

Joint COMPASS and COMPASS++/AMBER TB

23 March 2021

Stefano Levorato

Stefano Levorato – CERN – 23 March 2021

Outline

AGENDA

- Approval of the Agenda of the last TB
- Communications
 - TB membership
 - COMPASS archive in 892
 - 22/03/2021 power cut
 - CV Services restart at CERN
 - COMPASS Gas interruption
 - STRAW 3 HV interface
 - Mezzanine storage \rightarrow 883
 - ECAL0 Storage
 - DC4 Intervention
 - H1 status
 - Flammable gas renovation
 - He4 pump PT
 - PT Gunn Diode
 - Wiener LVPS
 - Request of financing
 - PRM Setup
 - PRM Gas System

COMPA	ASS/AMBER Technical Board 23 Mar 2021, 14:00 → 18:00 Europe/Zurich 20 (CERN)	2.
Videoconferer	2 2021_Jan_19_minu	
Roor	COMPASS Technical Board	■ 892/1-D20 ◆
14:00 → 14:05	Approval of the minutes Speaker: Dr Stefano Levorato (INFN Trieste (IT) and CERN)	©5m 🖉 -
14:05 → 14:40	Communications from the TC Speaker: Dr Stefano Levorato (INFN Trieste (IT) and CERN)	𝔅 35m 🖉 ▪
14:25 → 14:45	GEM new stations planning, installation, LVPSU Speaker: Prof. Bernhard Ketzer (University of Bonn (DE))	©20m ∠ -
14:45 → 15:05	DC4 status report Speaker: Stephane Platchkov (Université Paris-Saclay (FR))	©20m ∠ -
15:05 → 15:25	RWall repair plans Speaker: Daniele Panzieri (Universita e INFN Torino (IT))	©20m ∠ -
15:25 → 15:45	PT Update Speakers: Dr Michael Pesek (Charles University (CZ)), Norihiro Doshita (Yamagata University (JP))	©20m 🖉 -
15:45 → 16:05	DC5 status and planning Speaker: Matthias Grosse-Perdekamp (Univ. Illinois at Urbana Champaign (US))	©20m ∠ -
16:05 → 16:25	Status Summary for 2021 run Speaker: Jan Matousek (Charles University, Prague)	©20m ∠ •
16:25 → 16:35	AOB Speaker: Dr Stefano Levorato (INFN Trieste (IT) and CERN)	©10m ∠-

Comments, Corrections, Request for the minutes of the last TB

 \rightarrow Approval

TB Membership

Elected members as of 21.05	5.2020	Mandate N - EoM	Ex-officio mem	bers		
Jens	Barth	III - May 2022	Stefano	Levorato	Chair, Technical Coordinator	
<u>Norihiro</u>	Doshita	I - Feb 2022	<u>Oleg</u>	Denisov	Co-spokesperson	
<u>Bernhard</u>	Ketzer	III - May 2022	<u>Fulvio</u>	Tessarotto	Co-spokesperson	
<u>Igor</u>	Konorov	III - May 2022	Permanent gue	sts		
<u>Jan</u>	Friedrich	I - Nov 2021	Franco	Bradamante	Senior Advisor	
<u>Daniele</u>	Panzieri	III - May 2022	<u>Alain</u>	Magnon	Senior Advisor	
<u>Stephane</u>	Platchkov	I - Nov 2021	<u>Vladimir</u>	Anosov	Engineer	
Marcin	Ziembicki	II - March 2021	Vincent	Andrieux	Analysis Coordinator	
			Gerhard	Mallot	Senior Advisor	
			<u>Jan</u>	Matousěk	Run Coordinator	

Marcin Ziembiki membership ends this month

Preparation for the AMS clean room installation is progressing, there are even some structural issue who forces the Intervention to be performed as soon as possible

COMPASS ARCHIVE 892

TUM (Cold Silicon) material has already been moved and stored on the last shelf of 892 Archive, Saleve side

Issue with Lead-Glass blocks RP checked them \rightarrow Radioactive, I will move them where we have also the other calo blocks

Part of the material has already been moved to 883 With a little of delay (w.r.t. mid April) and a lot of effort we have nearly all COMPASS material stored. Thanks to those who helped me!

Power cut on 22 March

From James Devine <james.dilwyn.devine@cern.ch> 🚖

Subject RE: [IMPACT] Note de Coupure - [Power cut of EOD210/A81 et EOD211/A81]

- 🛛 To Filippo Resnati 🗙 Giovanna Lehmann Miotto EP-DT-DI 🗙, Xavier Pons <Xavier.Pons@cern.ch> 🗙, Johan Bremer 🛧, Michel Chalifour <michel.chalifour@cern.ch> 🗙, Caroline Fabre 🗙, Jamie Boyd <jamie.boyd@cern.ch>
- Co Letizia Di Giulio 🚖, Francois Duval 🚖, Mike Capell 🚖, Stefano Levorato 🚖

Dear all,

Before I report back on the test this morning, I just wanted to check that there were no issues I'm not aware of on the EP side. As far as I know, all our systems performed as expected, with no surprises. If you encountered any difficulties please let me know and I will compile them.

Initial feedback from EL is that the BA81 (upstream of EHN1) power cut revealed some unidentified circuits relating to the fire detection and level 3 alarms. There were also some problems after the test re-arming the circuit breakers due to their age, so it's a good thing that the switchboard will be replaced very soon. The power cut to EOD211/A85 in B. 911 also took place as expected.

Best regards, James

From: James Devine

Sent: 15 March 2021 16:30

To: Filippo Resnati <Filippo.Resnati@cern.ch>; Giovanna Lehmann Miotto <Giovanna Lehmann@cern.ch>; Savier.Pons@cern.ch>; Johan Bremer <Johan.Bremer@cern.ch>; Michel Chalifour@cern.ch>; Caroline Fabre@cern.ch>; Jamie Boyd <jamie.boyd@cern.ch> Cc: Letizia Di Giulio <letizia.di.giulio@cern.ch>; Francois Duval <Francois.Duval@cern.ch>; Mike Capell <Michael.Capell@cern.ch>; Stefano Levorato <Stefano.Levorato@cern.ch> Subject: RE: [IMPACT] Note de Coupure - [Power cut of EOD210/A81 et EOD211/A81]

Dear all,

Best regards James

Just in case you haven't already received the notification via other channels, there will be a test power cut to one of the UPS supplying EHN1/EHN1 upstream infrastructure (Switchboards EOD211/A81 in BA81) on Monday 22nd March for 40 minutes from 9am. The objective of the exercise is to ensure there are no critical systems supplied by these switchboards, before the upgrade work takes place in April. Up to 40% of the circuits from these switchboards are not identified at present, so there may be some unexpected outages!

Based on our experience back in September 2020, there should be no direct impact on any of the Cryo system supplies in EHN1. EN-EL are also double checking with IT that all the critical star points have their double supplies correctly set up prior to the test. However, an as yet unidentified upstream system may reveal itself during this test. The 9am test will be followed by one at 13h for 40 minutes cutting EOD210/A85 (supplying ECN3, so there should normally be no impact on EHN1/2).

If you have a problem during the test, please report it to the CCC in the first instance via 72201. I will be available to help with diagnostics if something unexpected does occur.

Switchboard

The proposal was presented at the EATM on the 9th March and has now been validated by TIOC. You can find the full slides here: https://indico.cern.ch/event/1015657/contributions/4262507/attachments/2203647/3729207/UPS_Replacement_NA_EDMS_2499011_v0.2.pptx

Plan for approval

✓ The feedback from the identified stakeholders has been adressed

- Two power cut tests will be organized by EN/EL to clear remaining uncertainties:
- 22.03.2021 at 9:00 for 40 minutes : EOD210/A81 and EOD211/A81 (B. 890)
- · 22.03.2021 at 13:00 for 40 minutes: EOD211/A85 (B. 911)
- Stakeholders, and TSO are invited to participate.
- · If no major issues, the intervention will be carried out :

Switchboard	Start	End	Duration of the power cut
EOD210/A81	19.04.21	20.04.21	1 hour out per outlet (circuit)
EOD211/A81	21.04.21	22.04.21	1 hour out per outlet (circuit)
EOD210/A85	27.04.21	28.04.21	1 hour out per outlet (circuit)

The objective of the exercise is to ensure there are no critical systems supplied by these switchboards, before the upgrade work takes place in April. Up to 40% of the circuits from these switchboards are not identified at present, so there may be some unexpected outages!

→ No impact on COMPASS, all system were operating fine In case any issue was noticed please let me know.

Stefano Levorato – CERN – 23 March 2021

UPS Replacement in N.A. - Impact & Planning - EATM

3/22/2021, 3:00 P

Communications: Chilled water and raw water availability at COMPASS

North Area

- · Chilled water interruptions:
 - TT81 + TT82: 16 October 2020 29 January 2021.
 - TT84: 16 November 2020 26 Mars 2021.
 - Cooling towers (CT2, b 893):
 - Stop from 15 December 2020.
 - Maintenance from 4th to the 15th January 2021.
 - Restart 20 January 2021.
 - Cooling stations (demineralized water) will start:
 - BA80 ED: 22 January 2021.
 - BA81 ED: 29 January 2021.
 - BA82 ED: End of January, according to request by NA62.

Already with respect to the preliminary plan above presented delays have been accumulated, for the time being do not affect our scheduled operations. At the moment ~ 3 weeks delay (to be confirmed). Work performed in the framework of the technical galleries consolidation.

Example of defects

Chilled water Available

Raw Water available

Demineralized water will be available mid April

DAQ already on CERN Chilled water

- Maintenance from 4th to the 15th January 2021.
- Restart 20 January 2021.
- · Cooling stations (demineralized water) will start:
 - BA80 ED: 22 January 2021.
 - BA81 ED: 29 January 2021.
 - BA82 ED: End of January, according to request by NA62.

Already with respect to the preliminary plan above predelays have been accumulated, for the time being do not our scheduled operations. At the moment ~ 3 weeks del be confirmed). Work performed in the framework technical galleries consolidation.

			in		-4	-					-	
nid April			ons -			1						
Task name	Duration	Start date	Finish date	ary, 2021			Mar	ch, 2021				April, 2
	a an annori	WHITE MALLY	- mon outo	07	08	09	10	11	12	13	14	15
									Today			
L AU/ELENA				_								
North Area		01/01/2024	01/03/3033									
NorthArea_LS2-Restart	0004	01/01/2021	11/03/2022									
	6204	20/11/2010	10/06/2022						1			
	6Z00	29/11/2010	10/00/2021									
	0404	10/00/2019	10/00/2021									
	0490 691d	10/09/2010	01/00/2024									
	24	14/00/2010	15/00/2010									
Open days	20	14/05/2015	10/09/2019									
Gen network repovation	65.4	11/12/2020	26/02/2024									
Gas network renovation (906)	2	10/11/2020	20/02/2021									
	2.00	13/11/2010	07/05/2024									
Alignement MDPL 1164	1.00	12/09/2021	07/05/2021									
Renovation pont PR-545	ZW	12/08/2019	23/08/2019									
Target Tests	5W	10/09/2019	10/10/2019									
Internet Cooling	3110 41d	21/03/2020	20/04/2024						OMPASS 1	Farget C	oolina	
COMPASS larger cooling Reil Remplacement EHN2	254	01/03/2021	20/04/2021							Langor O		
Kall Kemplacement 19 mateurs KCM Remplacement 19 mateurs	200	01/09/2020	26/02/2024						ХСМ			
	7	04/01/2024	10/03/2021									
	20	12/04/2024	01/00/2024									
	200	25/01/2021	20/01/2021									
	34	16/09/2020	18/00/2020									
	14	30/09/2020	30/00/2020									
TT84 Consolidation of chilled water pipes	10	16/11/2020	13/0//2020									
Incide Crinoline and Platform Panavetian	1.5W	12/0//2024	23/04/2021									Inside
DSO tests EHN2 + ECN3 (BA92)	24	12/04/2021	17/05/2021									
	2u 63d	04/01/2021	31/03/2021									
	CADA	4 4 4 4 4 100 4 0	J 110JIZ0Z1									

Example of defects

Communications: COMPASS GAS Interruptions

----- Перенаправленное сообщение -----Тема: Switch from N2 to Ar Дата: Wed, 10 Mar 2021 11:39:53 +0100 От: Stefano Levorato <u><stefano.levorato@cern.ch></u> Komy: <u>compass-de@cern.ch</u>, Technical Board COMPASS <u><compass-tb@cern.ch></u> Dear Colleagues,

this morning at 8:30 we switched from N2 to Ar removing the "winter bypass".

All PLC and gas system have been checked after the switch and were performing as expected.

Thanks

kindest regards

Stefano

Around midnight of Sunday 14 March the Argon flow was stopped, it was noticed on the morning of 15th when the nitrogen bypass was reinstalled to get gas back to detectors.

Investigation was opened \rightarrow the operator has forgotten to open the value of the second bottle set at the central distribution center so when the system switched from the first to the second set, we have been left without gas

No impact on all detectors but PD of RICH-1 where contamination may have accumulated

A non-conformity procedure has been opened with the new gas supplier

Replacement of the old ISEG HV power supply system \rightarrow CAEN A7030DP

6 X 16 = HV cannels on EQN 20 025p

Modules and mainframe ordered. Modules received on January 2021, integrated in the LHC inventory, not yet tested at the EPOOL since they were out of the CAEN CERN convention. Preliminary tests from us (Christope) soon. Mainframe still to be received. Open issue the interface from the Redel to Radial connector type. Discussed the technical solution with CAEN \rightarrow

STRAW 3: HIGH voltage power supply modules and integration with existing connector system

Replacement of the Modules and mainf, EPOOL since they w received. Open issu Installation will be performed soon \rightarrow Straw 3 fully equipped for 2021 Filter Regeneration will be taken care by TC/TS

ot yet tested at the Mainframe still to be tion with CAEN \rightarrow

vice d beginning of March

Communications: Mezzanine on top of M2 beamline

Communications: Mezzanine on top of M2 beamline \rightarrow 883

Communications: Mezzanine on top of M2 beamline

Communications: ECAL0 storage

Request of moving the material stored there: ECALO, ECALO electronics, LH target

Moving of ECALO \rightarrow Crane people + Vladimir Anosov Stefano and Livio (TS)

On site Dedicated team from Saclay Yann, Damien, Didier,

COMPASS Vladimir Anosov, Vincent Andrieux, Stefano Levorato, EP-DT technician+ crane and help of other colleagues!

On site Dedicated team from Saclay Yann, Damien, Didier,

COMPASS Vladimir Anosov, Vincent Andrieux, Stefano Levorato, EP-DT technician+ crane and help of other colleagues!

Communications: DC4 intervention

On site Dedicated team from Saclay Yann, Damien, Didier,

COMPASS Vladimir Anosov, Vincent Andrieux, Stefano Levorato, EP-DT technician+ crane and help of other colleagues!

Some difficulties in the 2 to 3 beam structure (alignment) Preliminary check of electrodes insulation \rightarrow fine

Communications: H1 intervention

21

In the next days the support spacers for the aluminum vertical bars will be prepared, ready for installation of slabs at the beginning of next week.

- \rightarrow Bending of the horizontal support bar \rightarrow new bar plus L shaped reinforcement being produced
- \rightarrow Different thickness w.r.t. requested one \rightarrow spacer foil being delivered next week
- \rightarrow Goal be ready for the week of 18 April when the H1 slab modification/reinstallation should restart

Stefano Levorato | COMPASS Collaboration meeting - CERN | February 25 26

Flammable Gas Renovation \rightarrow last item arrived

This Morning: Installation of the last rack for the methane bottle set

Upgraded Gunn diode is being delivered to CERN for test

Fig.1 The fuse view

Fig.3 The switch view

Fig.4 The switch connection diagram

Frequency Tuning Tool 1.4.0.2	- 🗆 🗙
Device List	~ Connect
S-E-09.0-70.0-H1. Frequency Range. (68000000 - 71000000) H4z Attenuation Ranger (0.00 - 38.00) 68	Disconnect
Freq: 70 400 000 kHz 🗧 🍙	• •
Ext. ref: 10,000 MHz	F POWER LOCK
Exact freq: 70 399 999 913 Hz HF Seep [Mte] 100000 10000 1000 100 10 1 Other	5
Enable modulation Medulation	
Range: 1 MHz : Freq: 1 000 Hz	•
Power: 2 501 mW Steep (mM) 1000 100 10	r 5 🗘

+ Driver to integrate in COMPASS system

The operating range has been expanded from 69.8-70.2 GHz to 69.0-71.0 GHz. In the entire range, the maximum power was measured at several points. The values of the maximum power at intermediate points are calculated by approximation on the software side.

Fig.5 Maximum output power.

Stefano Levorato – CERN – 23 March 2021

Failure of the pump yesterday 22/March
Measured resistance between phases 0.5 Ohm
No short towards gnd
Most likely problem of the electric engine,
The pump looks fine → SIMEV contacted, available to come next Monday
We would still perform some test (tomorrow)

By signing this request, you acknowledge your responsibilities related to the approval of the DAI.

Created by <u>Alisson YI (IPT-PI-RI)</u> Tel: 66571 on 08.03.2021 10:08 (Last modified on 08.03.2021 17:42) Created by BAAN: No

General Information

This document replaces:	8659918
General Description *:	Wiener PS UNITS REPAIR COMPASS
	View reception history
Technical Contact *:	Stefano LEVORATO (EP-SME-CO) Tel: 65389 164850
Contract:	
Departmental Request (DR):	
Supplier:	WIENER POWER ELECTRONICS, Linde 18, 51399 BURSCHEID, DE (WIEN25, MA01)
Contact for order:	
Currency *:	EUR (Euro)
Transport Cost *:	Transport costs are included on a separate order line below
Packaging *:	Packaging costs are included in the unit prices
Indicate whether this request involves "Research and D and/or prototype work? *	evelopment" No If yes, please provide additional details in a justification to be enclosed to this DAI.

Procurement Guidelines

Articles appearing in the CERN catalogue, or similar articles must be requisitioned from the store.

Order Lines

Туре	Part No.	Serial No.	Input	Fuse	Power	Output	UO	U1	U2	U3	U4	U5	U6	U7
UEP 5021	0384.2130k	1697098	90-265 VAC/ 47-63Hz	2x16AT	Pout (90VAC): 2160W	Pout (>112VAC): 2680W	+V5/A200	+12V/40A			-5,2V/100A	-12V/40A		-2V/100A
UEP 5022	0384.2130k	2099014	90-265 VAC/ 47-63Hz max. 16A	2x16AT	Pout (90VAC): 2160W	Pout (>112VAC): 2680W	+V5/A200	+12V/40A			-5,2V/100A	-12V/40A		-2V/100A
UEP 6021	0P00.0004	1700107	92-264VAC/47-63Hz	10AT		725/1173W	+5V/115A				+5,2V/115A			
UEP 5021-040-2	0381.2130e	0100059	92-264VAC/47-63Hz	2x15AT		725/3010W	5V/200A	+12V/40A		+3.3V/100A	-5.2V/100A	-12V/40A		-V2/A100
UEP 5021-E40-2	0384.2133e	0200034	92-264VAC/47-63Hz	2x15AT		1450W/3580W	+5V/200A	+V12/A40	+15V/30A		-5,2V/100A	-12V/40A	-15V/30A	-2V/100A
UEP 5021-K40-2	0384.2130K	2099013	90-265VAC/47-63Hz max. 32A	2x16AT	Pout (90VAC): 2160W	Pout (>209VAC): 2680W	+5V/200A	+12V/40A			-5,2V/100A	-12V/40A		-2V/100A
PL 6021	0P00.0142	2199009	90-265 VAC/ 47-63Hz max. 16A	external 16AT	Pout (90VAC): 1080W	Pout (>188VAC): 2250W	+3,7V/100A; 1+/2-	+6V90A; 3+/6-		+4_3V/100A; 7+/8-	+3.7V/100A; 4+/5-			+6V/90A; 9+/12-
PL508 L	0P08.L156	1494121	100-240VAC/50-60Hz max. 16A	external 16A type B/C	Pout (100VAC): 1150W		27V/115A 1+/2-				27V/115A 4+/5-			

Total Value: €8,477.00 (CHF 9,394.00) € Exchange rate B: 1.108400 as of date 08.03.2021

Delivery expected in 8 weeks \rightarrow mid May

Communications: investments/purchasing COMPASS

Trigger:

WA7435NXAAA2 24ch multipin common floating negative -3.5kV 3.5mA module as replacement for the broken A1535N 24CH. 3.5KV/3MA NE.

~ 5 kCHF

Remote assistance at COMPASS

EPSON Moverio 2200

HMT Realwear

Remote assistance devices have been tested, The first during the dry run, the second after it due to its availability Both well performing, same price range \sim 2 kEuro, HMT superior performance and fully hands free. 3 <u>kE</u> with <u>accesories</u>

Stefano Levorato – CERN – 19 January 2021

HN2 – 888 WI-FI coverage: modernization

INF

BE (formerly EN-EA) agreed for the installation and the financial support of the wi-fi coverage of the 888 building 3 Wi-Fi access point will be installed, we will be granted to have control on the via <u>snp</u> protocol to power them on and off (effect on detector noise)

Full network coverage of 888 will be available in 1.5 months from now \rightarrow helpful for remote support! \rightarrow Moritz

Propose to purchase 3 kE

Stefano Levorato | COMPASS Collaboration meeting - CERN | February 25 26

Communications: Mezzanine on top of M2 beamline

	CEPNI
INFN	
_	'Y

March	April	May	June	July	August	September	October	November
1 MON 9	1 THU Maundy Thursday	1 SAT Labour Day	1 TUE	1 тно	1 SUN	1 wed	1 _{FRI}	1 MON All Saints' Day
2 TUE	2 FRI Good Friday	2 SUN	2 wed 💦	2 FRI	2 MON 3	2 тни	2 sat	2 TUE All Souls' Day
3 wed	3 sat	3 MON 18	3 тни	3 sat	3 TUE	3 FRI	3 sun	3 WED
4 тни	4 SUN	4 TUE	4 FRI	4 sun 🛡	4 wed	4 sat	4 MON 40 (1)	4 тни
5 _{FRI}	5 MON Easter Monday	5 wed	5 sat	5 MON 27	(1) 5 тни	5 sun	5 тие (П)	5 FRI
6 sat	6 TUE	6 тни	6 sun	6 тие	6 FRI	6 мол	36 6 WED (1)	6 sat
7 _{SUN}	7 wed	7 FRI	7 _{MON} 23	7 wed	7 sat	7 τυε	7 тни 🧼	7 sun
8 MON 10	8 THU	8 SAT	8 TUE (1)	8 тни 🔼	6 SUN	8 WED	8 FRI	8 MON 45
9 TUE 🗖 🔘	9 FRI	9 SUN Europe Day	9 wed (1)	9 FRI	9 _{MON} 3	² 9 _{тни}	9 sat	9 TUE
10 wed 6	10 sat	10 _{MON} 19	10 тно (П)	10 sat	10 TUE	10 FRI	10 sun <mark>ഗ</mark>	10 wed (3)
11 тни (П)	11 _{sun}	11 TUE	11 _{FRI}	11 SUN	11 WED	11 SAT	11 mon 🔽 41	11 тни (б)
12 FRI	12 MON 15	12 wed	12 sat	12 мон	²⁸ 12 тно	12 SUN	12 TUE	12 FRI
13 sat	13 TUE S	13 THU Ascension Day	13 _{SUN}	13 TUE S	13 FRI	13 MON 37	🔿 13 wed 🗖	13 sat
14 sun	14 wed 🚽	14 FRI	14 mon 🖵 24	14 wed 🗄	14 sat	14 TUE	ด 14 тни 🧲	14 sun
15 MON Cooling 11	15 тни 🙀	15 sat	15 _{tue}	15 тни	15 SUN Assumpt	15 wed 👱	<u>⊚</u> 15 FRI ∠	15 MON 46
16 TUE	16 _{FRI}	16 sun	16 wed	16 FRI	16 MON 2 3	16 тни 🔽	(m) 16 sat	16 TUE
17 wed	17 sat	17 MON fl. gas 20 (3)	17 тни 🗳 С	17 sat	17 TUE 🖌	17 FRI <mark>2</mark>	17 SUN	17 wed
18 тни	18 _{sun}	18 _{tue} (17)	18 _{FRI}	18 sun	18 wed 🔁	18 sat 🔁	18 MON 42 (3)	18 тни
19 FRI	19 MON 16	19 wed (11)	19 sat	19 мол 🧲	²⁹ 19 тни	19 sun	19 TUE (1)	19 fri
20 _{sat}	20 _{TUE}	20 тни (П)	20 sun	20 tue <	20 FRI	20 мол	³⁸ 20 wed (1)	20 sat
21 _{SUN}	21 wed	21 FRI	21 MON 9 25	21 WED Belgium Nati	21 sat	21 TUE	21 тни 🥅	21 SUN
22 _{MON}	Тни	22 _{SAT}	22 _{TUE}	22 тни 🎑	22 SUN	22 WED	22 FRI	22 мон ⁴⁷ (5)
23 TUE	23 _{fri}	23 _{SUN}	23 WED Luxembourgh Day (3)	23 fri 🖸	23 MON 33	⁴ 23 тно	23 sat	23 tue (in)
24 wed 💭 🔊	24 _{SAT}	24 MON Whit Monday 21	24 тни (б)	24 sat	24 TUE	24 FRI	24 sun	24 wed (19)
25 тни С С С С С С С С С С С С С С С С С С С	25 _{sun}	25 _{TUE}	25 FRI	25 sun 🔼	25 WED	25 sat	25 MON 43	25 тни (П)
267	26 MON 17 (3)	26 wed	26 sat	26 мон	³⁰ 26 тни	26 SUN	26 TUE	26 FRI
27 _{SAT}	27 _{tue} (16)	27 тни 🗄	27 _{SUN}	27 TUE	27 fri	27 мон	³⁹ 27 wed	27 sat
28 _{SUN}	28 _{WED} (10)	28 _{FRI}	28 MON 26	28 wed	28 sat	28 TUE	28 тни	28 SUN
29 MON 13	29 _{THU} (16)	29 sat	29 TUE	29 тно	29 SUN	29 wed	29 FRI	29 MON 48
30 _{tue}	30 _{fri}	30 _{sun}	30 _{wed}	30 FRI	30 MON 3	⁵ 30 тно	30 sat	30 TUE
31 wed		31 MON 22		31 sat	31 TUE		31 SUN	

GEM DC5

Request for information and availability of detectors experts for surveying \rightarrow only 2 answers Planning for detector expert availability \rightarrow very few answers

SETUP for the pilot RUN at CEDARS location

System setup for the PRM 2021 run

- A) Silicon Tracker
- B) Scintillating Fiber
- C) TPC
 - TPC DETECTOR
 - GAS System circulation

FriDAQ Rack Planning

Common Mounting Structure for SciFis and ALPIDEs Read-Out Electronics

- We discussed the placement of read-out electronics in our group and concluded that we prefer to have them as close to the detector as possible (i.e., inside the beam tube)
 - · Shortest analog signal paths, which is important due to the small number of photons we expect per fiber
 - Minimizes number of electrical feedthroughs and susceptibility to induced noise
- · No need for custom-built (i.e., glued) high-density feedthroughs, which are prone to leakage
- · Optical fiber feedthrough and passive optical splitter for data connection to eight front-end cards placed directly on the back of SiPM arrays
- · Distance between front-end electronics and beam axis ~15 cm for SciFis
 - · Radiation should not be an issue, but we will obviously need to confirm this
 - Add debug connection (JTAG) to FE electronics for reprogramming in case of SEUs in memory

- Four ALPIDE / SciFi stations, each with full alignment mechanics
- Beam tubes have independent support mechanics (not shown here) and are connected to stations via bellows
- Entrance and exit flanges made from stock (stainless-steel or aluminum) flanges with center region milled down to ~2-3 mm thickness
- TPC still missing in model

(The weird length of beam tubes in the model is only so I can export for Christian without overlapping geometries)

Meeting with M. Alekseev to discuss the implication for the Alpide mechanical support

 \rightarrow Advantages in this solution, high integration, Common Structure being developed by TUM

Planning for 2021

feasibility and time delivery under definition by TUM (higher cost) - 1 Station with 1 plane of Alpide (base scenario) + Fibers

Tracking for 2021 via Alpide trackers by GSI/CERN under study (DAQ integration/Mechanical support/Availability of stations)

Common Mounting Structure for SciFis and ALPIDEs General Mechanics

- · Modified DN 400 ISO-K tube section
 - ~500 mm long
- · Modified standard part, can be ordered easily from standard suppliers (e.g. Pfeiffer Vacuum, VACOM,
- DN 400 ISO-K weld flanges are ~570 € per piece, so I would expect the total cost for one full section to be roughly 3 to 5 k€
- · One full SciFi detector (two planes per coordinate) plus three ALPIDE assemblies Spacing currently about 12 cm, with further
- optimization possible · Adapters from DN 400 to e.g. DN 250 ISO-K
- (or whatever tube diameter we would like to have in the final setup)

If this looks like a reasonable approach, I can contact suppliers to inquire about early price estimates, delivery times, etc.

(not optimized yet)

SETUP for the pilot RUN at CEDARS location

- · Four ALPIDE / SciFi stations, each with full alignment mechanics
- · Beam tubes have independent support mechanics (not shown here) and are connected to stations via bellows
- Entrance and exit flanges made from stock (stainless-steel or aluminum) flanges with center region milled down to ~2-3 mm thickness
- TPC still missing in model

(The weird length of beam tubes in the model is only so I can export for Christian without overlapping geometries

Meeting with M. Alekseev to discuss the implication for the Alpide mechanical support

-> Advantages in this solution, high integration

Planning for 2021

feasibility and time delivery under definition by TUM (higher cost)

- 1 Station with 1 plane of Alpide (base scenario) + Fibers

Tracking for 2021 via Alpide trackers by GSI/CERN under study (DAQ integration/Mechanical support/Availability)

Meeting with Magnus Mager (ALICE) is planned this week

IKAR TPC and MAIN TPC hydrogen gas circulation system

Stefano Levorato on behalf of Evgeni Maev, Oleg Kiselev, Alexander Vasilyev, Fulvio Tessarotto

Goal: define the technical and safety aspects to proceed

- For the purchasing of the material (long delivery time so orders must be processed very soon)
- To define the pressure tests needed and perform them
- To allow for enough time to install the gas system and test it before it is needed (Sep 2021).
- To schedule the operations with the constrains by beam time allocation

https://indico.cern.ch/event/1014498/ pw protected 03032021

Presentation of the IKAR TPC and main TPC Hydrogen gas circulation system \rightarrow HSE, FGSO

The recirculation system project was discussed at length, we have been asked for

- the definition of physical space occupied by the system to define the ATEX area in 888-R413 (Vasilyev)
- the change of the compressor \rightarrow must be ATEX and CE, can not be deregulated since commercial products are available
- Proceed with the pressure test at CERN for the use of the pressurized vessels
- Not clear if a retention funnel is needed for the Be windows

https://schydraulic.com/GBSeries-SingleStage-Acting.php

Model No.	Maximum Material Rated Gas Supply Pressure (Ps)	Maximum Material Rated Gas Outlet Pressure (Po)	A Inlet Port B Outlet Port	Static Outlet Stall Pressure	Minimum Inlet Gas Pressure (Ps)	Displacement Per Stroke (in3 per cycle)	
GB-15	2,250 psig	2,250 psig	1/4" NPT	15 Pa	50 psig (3.5 bar)	7.05	
	155 bar	155 bar	1/4" NPT	1			
GB-30	4,500 psig	4,500 psig	1/4" NPT	30 Pa	100 psig (7 bar)	3.1	
	310 bar	310 bar	1/4" NPT				
GB-75	6,000 psig	11,250 psig	9/16"-18 (1)	75 Pa	250 psig (17	1.2	
	410 bar	775 bar	9/16"-18 (1)	1	bar)		

~ 50kCHF, Already started to inquire the market for solutions

Mass Flow Controllers & Meters

DATA SHEET

Initially only fast release of gas was implemented/foreseen: Burst disk or fast relief value \rightarrow upgraded to double mode

- Slow release before bursting (to be implemented), no damage to the inner structure
- Fast release \rightarrow in case of accident

SLAMf Series thermal mass flow controllers and meters deliver the precise accura and long-term stability of our proven SLA5800 family of meters and controllers. specially engineered IP66 enclosure protects our advanced digital electronics and ensures stable, accurate measurement and control of your process-critical gas and liquid mass flows. The SLAMf Series is well suited for chemical and petrochemical research, laboratory, analytical, fuel cell, biotechnology, and life science application

Highlights of the SLAMf Series mass flow products include; industry leading long term stability: accuracy backed by superior 17025 metrology systems and method: using primary calibration systems directly traceable to international standards, and a broad range of analog and digital I/O options to suit virtually any application. Ar independent diagnostic/service port permits users to set alarms and diagnostics tune, troubleshoot or change flow conditions without removing the mass flo

The SLAMf Series provides a highly configurable platform based on a simple modula architecture. The feature set was carefully selected to enable drop-in replacement and upgrade of many brands of mass flow controllers. With the wide range of features and options available, the SLAMf Series provides users with a single platform to support a broad range of applications

Rohde&Schwarz HMC8043 | 3 chan. (each 3 A), 99 W

 \rightarrow 76 – 140 W

Rohde&Schwarz HMP4040 | 4 chan. (each 10 A), 384 W