (dark resonance could play an important role 
for thermal relic and kinetic contact with the SM sector)



DQCD+dark photon ( )mγ′ 
≠ 0

• So far I considered only dark mesons with singlet scalar, 
ignoring dark photon with nonzero mass


• Assume dark photon get massive by dark Higgs 
mechanism


• Question : Dark U(1)’ charge of dark Higgs ?


• Should be careful not to induce operators that can induce 
dark matter decays unto dim-5 without severe fine-tuning 

Work with Chih-Ting Lu, Ui Min



Dark meson DM
• Consider 3 flavor DQCD :  with U(1)’ charges equal to

 or 


• Assume  . Then the following Yukawa term is 
allowed :  


• Note that U(1)’ charge is not conserved : FCCC @ tree level (unlike in 
the SM where FCNC ( ) occurs only at loop levels)


• Physical dark meson : linear combination of different U(1)’ charges


• Is it good or not ? Let’s first consider  

q = (u, d, s)
Q′ = (2/3, − 1/3, − 1/3) Q′ = (1, − 1, − 1)

qϕ = qu − qd = qu − qs
ℒ ⊃ − ϕ(yudud + yusus)

K → πγ* → πl+l−

π0 → γ′ γ′ 



 in DQCDπ0, η → γ′ γ′ 

• The leading order  contribution from the WZW 
, for 


•  However, this is not the end of the story, since there are  terms

O(p4)
∝ Tr[Q2λa] → 0 Q′ = (1, − 1, − 1)

O(p6)

III. ⇡
0
0(⌘0) ! �

0
�
0 IN O(p4) AND O(p6) CHIRAL PERTURBATION THEORY

A. ⇡
0
0(⌘0) ! �

0
�
0 in O(p4) from the Wess-Zumino-Witten (WZW) anomaly

In dark QCD + QED scenarios, Qe plays an important role, since it controls the signatures

of DQCD through the kinetic mixing term. For example the U(1)A anomaly dictates that

⇡0 ! AA can happen according to the Wess-Zumino-Witten (WZW) anomaly :

L = i
NCe2

8⇡2f⇡0
Tr[Q02⇧0]F 0

µ⌫
eF 0µ⌫ (62)

where �a is the generator of the broken parts of SU(3)L ⇥ SU(3)R ! SU(3)V , and

eF 0µ⌫ ⌘ (1/2)✏µ⌫↵�F 0
↵�.

Note that the trace over flavor indices does not vanish for a = 3 and a = 8 so that one can

explain ⇡
0
0 ! �0�0 and ⌘0 ! �0�0, respectively.

In DQCD + DQED, this decay (⇡
0
0 ! �0�0) is not good at all, since all the dark mesons

eventually scatter into dark ⇡0 that decays into a pair of massive dark photon. Then those

dark photons will eventually decay into the SM particles through a small kinetic mixing

between the dark photon and the SM U(1)Y gauge boson. And dark pion DM in DQCD +

DQED scenarios can no longer make a good candidate for CDM.

Sometime ago, it was noticed that this problem could be resolved, if one takes Q0 /

(1,�1,�1) 3 so that

M(⇡
0
0(⌘0) ! �0�0) / Tr[Q

0
2�a=3(8)] = 0 .

since for this choice the ⇡A�0�0 anomaly always vanish. This observation has been adopted

afterwards in a number of subsequent works.

However one has to include higher dim operators, such as O(p6), O(p8) operators, in order

to describe dark meson dynamics in a proper way.

In order to consider general case of Q0, let us define

L(4) � ie
0
2

4⇡f⇡0
F 0
µ⌫

eF 0µ⌫
h
C(4)

⇡00�0�0⇡
0
0 + C(4)

⌘0�0�0⌘0
i
=

↵0

f⇡0
F 0
µ⌫

eF 0µ⌫
h
C(4)

⇡00�0�0⇡
0
0 + C(4)

⌘0�0�0⌘0
i

(63)

3 With this charge assignment, the charged mesons are actually doubly charged, so it is more proper to use

⇡
±± and K

±± rather than ⇡
± and K

±. Also dark U(1) charges of dark proton and neutron are +1 and

�1, respectively. There is no neutral baryons in the dark QCD sector.

9

WZW term at O(p4)

Beyond the WZW term at  : also describes O(p6) π0 → γ′ γ′ 

Also there are  operators for O(p6) η → π0γγ

One can not make both vanish in QCD-like theories, 

and  will eventually decayπ0, η



Main points
• Dark  will occur any way at  or  


• If mesons mix, then most of dark pion DM will decay


• Need to suppress this channel by some ways 


• Dark Higgs charge should be taken with great care, in order not to 
have dark matter decay fast


• If this can be achieved, one can have interesting collider signatures 
and cosmological consideration of Dark pion DM will be affected


• Stay tuned !

π0, η → γ′ γ′ O(p4) O(p6)



Conclusion
• Dark Higgs plays important roles in particle/astroparticle/

cosmology


• Galactic center gamma ray excess, DM searches@LHC 
and other colliders, Higgs portal assisted Higgs inflation


• Dark Higgs is also important in inelastic DM models : P-
wave annihilation with correct relic density, without 
conflict with CMB bound (e.g., XENON1T excess)


• Some parameter regions can be probed at colliders


