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Statistics for Rare Events

Lectures organization

In order to ease the learning process, some portions of this handout will be completed during the
lectures. The complete version of this handout will be posted online after each lecture.

The intended plan for our time together is the following:

• Lecture 1: Monday July 12, 2021 2PM-3PM
Statistical inference (overview), likelihood ratio test.

• Discussion/Exercises: Monday July 12, 2021 4.20PM-5.30PM.

• Lecture 2: Tuesday July 13, 2021 2PM-3PM
Confidence intervals/upper limits, goodness-of-fit.
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1 A brief overview on statistical inference

Statistical inference is the area of statistics which aims to develop and study reliable tools to
make conclusion on the phenomenon/population under study based on what has been observed
on a data sample. Among the main inferential tools we have tests of hypotheses or goodness-of-fit
tests. Confidence intervals and upper limits are also widely used but more often than not, they
can be obtained by simply inverting tests of hypotheses. Hence, for the moment, we focus on

• Tests of hypotheses: Given a postulated model for the data (e.g., background only), we
test it against an alternative model (e.g., background+ signal we are looking for).

• Goodness-of-fit tests: Given a postulated model for the data we test it against all
possible alternatives (e.g., do we have only background events or is there something else?).

Which type of test to use typically depends on the problem under study and the classical
formulation of a statistical test consist in the following steps:

1. Specification of the null and the alternative hypotheses, namely H0 and H1

• Tests of hypotheses: e.g., we expect that X ∼ N(µ, 1), we test

H0 : µ = 0 versus H1 : µ 6= 0.

• Goodness-of-fit: e.g., we expect that X ∼ N(µ, 1), we test

H0 : X ∼ N(µ, 1) (versus H1 : X 6∼ N(µ, 1)).

we call the model specified under H0 the “null model” and the model specified under H1

the “alternative model”.

2. Specification of a test statistic

• Tests of hypotheses: e.g., the Likelihood Ratio Test (LRT) statistics.

• Goodness-of-fit: e.g., Pearson χ2 test statistics.

(We will see both of them later in this handout.)

3. Derivation of the distribution of the test statistic under H0

This is typically done by relying on asymptotic results or via Monte Carlo simulations.

4. Computation of p-values or quantiles of the null distribution.
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2 How do we a assess if a test is good or not?

In principle we could construct an infinite number of different test statistics for any model under
study and perform a test of hypothesis by simulating their null distribution. However, not all
tests are good tests and indeed, we can quantify how “good” a test is by looking at two main
quantities the probability of type I error and the power.

• The probability of type I error is the probability of incorrectly rejecting H0 when it is
true. It is typically denoted by α and is also called “significance level”, i.e.,

P (Probability of Type I error) = α = 1− coverage probability.

In physics, it is typically expressed in “number of sigmas”, i.e., #σ = Φ(1 − α/2), with
Φ(·) being the cumulative density function of a standard normal.

• The power is the probability of correctly rejecting H0 when H1 is true.

In order to provide a provide an explicit visualization of what these two are, suppose we are
testing two hypothesis H0 and H1 using a test statistics T which we know is asymptotically
distributed as a χ2

3. Suppose we have collected a sample of size N = 5, 000 and so we are pretty
sure we can trust the asymptotics. Call Tobs the value of the test statistics T calculated on such
sample...
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Clearly, as α increases, the power increases. Moreover, we say that a test is admissible or unbiased,
if its power is higher than its probability of type I error.

Finally, power and probability of type I error allow us to tell a bit more about the differences
between goodness-of-fit tests and tests of hypotheses. Specifically, the former will have some
power against all possible alternative models. Whereas, the latter will have high power only
against the alternative model we have specified under H1. This is the main distinction among
these two classes of tests.

3 Testing hypotheses using the Likelihood Ratio Test

Given two plausible models for the data, an hypothesis testing procedure aims to select the one
which is more consistent with the data collected. But what does “more consistent” mean exactly?
In statistics, we often refer to the likelihood function to quantify how plausible a model is for the
data being collected.

3.1 The likelihood function and maximum likelihood estimation

Let F (y;θ) be the postulated distribution for the sample y = (y1, . . . , yN ), and denote with
f(y;θ) the respective probability density function. The vector θ collects the p parameters
which characterize the distribution F . For instance, if our sample was generated from a Normal
distribution with mean µ and variance σ2 we would have θ = (µ, σ2), p = 2, and

f(y;µ, σ2) = 1√
2πσ2

exp
{
− 1

2σ2
(
y − µ

)2}

whereas, F (y;µ, σ2) = Φ(y;µ, σ2) =
∫ y
−∞ f(y;µ, σ2)dy. The (continuous/unbinned) likelihood

function specifies as:

L(θ;y) =
N∏
i=1

f(yi;µ, σ2).

We will see in Section 7 how the likelihood specifies if the data are binned. The likelihood
function is particularly useful for the purpose of estimating the parameters in θ. Specifically, if
the parameters in θ are unknown, we can estimate them by maximizing the likelihood function,
and obtain the so-called Maximum Likelihood Estimate (MLE), i.e.:

θ̂ = arg max
θ

l(θ;y)

where l(θ;y) = log{L(θ;y)} is called log-likelihood function, and we rely on it just because it is
typically much easier to maximize l(θ; y) rather than L(θ;y).

Finally, under suitable regularity conditions we have that

θ̂ ≈ N
(
θ, I−1(θ)

)
, as n→∞, (1)

where I−1(θ) is the inverse of the so-called Fisher’s Information Matrix, i.e., I(θ) = −E
[
∂2

∂θ2 l(θ;y)
]
.
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3.2 The Likelihood Ratio Test

The likelihood ratio test consists in comparing the null and the alternative models specified
under H0 and H1 in terms of their log-likelihood.

• Specification of the null and alternative hypotheses.
Typically, we consider tests such as:

H0 :θ = θ0 (simple hypothesis) versus H1 : θ > θ0 (one sided hypothesis) (2)

H0 :θ = θ0 (simple hypothesis) versus H1 : θ 6= θ0 (two sided hypothesis) (3)

• Specification of the test statistic:

Λ(θ0) = −2 log L(θ0; y)
L(θ̂; y)

= −2
N∑
i=1

[
l(yi;θ0)− l(yi; θ̂)

]

• Derivation of the distribution of the test statistic under H0.
Under suitable regularity conditions, as N →∞, under H0,

Λ ≈ χ2
p.

Alternatively, one can simulate the distribution of Λ under H0 via Monte Carlo.

• Computation of the p-value.
Let Λobs be the value of the test statistic Λ evaluated on the data,

p-value = P (χ2
p ≥ Λobs).

• What do we do after we have computed our p-value?

– If p-value≥ α: we “fail to reject” H0 ⇒ our null model fits the data well.

– If p-value< α: we reject H0 ⇒ our null model does not fit the data well, the alternative
model is better.

This is a legitimate decision rule because, if you think about, the p-value is nothing but
the probability of obtaining a value of our test statistics Λ which is more extreme than the
value we have observed on the data, Λobs, when H0 is true. So if this event is very unlikely
(small p-value), that means that probably, the true distribution of Λ is different from the
one we expect under H0, and consequently, it is unlikely that H0 is valid.
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3.3 The Likelihood Ratio Test using the profile likelihood

We may encounter situations where, in addition to the parameter θ which we are interested
in, we may also have another set of parameters, namely τ , which are not interesting to us and
play the role of nuisance parameters. The latter may correspond, for instance, to systematic
uncertainties. The question then is: how do we deal with those?
Interestingly, we can proceed exactly as we did before but this time, instead of the likelihood
functions under H0 and H1 we consider the respective profile likelihood functions. The latter
consist in replacing τ with its MLE obtained by fixing θ to its value specified under the hypotheses,

Λ(θ0) = −2 log L(θ0; τ̂θ0 , y)
L(θ̂; τ̂

θ̂
, y)

= −2
N∑
i=1

[
l(yi; τ̂θ0 , y)− l(y;τ̂θ̂, y)

]
and the asymptotic distribution of Λ under H0 remains unchanged, i.e., we still have Λ ≈ χ2

p

(provided that the regularity conditions needed hold). Alternatively, one can proceed by simulating
the null distribution of Λ(θ0) under H0, that is, when θ = θ0 and τ = τ̂θ0 . Since the value of τ
used is an estimate for it, in statistics, we refer to this process with parametric bootstrap.

3.4 Some warnings

In the previous sections, when deriving the asymptotic distribution of θ̂ and Λ(θ0) we have said
that, those results are valid “under some regularity conditions”. Despite the latter are quite
technical, we can identify a few conditions necessary for the validity of our χ2 approximation.
Specifically,

C1. The true value of the parameters must not be on the boundaries of their parameter space.

C2. The parameters are identifiable. That is, different values of the parameters specify distinct
models.

C3. The model under H0 is a special case of the model under H1.

C4. The true model is one between those specified under H0 or under H1.

A discussion on how to identify situations of non-regularity in a more practical setting is postponed
to Section 4.2.
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4 Exercises/Discussion

4.1 A toy example

Suppose our instrument has collected N = 1000 observations which appear to suggest that an
excess of events at 125 GeV is present. For simplicity, we assume that the background was
completely resolved and the goal is to understand what is the exact location of these signal
events. The mass distribution is assumed to be a Gaussian with mean µ and variance σ2 (both
unknown). We want to test the hypotheses

H0 : µ = 125 versus H1 : µ 6= 125

For this scenario, specify the following.
1. The log-likelihood function.

2. A formula for Λ.
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3. The asymptotic distribution of Λ, when H0 is true.

4. Suppose Λobs = 2, specify a formula for the p-value.

5. The p-value is 0.157, can we claim that µ = 125GeV is likely to be the correct location of
the signal?

8



ISAPP school - Sara Algeri Statistics for Rare Events

4.2 Discussion: Identifying situations of non-regularity

Suppose X is the number of events detected by our instrument (e.g., photon emissions over a
given range of energy) and let’s assume that the resolution of the latter is sufficiently high to
allow us to treat the data as a continuous stream of data (no binning). The probability density
function of X specifies as follows:

f(x; η, φ, θ) = (1− η)b(x, φ) + ηs(x, θ) (4)

where b(x, φ) is the distribution of the background and φ is a parameter characterizing it. For
instance, if b is a power-law, φ is its slope. Whereas, s(x, θ) is the distribution of the signal and
θ the parameter characterizing it. For instance, if s is a Gaussian with variance 1, θ is the mean.
Finally, η is the intensity of the signal, i.e., the proportion of events that we expect to come from
the signal and it is assumed to be non-negative. Finally, you are given a sample of N = 10000
observations which you may use to assess the validity of the model in (4).
A few questions for you...

1. How would you specify your hypotheses in order to assess if a signal is present or not?

2. Suppose θ is known to be 125. Which among the necessary conditions needed for the
χ2-approximation of the LRT fail (see Section 3.4)? Why?
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3. Suppose θ is unknown. Which among the necessary conditions needed for the χ2-approximation
of the LRT fail (see Section 3.4)? Why?

4. Suppose you decided to test H0 : b(x, φ) versus H1 : s(x, θ). Which among the necessary
conditions needed for the χ2-approximation of the LRT fail?

You can find a self-contained review on solutions for the problems above in

Algeri et al., 2020. Searching for new phenomena with profile likelihood ratio tests. Na-
ture Reviews Physics. https://www.nature.com/articles/s42254-020-0169-5
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