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BASIC PRINCIPLES
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Basic references:
Knoll, Radiation Detection and Measurement
Kittel, Introduction to Solid State Physics
LTD: Bi-annual worskhop on Low Temperature Detectors

(ex.: http://ltd16.grenoble.cnrs.fr/ )
IDM conferences (physics results)

Note: I will have to skip many other applications where sub-K 
detectors have large impact: CMB, IR, 2b0n, metrology
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Kinematics of a DM signal
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The backgrounds
Above ground:

n Surface: a (µm) and b (mm)

n g (with >> cm range) dominate 
keV-MeV range

n Neutrons (>>cm range) from 
cosmic rays important < 1 keV

n Neutrons from (a,n) & fission
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D. Misiak PhD (2020) J. Billard HDR report (2020)

XENON, LUX, PANDAX

Above ground, 
no shielding

Above ground,     
5 cm Pb shielding

Underground 
(LSM)

EDELWEISS
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Shielding strategies
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Rock (1km)

Muon Veto

Outer polyethylene
(50 cm)

Inner polyethylene
(5-10 cm)

Lead (15 cm)

Non-fiducial
region (mm)

Fiducial
region

(3-4cm)

Rock (1km)

Polyethylene/water
(20 cm)

Lead 
(20 cm)

Copper
(5 cm)

Polyethylene
(20 cm)

Non-fiducial
region (cm)

Fiducial
region

(20 cm)

XENON100
1 detector
with x,y,z

measurement

CDMS
EDELWEISS
10-20 detector
unit array

DM Searches 
require shielding 
from environment 

...
but also from 

experiment itself
(in particular: front-

end electronics

Depends on detector 
perfomance
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Signals : two types of recoils
Electron recoil        vs Nuclear recoil
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Detection techniques
Choice based on two 
arguments:
n Resolution (threshold), 

related to eV/quanta
• Scintillation ~100 eV 

needed for production 
of  ~1 eV photon

• Ionization:                 
~10 eV (gas),          
~1 eV (semicond.)

• Heat -> phonon:

~meV (depends on    
heat capacitance)

n Particle discrimination
Using the combination of 
two signals
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Heat
(phonon)

DEAP

EDELWEISS
SuperCDMS

CRESST
COSINUS

DAMA COSINE
NAIAD KIMS
...

XENON
LUX/LZ
PANDAX

Pulse Shape

Metastable PICO

DarkSide

DAMIC
SENSEI
CEDEX
...

Ionization Scintillation
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Rough picture of ionization signals

n Apply electric field on the detector volume to make the ionized 
charge drift to the surface, and “count the number of charges NQ 
arriving on the electrodes.” E=NQ. 

n Ge: 10 keV nuclear recoil ~ 800 e--hole+ pairs ~ 0.1 fC. 

n Fano factor in Ge: sE/E = √0.13/N = 1.3% for 800 pairs.

n Resolution in fact limited by readout noise (detector capacitance)

n Loss of charge during the drift deteriorates the resolution.
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absorber
Electric
Field

anode

cathode
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Rough picture of scintillation signals

n Count the number of photons (visible-UV) with a photoelectric tube, a 
photodiode or a bolometer

n Smaller number of quanta: resolution dominated by statistics
• Xe: 10 keV nuclear recoil ~ 5 photons counted (depends on light collection efficiency)

• NaI: 10 keV nuclear recoil ~ 3 (I) or 10 (Na) photons

n Advantage: sensor is separated from absorber. No physical contact.
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e-
hn

absorber photosensor
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Rough picture of heat/phonon signals

n “True calorimetric measurement”: DT = DE/C, with C = heat capacity of 
absorber. DT ~ Large number ~meV phonons.

n Phonon sensor: start to “count phonons” even before they are fully 
thermalized: faster + position-sensitive device

n Debye: C ~ T3 in insulator (e- do not contribute): Ge, Si, CaWO4, Al2O3...

n With T ~ 10-50 mK, can get ~ µK signal on ~kg absorber

n Baseline resolution can be as a good as 20-50 eV ... few eV
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absorber

Thermometer/
Phonon sensor

Athermal phonon sensors

absorber

TD = 1042 KTD = 374 K
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Bolometer or calorimeter?
n Bolometric or calorimetric mode?

n Dark Matter: discrete particles -> calorimetric mode...            
But often use the name “bolometer” anyways...
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Bolometer: continuous 
flux of radiation

Calorimeter: discrete
energy deposits

C = heat capacity (J)
G = heat conductance (W)

Example: Planck CMB 
measurement
Large array of small 
(~pixel-size) sensors

Push towards 
multiplexed readout 
(ex: 3000 pixels           
in NIKA2 camera,        
KIDS readout)

Dark matter:  
massive units 

Risetime = C/G

Signal = Power/G
Noise = √4kBT2G in W/√Hz

Signal = Energy/C
Noise = √4kBT2C  in J

Decay time = C/G
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Particle ID: Ionization and Light Yields
Ionization yield (charge/eV)

n <Ee-hole pair> = Egap + <Ekinetic> + <Ephonon>

n Phonons essential for dynamics of e--hole

n 3.0 eV/pair in Ge (gap 0.7 eV)

n 3.8 eV/pair in Si (gap 1.2 eV)

n Very small temperature dependence 
between 0 and 77K (kT=0.006 eV)

Light yield (photoelectron/eV)
n Depends on scintillation center    

concentration in crystal

n Depends on density of energy deposition

n Non-linearities at low energy (NaI, CsI)

n Large T dependence of yield & time constants

n ~50 eV / photoelectron typical value

July 9th, 2021 ISAPP2021 Dark Matter - Cryogenic detectors

Egap

Ekin +
Ephonon
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Total Energy
n Thermal measurement: in principle “perfect” measure of the total 

energy, irrespective of the particle type or interaction mechanism
• If the absorber + sensor are a closed system, its energy is conserved 

(1st Thermodynamics Law)

• Any form of energy deposited in the system will eventually get
thermalized (2nd Thermodynamics Law)

n But:
• Scintillation may escape

• Ionization (with no collecting field): not a problem, electron-hole 
pairs recombine locally via phonons (if recombination time ok)

• Ionization (with collecting field): recombination in electrode not a 
problem since it is part of the closed system: Egap gained back

• Permanent damage done to the absorber? (collision damage)

• Energy stored+released after the thermalization time (charge traps)
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QUENCHING
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Why do we need quenching?

n Needed for energy 
scale (non-phonon 
detectors)

n Two-signal detectors: 
e-/NR/phonon-only 
discrimination 
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Signal Quenching
Needed for 

Energy scale

Provides good 
e-/NR 

discrimination

Good discrim. 
against phonon-

only events
Phonon No*
Charge YES YES YES (Q~0.3)

Scintillation YES YES Not always (Q~0)

CRESST 
CaWO4

TAUP2017
DAMIC, CoGeNT,
DAMA…
… COHERENT
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MD simulations of nuclear recoils
n Molecular Dynamic Simulations of « hot » atoms produced by a 

10 keV Si or Ge recoil (Nordlund, 1998)
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Permanent damages due to this
« femtoGray » dose
(negligible in metals, but maybe not in 
semiconductors?)

Range: <20 nm Range: <10 nm
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Ion recoils in crystal
n Sn and Se: Nuclear and electronic 

stopping power dE/dx
• Sn peaked at low energy            

(100 keV for Ge recoils in Ge)

• Se = k √e at low energy, and small 
compared to Sn at 100 keV

n Lindhard, Scharff and Schiøtt
(1963): use Sn and Se to model of 
the energy loss during the cascade 
of ion-ion collisions to calculate the 
range, the ionization yield and its 
dispersion

n Model extensively used and tested, 
parameterized (k) using data 
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20 keV Ge recoils in crystal Ge:
Range ~20 nm

S
R
IM
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Lindhard critique: threshold effects

n Lindhard model assumes 
interaction between two 
neutral atoms (with screened 
Coulomb potential)… too 
simple?

n But: Threshold energy to 
excite a e+h- pair (0.7 eV gap) 
~100 eV for Ge?

n Also: should average energy to 
ionize an e- play a role?        
Se = k √e - cte
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See e.g. Sorensen, PRD91 (2015) 083509
Also in: https://kicp-workshops.uchicago.edu/2015-lowecal/index.php
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PHONON OR HEAT
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Ge-NTD heat sensor

51

EDELWEISS heat sensor - NTD

Low WIMP mass region (1 GeV - 10 GeV)

�T

�R

R(T ) = R0e

q
T0
Te

• NTD: Neutron Transmutation Dopped germanium 

• Resistivity as a function of temperature follows Efros’ law

• T0 depends on the neutron dose, R0 on the NTD geometry

• At working point, NTD resistance ~1-100 MOhm

• Current biased (α<0) with big bias resistors (Rb ~ 1 GOhm)

• Ip has to be optimized: too big -> heats up, too small -> no gain

• NTD readout are cheap and simple

• Thermal measurement: they are slow (~500 ms) and limited 

by the heat capacity of the crystal

• High impedance: sensitive to microphonic noise

• Limited to 100 eV (RMS) resolution for 800 g Ge detector

↵ =
d lnR

d lnT
⇠ �10

VNTD = RNTDIp

Julien Billard (IPNL) - GIF 2016
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Phonons (3 different kind)
n Initial high-energy phonons

• Keep memory of momentum of initial particle

• High-energy phonon with very short pathlength

• Rapidly degrade down to lower energy phonons

n Ballistic phonons
• Lower energy = longer lifetime (some µs)

• Path >> detector size: multiple scattering on.                         
surfaces, random position and direction

• Degrade down through scattering on impurities and defects in 
crystals (mostly at surface: traps, amorphous layer, electrodes)

n Thermal phonon
• Lifetime = C/G (tuned >> ms by adjusting the thermal link)

• Insensitive to position of interaction

• Sensor can be very small
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Position 
dependence

(if sensor very 
close by)

Fast response (<<ms)
Detection ∝ surface 

sensor/absorber

Slow (ms to >100ms)
Most reliable energy 

measurement
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Ge-NTD
n 33.4 g Ge                    

(h20 mm x phi 20 mm)

n GeNTD: 2x2x0.5 mm3

n Directly glued on Ge 
surface (epoxy)

n 17 mK 

n Achieves 17.8 eV
resolution @ baseline
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Bradley J Kavanagh (GRAPPA) LHC Results Forum - 3rd June 2019Tiny, tough WIMPs with EDELWEISS-surf
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Trigger and Livetime
 cuts2χ∆+ 

 cut
normal
2χ+ 

Analysis threshold

Calibration and Resolution  12

60 eV energy threshold

Calibrated with low energy X-rays from 55Fe

18 eV RMS energy resolution

No ionisation read-out (only phonons) - 
total deposited energy is collected,  

allowing for a low threshold

Detector in Cu support
TEFLON holders
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Thermal model of a pulse
n Simple model of Tdecay = 

Cabs/Gabs-bath fails to describe 
presence of multiple decay times

n Other decay constant due to 
conductance G’s:

1. Gabs-phonon between the absorber 
and the phonons in the NTD

2. Gphonon-e between the phonons in
the NTD and its electrons

n Also, the NTD e-’s are heated up
by the current used to measure
RNTD: Te > Tphonon > Tabs > Tbath

n The best performance are
obtained by tuning all these 
elements
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67

• We developed a detailed model of our heat signals that fits very well observed pulses


• Sensitivity to ballistic phonons and presence of a parasitic heat capacity


• Optimized sensors, to be tested this year, should reach 100 eV baseline resolution


• HEMT R&D for ionization signal also ongoing in collaboration with SuperCDMS to 
reach 100 eVee baseline resolution A. Phipps et al., J. Low Temp. Phys. (2016)
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Model: NTD-A

Model: NTD-B

Ba events: FID 837 @ 18 mK - MCMC3J. Billard et al., J. Low Temp. Phys. (2016)

Low WIMP mass region (1 GeV - 10 GeV)

EDELWEISS and CDMS towards lower thresholds

EDELWEISS:
Two NTDs     
/ detectors
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TES sensors
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CRESST-II detectors
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The phonon detector: 
300 g cylindrical 
CaWO4 crystal. 
Evaporated tungsten 
thermometer with 
attached heater.

Light detector:
Ø=40 mm silicon on sapphire wafer.
Tungsten thermometer with attached 
aluminum phonon collectors and thermal link. 
Part of thermal link used as heater

Clamps not
scintillating
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CRESST-III detectors
n Smaller detectors (24g), to achieve lower thresholds  (30 eV)
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CDMS ZIP detectors
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n Large area: sensitivity to 
athermal phonons

n Sensitivity to surface 
interactions

n Photolithographic patterns of 
W-TES + Al collector (CDMS)

250 g

Heat signals:
4 quadrants

Ionization signals:
Q_inner
Q_outer
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SuperCDMS iZIP position dependence
n TES linked in spiral-like 

pattern (see ionization 
topic, later)

n Separated in 4 groups 
on each side of the 
detector

n Outer ring A to reject 
events close to the side

n A/B/C/D give x-y
coordinates

n Separation of slow 
(~Energy) and fast 
(~position) components
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SCINTILLATION
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Inorganic scintillators (NaI, CsI, CaWO4, …)
n A good scintillator should NOT 

reabsorb its own light
Emission hn>Egap from e- conduction 
band is easily absorbed by valence e-

n Emission from less abundant in-
gap states is much less absorbed

n ~Birk’s rule: if dE/dx is large, the 
population of the in-gap states is 
saturated: reduced emission per 
incident keV.

n Electron recoils are subject to this 
(E-dependent) quenching. 
Additional Lindhard quenching for 
nuclear recoils.

n Scintillation time constants may 
be affected: pulse shape discr.
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Recoils in CaWO4
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CRESST-III low energy
PHYS. REV. D 100, 102002 (2019)

Separation of ER/NR band not decisive in low-energy region sensitive to Sub-
GeV WIMPs, but essential for understanding the backgrounds
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IONIZATION
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Ionization in cryogenic detector
n Silicon + Germanium: zone-refined crystals 

(low trap density) already nearly radiopure
• Except if exposed too long to cosmic rayS

n Ionization channel: electrode
• Electron Recoils:  Npairs = Erecoil / 3 eV 

Neganov-Trofimov-Luke (NTL) heating

[equivalent to Joule effect]

Eheat = Erecoil + Npairs V
n Reduced ionis. yield for Nuclear Recoils

Npairs = Q * Erecoil / 3 eV

with Q ~ 0.2 for 5 keV NR

n (3rd category: “Heat-only events” )

July 9th, 2021 ISAPP2021 Dark Matter - Cryogenic detectors

keVee

keV

Independent of bias V
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Nuclear recoil / gamma discrimination
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n With good resolution on both ionization & heat, very clear discrimination 
based on the different ionization yields for nuclear recoils (WIMP or 
neutron scattering) and electronic recoils (b,g decays)

• discrimination of dominant background
• Stable and reliable rejection performances
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Ionization yield of surface events
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n With good resolution on both ionization & heat, very clear discrimination 
based on the different ionization yields for nuclear recoils (WIMP or 
neutron scattering) and electronic recoils (b,g decays)

n Limitation: deficient charge collection near surface (trapping, dead layer) 
=> surface rejection possible via phonon or ionization channel

210Pb b source

EDELWEISS 2008
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Phonon time discrimination
n Phonon risetime  < 50 µs

n Ionization risetime < 1 µs

n « Timing parameter » combines rise 
time and phonon-ionization delay

n Nuclear/electronic recoil discrimination!
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n Sensivity to « z »? (no, works 
even if sensors on only one side)

n Due instead to a difference 
between the phonons produced 
in the primary interaction and in 
the Luke-Neganov process.

Bulk

Bulk
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Interleaved electrodes
n Adopted for large detectors by both EDELWEISS and SuperCDMS

n Concentric electrode rings with alternate bias values
• Bulk event charge collected C1 and C2 rings

• (Top) surface event charge collected on C1 and V1 rings

• CDMS veto on asymmetry between C1 and C2 (V1, V2 not read: TES lines)

• EDELWEISS veto events with V1 or V2 or C1-C2 asymmetry

n Reject 1-2 mm on all surfaces (EDELWEISS) or flat surfaces (CDMS)

n Added bonus: ”grid effect”: high fields (good collection) close to surface
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Surface Event Identification
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<4x10-5

surface 
event 
rejection.

Added bonus: “Grid effect”:
n High-field region close to the fiducial electrodes improves charge collection 

in that critical region close to the surface

Charge transport effects:
n Diffusion (T=20mK) and charge repulsion insures that charges are never 

“stuck” in zero-field regions PL
B
 6

81
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) 
30
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Charge transport in Germanium
n

B
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sk

i, 
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D
14

July 9th, 2021 ISAPP2021 Dark Matter - Cryogenic detectors

ID203
Height 20 mm
Diam. 50 mm
Ge p-type
doped to
1011 cm-3

Field: ~0.5V/cm

T = 20 mK
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EDELWEISS Sub-GeV program

Low-voltage objectives are part of a common effort with the Ricochet collaboration, dedicated to studying CENNS at reactors supported by the ERC-CENNS Starting Grant (2019-2024)

       
         - 10 eV (RMS) Heat energy resolution 
         - 20 eV (RMS) Ionization energy resolution K-shell 

10.37 keV

M-shell 

160 eV

electron recoils
nuclear recoils

Heat 10eV (RMS)  100VHeat 10eV (RMS)  4 V

electron recoils
nuclear recoils

electron recoils
nuclear recoils

Goal with FID-30g

Heat 10 eV (RMS)  Ion 20 eV (RMS)  4 V

threshold @ 50 eV 
~ 0.5 e-/h+ pairs

electron recoils
nuclear recoils

resolution 
improvement

High Voltage

Average performance with FID-800g

Heat 1000 eV (RMS)  Ion 200 eV (RMS)  4 V

    
    High Voltage Objectives

       

         

         - 10 eV (RMS) Heat energy resolution 
         - 100 V with signal ampli6cation only

 Single-e/h pair sensitivity 
with massive (~30g) bolometers

Single ELEctron Nuclear recoil DIScrimination

SELENDIS

      SELENDIS project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 838537

   Low Voltage Objectives

Particle identi6cation & surface event rejection 
down to 50 eV

L-shell 
1.3 keV

L-shell 
1.3 keV

threshold @ 50 eV 
~ 7 e-/h+ pairs

Lower thresholds: Neganov-Luke amplification
• Gain in resolution by a factor (1+DV/3) for electron signals

• With loss of ER/NR separation... Regained if separation of charge achieved?
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EDELWEISS detectors High voltage (~100 V) operation mode

Particle-type identificaiton
(thermal sensor measures ionization!)

Surface event rejection
(planar mode, no veto electrodes)

Huge Amplification of the signal only (not noise)
lower thresholds + improved resolution

particle-ID dependent

particle-ID dependent

4 sets of electrodes
concentric Al rings  (2mm spacing)

870 g High-Purity Ge detectors operated at ~ 18mK Simultaneous measurement of heat and ionization signals

Heat measurement 
2 NTDs (thermal sensors)

Ionization measurement Amplification of the Heat signal due to Neganov-Luke effect 

 = 70 mm�

h 
=

 4
0
 m

m

Fully Inter-Digitized (FID) 

Total heat energy [keV] Amplification gain [1+V/3]  
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EDELWEISS detectors High voltage (~100 V) operation mode

Particle-type identificaiton
(thermal sensor measures ionization!)

Surface event rejection
(planar mode, no veto electrodes)

Huge Amplification of the signal only (not noise)
lower thresholds + improved resolution

particle-ID dependent

particle-ID dependent

4 sets of electrodes
concentric Al rings  (2mm spacing)

870 g High-Purity Ge detectors operated at ~ 18mK Simultaneous measurement of heat and ionization signals

Heat measurement 
2 NTDs (thermal sensors)

Ionization measurement Amplification of the Heat signal due to Neganov-Luke effect 

 = 70 mm�

h 
=

 4
0
 m

m

Fully Inter-Digitized (FID) 

Total heat energy [keV] Amplification gain [1+V/3]

Heat ~ NpairV
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Egap and eg
n In Ge, eg= 3 eV and Egap = 0.7 eV (at 20 mK)

n Does it mean that a DM particle cannot give 
less than 3 eV to an electron?

n Obviously not, because the photoelectric 
effect starts to work with hn = Egap photons.

n The relationship Npair = Erecoil / eg is not valid 
if Erecoil << few eV

n For instance, a photon may be absorbed by 
an exciton, with no electron-hole pair 
created. Or immediately recombine.

n The value of eg= 3 eV correspond to the limit 
when the initial impact energy is >> Egap.

n However, the formula: 
Eheat = Erecoil + Npairs V

is always valid.

n And also the energy calibration of the sensor
performed with high-energy photons is still 
valid! 
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S. Koc, Czechosl. Journ. Phys. 7 (1957) 91-95.

Room temperature 
measurements
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CDMS HVeV detector
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J. Cooley, IDM2010
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EDELWEISS HV operation
n EDELWEISS-surf detector with electrodes        

+ operated at LSM (5 µ/m2/day)

n Ge f 20 x H 20 mm2 (33.6 g)

n 1 Ge-NTD sensor (1.6 mm3) glued           directly on 
bottom Ge surface

n Flat surface electrodes: lithographed Al grid (500 µm 
pitch, 4% coverage) to reduce   phonon trapping)
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NTD sensor
Al grid electrode

[PRL 125, 141401 (2020)]

160 
eV

1.3 
keV

10.4 
keV

calibration

Not yet able to 
separate 

charges, but 
backgrounds 

provide better 
DM limits
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CRYOGENICS
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Dilution refrigerators
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J. Billard, GIF school 2016
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Dilution refrigerators
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J. Billard, GIF school 2016

Cool down to ~1K using 
mechanically decoupled 
Pulse Tubes



47

EDELWEISS setup
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cryostat

Polyethylene 
shield Pb shield

Muon Veto

Neutron 
counter
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CRESST Cryostat and shield
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Detector 
carroussel

66 SQUID channel 
readout (33 
detectors)



49

SuperCDMS at SNOLAB
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CONCLUSION: RESULTS?
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Conclusion: results?
n Cryogenic detectors highly competitive in

searches for <GeV WIMPs (NR)

n With NTL amplification, can also compete in 
DM-electron and Dark Photon searches (ER)
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CDMSLite
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QUESTIONS
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Question 1

Let’s define the true energy of a particle as ER (and assume ER>10 eV). If 
the quenching of the ionisation signal for this particle is Q, then the 
ionization signal for the particle is EI = QER. For electron recoils Q=1. For
nuclear recoils Q<1.

n From the equations on slide 33, find the total heat energy Etot as a 
function of ER, Q, the bias V, and the average energy needed to create a 
electron-hole pair eg.

n Show that, for any value of Q, the following formula always give the 
correct value of ER:                ER = Etot – EI V / eg.

n Deduce that, for any value of ER,       Q = 1/(Etot/EI - V/eg)

In cryogenic heat-and-ionization detectors, it this thus possible to measure 
Q without any assumption on ER, and vice-versa
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Question 2

n Show that in a simple system made of a heat capacitance 
C linked to a heat bath through a conductance G, the heat 
signal following a sudden energy deposit E0 at t=t0 is DT = 
(E0/C) exp(-(t-t0)/(C/G))

n What is the pulse shape if the initial energy deposit is 
thermalized at a rate (1/E) dE/dt = l ?
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