

Phenomenological implications of sterile neutrinos in the $\mu\nu$ SSM

Paulina Knees

Instituto de Física de Buenos Aires UBA & CONICET, Departamento de Física, Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

Introduction

We analyse the sterile neutrino as dark matter in the context of the μ -from- ν supersymmetric standard model, $\mu\nu$ SSM. We adopt a minimalistic approach, reproducing neutrino masses and mixing angle at tree-level using two right-handed neutrinos as part of the see-saw mechanism. A third right-handed neutrino don't contribute significantly to the mass of the three active ones. As we show in this work this right-handed neutrino behaves as a sterile neutrino that can be a good dark matter candidate. (Work in progress with my PhD advisor and collaborators).

Neutrino physics: actual state

- Experimental evidence of neutrino oscillations: transitions between the different flavour neutrinos, caused by nonzero neutrino masses and neutrino mixing.
- ► Actual state of neutrino physics measurements is the following (source: PDG)

Parameter	Best fit	3σ
$\Delta m_{21}^2 [10^{-5} \text{eV}^2]$	7.37	6.93-7.96
$\Delta m_{31(23)}^2 [10^{-3} \text{eV}^2]$	2.56 (2.54)	2.45-2.69 (2.42-2.66)
$\sin^2 heta_{21}$	0.297	0.250-0.354
$\sin^2\theta_{23}, \Delta m_{31(31)}^2 > 0$	0.425	0.381-0.615
$\sin^2 \theta_{23}, \Delta m_{32(31)}^2 < 0$	0.589	0.384-0.636
$\sin^2 \theta_{13}, \Delta m_{31(32)}^2 > 0$	0.0215	0.0190-0.0240
$\sin^2 \theta_{13}, \Delta m_{32(31)}^2 > 0$	0.0216	0.0190-0.0242
δ/π	1.38 (1.31)	$2\sigma: (1.0-1.9) (2\sigma: (0.92-1.88))$

The $\mu\nu$ Supersymmetric Standard Model

- The $\mu\nu$ SSM was proposed in [1,2] and arises naturally as a supersymmetric model with minimal content of particles adding neutrino right extra fields, without the μ problem.
- ▶ R-parity breaking makes the $\mu\nu$ SSM phenomenology very different from the MSSM and the NMSSM.

The superpotential of this model is given by

$$W = \epsilon_{ab} \left(Y_{u}^{ij} \hat{H}_{u}^{b} \hat{Q}_{i}^{a} \hat{u}_{j}^{c} + Y_{d}^{ij} \hat{H}_{d}^{a} \hat{Q}_{i}^{b} \hat{d}_{j}^{c} + Y_{e}^{ij} \hat{H}_{d}^{a} \hat{L}_{i}^{b} \hat{e}_{j}^{c} \right) +$$

$$+ \epsilon_{ab} \left(Y_{\nu}^{ij} \hat{H}_{u}^{b} \hat{L}_{i}^{a} \hat{\nu}_{j}^{c} - \underbrace{\lambda^{i} \hat{\nu}_{i}^{c} \hat{H}_{d}^{a} \hat{H}_{u}^{b}}_{\text{generates the effective } \mu \text{ term after EWSB}} \right) + \underbrace{\frac{1}{3} \kappa^{ijk} \hat{\nu}_{i}^{c} \hat{\nu}_{j}^{c} \hat{\nu}_{k}^{c}}_{\text{generates Majorana masses}}$$
(1)

The effective μ term is given by $\mu = \frac{\lambda v_R}{\sqrt{2}}$, whereas the Majorana masses are $\mathcal{M}_{ij} = 2\kappa_{ijk} \frac{v_{kR}}{\sqrt{2}}$.

- ► These last three terms are also the responsible of breaking explicitly R-parity, harmless to the proton decay.
- Neutrino Yukawa couplings Y_{ν} are the parameters that controls the amount of R_{p} in the $\mu\nu$ SSM.

[1] D.E López-Fogliani and C. Muñoz, *Proposal for a Supersymmetric Standard Model*, Phys. Rev. Lett., 97:041801, 2006.

[2] D.E. López-Fogliani and C. Muñoz, "Searching for Supersymmetry: The $\mu\nu$ SSM" (review), Eur. Phys. J. ST **229** no. 21, (2020) 3263–3301, arXiv:2009.01380 [hep-ph]

Neutrino Sector

As a consequence of R-partiry violation, the MSSM neutralinos mix with the left and right-handed neutrinos. The neutral fermions have the flavor composition $\chi^0 = (\nu_i, \hat{B}, \hat{W}, \hat{H}_d, \hat{H}_u, \nu_{iR})$ and thus neutrino masses arise naturally from the generalized see-saw mechanism. The neutralino 10×10 mass matrix in the flavour basis is given by [2]

$$m_{\chi^0} = egin{pmatrix} 0_{3 imes 3} & m^T \ m & \mathcal{M}_{7 imes 7} \end{pmatrix}$$

► At tree level, we can write the effective active-neutrino mixing mass matrix

$$m_{\it eff} = -m^T \mathcal{M}^{-1} m \Longrightarrow_{
m diagonalization} U_{\it MNS}^T m_{\it eff} U_{\it MNS} = (m_{
u_1}, m_{
u_2}, m_{
u_3})$$

► Independent parameters of neutrino sector

$$v_{iL}, v_{iR}, Y_{
u_{ii}}, \kappa_{ijk}, \lambda_i, an eta, M_1, M_2$$

Sterile neutrinos

Sterile neutrinos are right-handed fermions that are singlets under Standard Model gauge group, in consequence they are totally neutral.

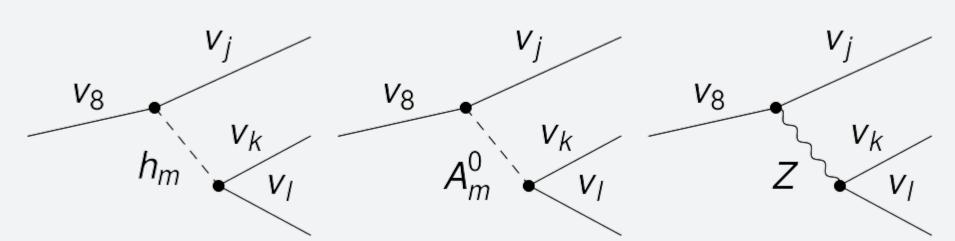
Our purpose is to propose one of the three right-handed neutrinos as a light sterile one, using only two RH-neutrinos in the see-saw mechanism. We are interested one serile state in the keV scale.

- Very Decouple one right-handed neutrino from the see-saw mechanism \implies $Y_{\nu_i} \sim 10^{-13}$.
- \checkmark Achieve the mass scale wanted $\implies \kappa \sim 10^{-9}$.

Numerical analysis

To find a sterile state that reproduces neutrino physics data, we did a numerical analysis using the SPheno code for $\mu\nu$ SSM, generated by SARAH *Mathematica Package*.

- ► Low Yukawa coupling needed to generate the sterile state.
- ightharpoonup Low κ in order to achieve the mass scale wanted.
- ightharpoonup Low λ coupling in order to avoid tachyonic states in the scalar and pseudoscalar sector.
- ▶ Non-diagonal terms in the Yukawa matrix to obtain the correct neutrino mixing angles.


We perform the analysis for sterile neutrino mass in the range $2keV \le m_s \le 90keV$.

Parameter space that reproduces neutrino physics and is in agreement with the constraints on the active-sterile mixing angle.

We found for this parameter space that the active-sterile mixing $|U_s|^2$ is in the range $5.8 \times 10^{-10} \le |U_s|^2 \le 3.13 \times 10^{-15}$.

Decay width and lifetime

The dominant decay mode is given by $\nu_s \rightarrow \nu \nu \nu$

The first two diagrams are suppressed respect to the Z contribution. The suppression arises from the Yukawa coupling responsible and the mixing between the scalar Higgs/pseudoscalar with sneutrinos of order $\sim 10^{-8}$. Considering only the third diagram we obtained

$$\Gamma(
u_s o
u_i
u_j
u_k) = rac{G_F^2 m_s^5}{6 \pi^3} O_{si}^2 O_{jk}^2 \quad o \quad rac{G_F^2 m_s^5}{96 \pi^3} |U_{si}^V|^2$$

Where the O factors are given by

$$O_{lm} = -rac{1}{2}U_{l6}^VU_{m6}^{V*} + rac{1}{2}U_{l7}^VU_{m7}^{V*} - rac{1}{2}\sum_{a=1}^3 U_{lq}^VU_{mq}^{V*}$$

Thus we obtained for $m_s \sim \mathcal{O}(keV)$ that the lifetime is $\tau \sim 10^{23}$ s> $\tau_{universe}$.

Detection and exclusion limits

- ▶ The radiative decay $\nu_s \rightarrow \nu \gamma$ is $\sim 10^2$ orders of magitud smaller than the main channel.
- The resulting photons with energy $E = \frac{m_s}{2}$ can be observed in X-ray signals. There are several constraints to the sterile-active mixing angle that come from X-ray observations and Lymann- α forests.

The relevant diagrams in the $\mu\nu$ SSM that contribute to the radiative decay are

$$V_s$$
 V_s
 V_s

We obtained the following decay width

$$\Gamma(\nu_{s} \to \nu_{j}\gamma) = \frac{m_{s}}{512\pi} \left[\frac{m_{s}^{2}e^{2}g^{4}}{64\pi^{4}} \left(\frac{3m_{s}}{4m_{W}^{2}} \left(O_{jl}^{"L}O_{sl}^{"L} - O_{jl}^{"R}O_{sl}^{"R} \right) - \frac{2m_{e}}{m_{W}^{2}} \left(O_{jl}^{"L}O_{sl}^{"R} - O_{jl}^{"R}O_{sl}^{"L} \right) \right]^{2} \right]$$

$$\xrightarrow{SM + \nu_{s} \text{ limit}} \frac{9G_{F}^{2}\alpha m_{s}^{5} |U_{s}^{V}|^{2}}{1024\pi^{4}}$$

The $O^{"R,L}$ factors are

$$O_{ij}^{"R} = U_{i4}^{e,L} U_{j5}^{V} + \frac{1}{\sqrt{2}} \sum_{a=1}^{3} U_{ia}^{e,L} U_{ja}^{V} + \frac{1}{\sqrt{2}} U_{i5}^{e,L} U_{j6}^{V} \qquad O_{ij}^{"L} = U_{i4}^{e,R} U_{j5}^{V} - \frac{1}{\sqrt{2}} U_{i5}^{e,R} U_{j7}^{V}$$

We found that our results are in agreement with the actual constraints on $|U_s|^2$ [3]. In the case $m_s=7$ keV we obtained an active-sterile mixing element $|U_s|^2\sim 5\times 10^{-11}$, which would be in agreement with the experimental evidence of the 3.5keV line excess in X-ray observations (with the correct reliq density). With all the analysis done, we can conclude that the **sterile neutrino can be** a viable Dark Matter candidate within the $\mu\nu$ SSM.

[3] R. Adhikari, M. Agostini, N. Anh Ky, et al., "White paper on kev sterile neutrinodark matterâ, Journal of Cosmology and Astroparticle Physics 2017 no.1

Contact: pknees@df.uba.ar June 2021