Overview of Dark Sectors, Lecture II

Plan

1. Introduction: comments on DM abundance generation mechanism
2. WIMPs comments on abundance and direct detection, Blind spots for direct detection
$3 \widehat{\text { Super-WIMPs }}=$ Freeze-in Dark Matter): comments on abundance and particle stability
3. Bosonic condensate dark matter - comments on abundance

Lesson from precision cosmology:

1. Universe was relatively simple at $\mathrm{T} \sim 0.3 \mathrm{eV}$.
2. The dark matter was already "in place" at the time of the matterradiation equality, when the potential wells created by DM started to grow. We see statistical evidence of H and He falling (and rebounding) from the DM gravitational wells. The amount of He and D is consistent with primordial nucleosynthesis
3. DM is not "made of ordinary atoms" - and there is 6 times more of it than of ordinary H and $\mathrm{He} . \Omega_{\text {dark matter }} / \Omega_{\text {baryons }}=5.4$
 weigh $\sim 50 \mathrm{eV}$ (excluded), and would have a hard time making smaller scale structure (too hot to cluster on small scales). Simplicity of the early Universe, makes many of us suspect that the DM might be in the form of unknown (= e.g. beyond-SM) particles.

Current ideas about DM

it some early cosmological epoch of hot Universe, with temperature $\mathrm{T} \gg$ DM mass, re abundance of these particles relative to a species of SM (e.g. photons) was
${ }^{\prime}$ ormal: Sizable interaction rates ensure thermal equilibrium, $\quad N_{D M} / N_{\gamma}=1$. Stability f particles on the scale $t_{\text {Universe }}$ is required. Freeze-out calculation gives the required nnihilation cross section for DM -> SM of order $\sim 1 \mathrm{pbn}$, which points towards weak cale. These are WIMPs. (asymmetric WIMPs are a variation.)
éry small: Very tiny interaction rates (e.g. 10^{-10} couplings from WIMPs). Never in rermal equilibrium. Populated by thermal leakage of SM fields with sub-Hubble rate 'reeze-in) or by decays of parent WIMPs. [Gravitinos, sterile neutrinos, and other feeble" creatures - call them super-WIMPs]

Iuge: Almost non-interacting light, $\mathrm{m}<\mathrm{eV}$, particles with huge occupation numbers of Jwest momentum states, e.g. $N_{D M} / N_{\gamma} \sim 10^{10}$. "Super-cool DM". Must be bosonic. sxions, or other very light scalar fields - call them super-cold DM.

Many reasonable options. Signatures can be completely different.
Lacroscopic DM? Primordial Black holes, of course. But this is not the only ossibility. Topological and non-topological solitons, clumps of DM etc.

Parametric dependence of the abundance

Super-WIMPs

Bosonic condensate DM

Weakly interacting massive particles
n case of electrons and positrons (when the particle asymmetry $=0$), the end point is $n_{e} / n_{\text {gamma }} \sim 10^{-17}$. It is easy to see that this is a consequence of a large annihilation cross section $\left(\sim \alpha^{2} / \mathrm{m}_{\mathrm{e}}^{2}\right)$.
Ven need a particle " X " with smaller annihilation cross section, $\Sigma+\mathrm{X} \rightarrow$ SM states.

Honest solution of Boltzmann equation gives a remarkably simple result. $\Omega_{\mathrm{X}}=\Omega_{\mathrm{DM}}$, observed if the annihilation rate is

$\left.10^{-36} \mathrm{~cm}^{2} \neq \alpha^{2} / \Lambda\right) \rightarrow \Lambda \neq 140 \mathrm{GeV} . \Lambda \sim$ weak scale!!! First implementations by (Lee, Weinberg, Dolgov, Zeldovich,)

Examples of DM-SM mediation

1. Z -mediation SM states

These 2-to-2 processes are relatively predictive - the t-channels for these diagrams is proportional to the same set of couplings. The naïve predictivity is not always the case.

It is very easy to lose theoretical predictivity for $\sigma_{\mathrm{DM}-\mathrm{N}}$

P-wave or S-wave: important for indirect detection.

kinematics is very crucial - Xt is often easy to predict the dominance of a given wave, given spin and properties of dark matter and mediators.

Problem 3:

P-wave or S-wave: important for indirect detection.

Tinematics is very crucial tt is often easy to predict the dominance of a Given wave, given spin and properties of dark matter and mediators.

Problem 3:
assuming that all interactions conserve discrete symmetries, prove that
 matter and s-wave annihilation for Dirac fermion Dark Matter.

- Determine s or p wave character of annihilation if it proceeds to a pair of scalar mediator S, and their interaction conserves parity.

iwo aquitionai minn spots IUI XiI EGL detection

Below the ionization threshold!

Strongly-interactin subdominant component of Dark Matter.
Thermalizes before reacting the underground lab,
Kin energy $\sim \mathrm{KT} \sim 0.03 \mathrm{eV}$
Below the ionization threshold!

Main limitation of light WIMP searches

- The kinetic energy of galactic dark matter is limited by

$$
E_{\text {gal, max }}=m_{D M}\left(v_{\text {escape }}\right)^{2 / 2} .
$$

- For MeV-range DM, this energy is below the ionization energy of $\mathrm{Xe}(13 \mathrm{eV})$. For MeV DM maximum kinetic energy is $\sim 1 \mathrm{eV}$
- Are there processes that bring DM energy above $\mathrm{E}_{\text {gal, max }}$?

Jase 1: DM scattering on electrons. Case 2: DM scattering on nucleons

electrons

- For a given DM mass particle, in the MeV and sub- MeV range, the recoil energy of electrons is enhanced compared to nuclear recoil by $\mathrm{M}_{\text {nucl }} / \mathrm{m}_{\mathrm{e}}$
- Sensitivity to energy depositions as low as 10 's of eV - reality now.
- Near future $-\mathrm{O}(1 \mathrm{eV})$ sensitivity

Huge number of suggestions: using superconductors, graphene, Weyl semimetal ${ }_{\phi_{2}}$ $D N A$, to push threshold lower. Somewhat of science fiction at this point.

"Retlected DM": extending the reach of Xe experiments to WIMP scattering on electrons

- (An, MP, Pradler, Ritz, PRL 2018)
- DM can scatter inside the Sun and get accelerated above the ionization threshold

- Initial kinetic energy $\mathrm{m}_{\mathrm{dm}}\left(\mathrm{v}_{\mathrm{dm}}\right)^{2} / 2$ with $\mathrm{v}_{\mathrm{dm}} \sim 10^{-3} \mathrm{c}$ (that has an endpoint at ~ 600 $\mathrm{km} / \mathrm{sec})$ can be changed by scattering with electrons, $\mathrm{v}_{\text {el }} \sim\left(2 \mathrm{~T}_{\text {core }} / \mathrm{m}_{\mathrm{e}}\right)^{1 / 2} \sim \mathrm{up}$ to 0.1 c . In particular $\mathrm{E}_{\text {reflected }}$ can become larger than $\mathrm{E}_{\text {ionization }}$.
- Huge penalty in the flux of "reflected" $\mathrm{DM} \sim 10^{-6}$

Analogy with Sunyaev-Zeldovich effect

- CMB photons are upscattered by hot gas in clusters of galaxies. Decrement at low frequency and increase at higher frequency.
- Solar electrons will do the same to light dark matter. Sun will be seen as a "hot spot" in dark matter.

New sensitivity to σ_{e} at low masses

- New exclusion regions. Reflected DM is numerically simulated.
- Models are not very realistic - below $\sim 3 \mathrm{MeV}$ under pressure from $\mathrm{N}_{\text {eff }}$
- This provides a new benchmark for new proposals for direct searches of 15 MeV DM. (SENSEI, DAMIC, CDMS and more exotic possibilities)

- Xenon1T significantly improve sensitivity to solar reflected component
- On-going work: generalize the results to the case of nearly massless mediator. (Effectively, a milli-charged dark matter with $\mathrm{Q} \sim 10^{-9} \mathrm{e}$.)

Light DM accelerated by cosmic rays

There is always a small energetic component to DM flux (Bringmann, Pospelov, PRL 2019) due to interaction with cosmic rays.

Typically: MeV DM mass \rightarrow eV kinetic energy \rightarrow sub-eV nuclear recoils. No limits for $\sigma_{\text {nucleon-DM }}$ for DM in the MeV range.

This is not quite true because there is always an energetic component for DM, not bound to the galaxy. Generated through the very same interaction cross section: σ_{χ}

Main idea: Collisions of DM with cosmic rays generate subdominant DM flux with ~ 100 MeV momentum - perfect for direct detection type recoil.

Resulting limits on WIMP-nucleon scattering

- Spin-independent limits.
[Notice the constraint from Miniboone, from measurements of NC nu-p scattering]. Exclusion of σ $=10^{-29}-10^{-31} \mathrm{~cm}^{2}$!
- Scattering on free protons in e.g. Borexino is also very constraining for the spin-dependent scattering.

Updated limits on WIMP-nucleon scattering

- More neutrino experiments can be used to "fill the gaps", Beacom and Cappiello, 1906.11283

Another blind spot: thermalized DM component

- Series of papers with Ramani, Rajendran, Lehnert, et al.

Freeze-in dark matter
Tiniest couplings needed, so that $\Gamma_{\mathrm{DM}} / \mathrm{H}(\mathrm{T} \sim \mathrm{m}) \ll 1$.

Tiny couplings means that lifetime can be $\gg \tau_{\text {Universe }}$, and stability is not an issue. Both $\mathrm{SM} \rightarrow \chi$ and $\mathrm{SM} \rightarrow \overline{\chi \chi \text { maybe acceptable. }}$

Tiny couplings means that lifetime can be $\gg \tau_{\text {Universe }}$, and stability is not an issue. Both $S M \rightarrow \chi$ and $S M \rightarrow \chi \chi$ may be acceptable.

Examples:
sterile neutrinos

Park photons

Oscillation freeze-in for sterile neutrinos

Dodelson, Widrow hep-ph/9303287

Constraints from $\mathrm{N} \rightarrow v \gamma$, 1705.01837 Abazajian review.

Oscillation freeze-in for sterile neutrinos

Constraints from $\mathrm{N} \rightarrow \mathrm{v} \mathrm{\gamma}$ 1705.01837 Abazajian review.

Plain" DW mechanism seems to be ruled out.

Oscillation freeze-in for dark photons

$A \rightarrow A^{\prime}$ oscillations. Matter suppressed in $\mathrm{m}_{\mathrm{A}^{\prime}}$ is small.

- Freez-in calculations requiee $\sim 10^{-11}$ for 100 keV mass dark photon
- Freeze-in option is excluded by the combination of direct Xe searches, gamma background, and stellar energy

Last mechanism: coherent field oscillations

Conclusions

Dark sector provides a broad perspective on dark matter and perhaps associated particles.

Several mechanisms for generating abundance exist.
"Blind spots" in direct detection of WIMPs gradually get covered.

All of options remain viable, but some become disfavored (freeze-in dark photon DM, DW freeze-in HNL DM etc)

