arXiv: 2106.06207 ## WimPyDD: an object-oriented Python code for WIMP-nucleus scattering direct detection in virtually any scenario Dr. Gaurav Tomar (Technical University of Munich) - WimPyDD calculates accurate predictions for the expected rate in WIMP direct detection experiments - WimPyDD works in the framework of Galilean-invariant non-relativistic effective field theory and can be matched to any high-energy model of particle dark matter - WimPyDD handles different scenario: - 1- inelastic scattering - 2- WIMP of arbitrary spin - 3- Generic velocity distribution of WIMP - 4- Annual modulation effect - The scattering amplitude: $\frac{1}{2j_{\chi}+1}\frac{1}{2j_{T}+1}|\mathcal{M}_{T}|^{2}=\frac{4\pi}{2j_{T}+1}\times\\ \sum_{\tau,\tau'}\sum_{k}R_{k}^{\tau\tau'}\begin{bmatrix}c_{j}^{\tau},(v_{T}^{\perp})^{2},\frac{q^{2}}{m_{N}^{2}}\end{bmatrix}W_{Tk}^{\tau\tau'}(y)$ Dark Matter Nuclear Physics - WimPyDD factorizes the expected rate calculation into three parts: - i- Wilson coefficients of the effective theory - ii- The detector response functions (acceptance, energy resolution, response to nuclear recoils etc.) - iii- Halo-function | Codes | EFT
Interaction
s | Arbitrary
DM spin | Inelastic
scattering | Velocity
Distribution
flexibility | DAMA
modul
ation | |-------------------|-------------------------|----------------------|-------------------------|---|------------------------| | DarkSUS
Y | V | × | × | V | × | | MicrOME
GAs | × | × | × | Limited:
Maxwellian,
SHM++ | × | | GAMBIT
/DDcalc | √ | × | × | √ | × | | WIMpy_
NREFT | Limited:
O1-O11 | × | × | Limited:
Maxwellian | × | | Dmdd | × | × | × | Limited:
Maxwellian | × | | MadDM | × | × | × | Limited:
Maxwellian | × | | WimPyDD | √ | √ | √ | √ | √ |