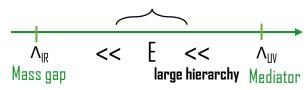
A model independent probe for Elusive Dark Sectors at Future Experiments



Goal

Derive model independent bounds on SM-neutral and light dark sectors coupled to the visible sector via irrelevant portal interactions (1) from **future** experiments dedicated to long lived particle (LLP) searches.

Elusive Dark Sector (DS)

theory is approx. conformal

At $\Lambda_{\text{IIV}} \mathrel{<\!\!\!<} E \mathrel{<\!\!\!<} \Lambda_{\text{IR}} \Rightarrow$ use ${\mbox{\bf CFT}}$ (conformal field theory) composite operators for DS!

$$\mathcal{L}_{\mathrm{portal}} = \mathcal{O}_{\mathrm{CFT}} \times \mathcal{O}_{\mathrm{SM}} \longrightarrow \mathrm{Dim}[\mathbb{O}_{\mathrm{DS}} \mathbb{O}_{\mathrm{SM}}] > 4$$

$$\mathcal{O}_{\mathrm{J}_{\mu}^{DS}}, T_{\mu\nu}^{DS} \longrightarrow H^{\dagger}H, \bar{\psi}\gamma^{\mu}\psi, ...\dim[\mathbb{O}_{\mathrm{SM}}] \leq 4$$

Minimal lagrangian

$$\mathcal{L}_{\text{portal}} = \frac{\kappa_{\mathcal{O}}}{\Lambda_{\text{UV}}^{\Delta_{\mathcal{O}} - 2}} \mathcal{O} H^{\dagger} H + \frac{\kappa_{J}}{\Lambda_{\text{UV}}^{2}} J_{\mu}^{DS} J_{SM}^{\mu} + \frac{\kappa_{T}}{\Lambda_{\text{UV}}^{4}} T_{DS}^{\mu\nu} O_{\mu\nu}^{SM}$$

Dimless coefficients : $\kappa_{\mathcal{O}}, \kappa_{J}, \kappa_{T}$

Benchmark Models:

- Pure Yano Mills Dark Sector .
- theory with free fermions and
- 5 D Randall Sundrum Dark Sectors

SONALI VERMA

Work in Progress with R. K. Mishra, M. Costa 104

Dark Sector Production

At $\Lambda_{\rm IR} \ll \sqrt{\hat{s}} \ll \Lambda_{\rm UV}$ **DS inclusive production** approximated by considering contributions only from conformal regime and using optical theorem:

$$\sum_n \int \! d\Phi_{DS} |\langle 0|O_{DS}|n\rangle|^2 = 2 \, \mathrm{Im} \left[i \langle 0|T\{O_{DS}O_{DS}\}|0\rangle\right]$$
 operator interpolating DS state n from vacuum.

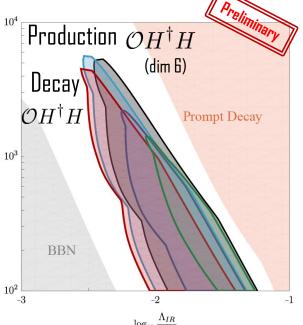
For higgs production ($\Lambda_{\mathbb{R}} < m_{\text{higgs}}$):

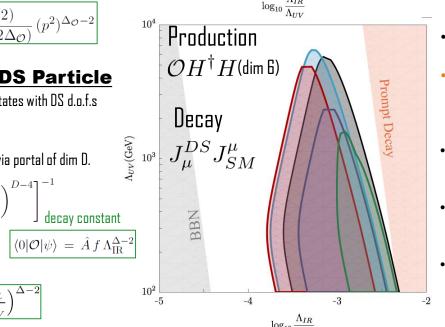
$$\Gamma_{h\to DS} = -\frac{1}{m_h} \frac{\kappa_{\mathcal{O}}^2 v^2}{\Lambda_{\mathrm{UV}}^{2\Delta_{\mathcal{O}}-4}} \ \mathrm{Im} \ i \left< \mathcal{O}(-p) \mathcal{O}(p) \right> \big|_{p^2 = m_h^2} \ .$$

$$---- \sum_{\sigma^{3/2}} \frac{\Gamma(\Delta_{\mathcal{O}} + 1/2)}{\Gamma(\Delta_{\sigma} - 1) \Gamma(2\Delta_{\sigma})} (p^2)^{\Delta_{\mathcal{O}}-2}$$

Lifetime of Lightest DS Particle

When probed at energies $\rightarrow \Lambda_{\rm IR} \mathcal{O}_{\rm DS}$ excites CFT states with DS d.o.f.s Strongly coupled # d.o.f.s > Weakly coupled # d.o.f.s


All DS decays to LDSP (ψ) which decays back to SM via portal of dim D.


$$\bullet \quad m_{\psi} > m_{\rm EW} \quad \tau_{\psi} \sim \left[\Lambda_{\rm IR} \frac{\kappa^2}{8\pi} \left(\frac{f^2}{\Lambda_{\rm IR}^2} \right) \left(\frac{\Lambda_{\rm IR}^2}{\Lambda_{\rm UV}^2} \right)^{D-4} \right]^{-1} \text{decay constant}$$

• $m_{\psi} < m_{\rm EW} \ \tau_{\psi} = (\Gamma_h(m_{\psi}) \sin^2 \theta_h)^{-1}$,

$$\tan 2\theta_h = \frac{2\delta_h}{m_{\psi}^2 - m_h^2},$$

 $\tan 2\theta_h = \frac{2\delta_h}{m_{\star}^2 - m_{\star}^2}, \qquad \delta_h = \kappa_{\mathcal{O}} v f \left(\frac{\Lambda_{\mathrm{IR}}}{\Lambda_{UV}}\right)^{\Delta - 2}$

Results

- Constraints on resonant DS production via D=6 higgs portal from displaced vertices (DV) searches.
- Plots assume weakly coupled dark dynamics with n. of LDSPs =
- (top left) decay via same **D=6** higgs portal
- (bottom left) aeneric D=6 portal
- Model independent bounds from current 2 DV searches in ATLAS [2][3] + 1 DV searches in future proposed LLP experiments: ANUBIS.

MATHUSLA, AL3X, CODEX-b.

- Big Bang Nucleosynthesis (BBN) exclusion since $\tau_{LDSP} < 1 s$.
- Promot decays → model dependent.

Conclusions

- Dark sectors coupled to SM via irrelevant portals are very elusive.
- Current collider searches barely probe the parameter space for such sectors.
- Future experiments will be powerful probes for such sectors.