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1. Introduction - Scalar Field Dark Matter (SFDM)
Many inconsistencies face the Cold Dark Matter model and WIMPs at astrophysical scales, to name only some of them: the core-cusp problem, the
missing satellite problem, the "too big to fail". Alternative models have been created to try to find a solution to all these problems, one of them is what
we call the Scalar Field Dark Matter models (SFDM). In these models, dark matter is composed of bosons with masses ranging from 10−25 to 1 eV.
Some of the advantages of such models are:

1. That they recovers the successes of Λ-CDM at large scales.
2. The appearance of a form of stable equilibrium configuration at is core, the so-called soliton.
3. A smooth density profile at the origin.

The action used in these models is S =
∫
d4x
√
−g [gµν∂µφ∂νφ− V (φ)] where we will use a parabolic potential V (φ) = 1

2m
2φ2 (free case).

2. Field To Fluid Picture
In the non-relativistic limit (ψ̇ << mψ), we can
express φ = h̄√

2m

(
ψe−imt + ψ∗eimt

)
. At small-

scales, we have the Schrodinger-Poisson system:

iψ̇ = − 1
2m∇

2ψ +mΦψ ,

∇2Φ = 4πGm|ψ|2 .

Using the Madelung transformation (low veloc-
ity required), which is ψ(t, ~x) = ϕ(t, ~x)eis(t,~x),
ϕ(t, ~x) =

√
ρ(t, ~x)/m and ~v(t, ~x) = ~∇s(t, ~x)/m,

we can obtain a new system of equations, called
the Quantum Euler-Poisson system:

∂tρ+ ~∇ · (ρ~v) = 0 ,

∂t~v + (~v · ~∇)~v = −~∇Φ + 1
2m2

~∇ ·
(
∇2√ρ
√
ρ

)
,

∇2Φ = 4πGρ .

However, the change can only be done in one
way, from field to fluid, since by doing so we
lose the wave-like behaviors.

3. Studied System & Goal
We studied a system composed of a
Schwarzschild black hole (BH) in motion
in a SFDM sea (implying a symmetry over
one angle in spherical coordinates). The
Schwarzschild metric used being centered on
the BH, we will consider that it is the DM
particles that move.

We then seek to calculate the dynamical friction,
which is define as the loss of momentum of mov-
ing objects through gravitational interactions, of
such a system, which can help solve some cos-
mological problems (as globular clusters timing
problem) while constraining SFDM mass.

This is a sketch of two particles coming from
infinity with a velocity ~v0 : One being deviated
by a BH and the other being absorbed.

4. Free Scalar Field Dark Matter
We choose the initial velocity to be ~v0 = vinf ~ez. The energy-momentum tensor is:

Tµν = −gµν
(

1
2∂αφ∂

αφ+ V (φ)
)

+ ∂µφ∂νφ .

From the dynamical friction formula, which is ~F = −
∮
dSjTjz ~ez and using the fluid picture, we

obtain ~F ≈ −
∮
dxdyρv2

z . After some calculations to obtain ρ and vz expressions at infinity, the
dynamical friction of our system is then

F = 2πρ0v
2
inf

[
G2M2h(vinf )

v4
inf

ln

(
(b+)2v4

inf +G2M2h(vinf )
(b−)2v4

inf +G2M2h(vinf )

)
+ (b−)2

2

]
,

with h(vinf) = 1 − 4v2
inf + 4v4

inf . The first term corresponds to the difference between particles
outgoing and incoming, the second one to particles absorbed by the BH. The first term correspond
exactly to what we can obtain with a standard astrophysical object instead of a BH [1].

5. Self-Interacting Scalar Field Dark Matter
We add a new potential term VI(φ) = λφ4/4 corresponding to self-interactions.
From the Klein-Gordon equation

∂2φ

∂t2
−
√

f

h3
~∇ ·
(√

fh~∇φ
)

+ f
∂V

∂φ
= 0 ,

with f(r), h(r) the isotropic metric functions, we can express

φ(r, θ) = φ0(r, θ)cn[ω(r, θ)t−K(k)β(r, θ), k(r, θ)] .

[2] where φ0 is the amplitude, cn[u, k] is the Jacobi elliptic function, ω = 2Kω0/π is the angular
frequency and K is the complete elliptic integral of the first kind.

Supposing k2 << 1 and of the form k2 = k2
0 + C/r as a first approximation, the only unknown

function is β that we will find using the conservation equation ∇µTµ0 = 0 and the steady state
property of the system < ρ̇ >= 0, which will give us ~∇·

(
ρ

(0)
eff (k)~∇β

)
= 0. The boundary conditions

(at small radius β = C0ln(1/r+C1), at large radius β = v0rcos(θ)) allow us to obtain an expression

β(r, θ) = A0ln

(
1
r

+ γ

)
+A1v0r

√
2
2F1 (a, b, c;−γr) cos(θ) ,

where A0, A1, γ, a, b, c are constants. Then including a correction on the effective density so
ρeff = ρ

(0)
eff + ρ

(1)
eff , we have ~∇ ·

[(
ρ

(0)
eff + ρ

(1)
eff

)
~∇β
]

= ~∇ ·
[
ρ

(0)
eff

~∇β
]

+ S(0) = 0.
Numerically, we will try to obtain results using an iteration based on the assumption that the
corrections are small: β(i), ρ(i) →ρ(i+1) →S(i+1) →β(i+1) →ρ(i+2) → ...
Then, we will use the dynamical friction as for a free SFDM.

6. Conclusions & Prospects
Considering the system of a Schwarzschild black hole moving through a dark matter sea:

1. The results obtained for the dynamical friction with a free scalar field are consistent with what
is currently known + correction due to the black hole absorbing particles.

2. For future work, we hope that we will obtain good results with a self-interacting scalar field,
which will mean that the induced correction on β is of the order of a perturbation.

We will extend to the case of a Kerr black hole, which will induce a loss of angular symmetry.
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