

## VMM3a related firmware activities in 2020 and 2021

ESS work on RD51 SRS components

DOROTHEA PFEIFFER (ESS) STEVEN ALCOCK (ESS) SERGEI ODINTSOV (UNIVERSITY OF TALIN)

15/02/2021





- 1. Tallinn University Inkind project: Cleanup, refactoring and documentation of VMM3a hybrid firmware
- 2. Integration of RD51 VMM3a hybrid into ESS readout
- 3. SRS FEC firmware and slow control changes



### Tallinn University: Refactoring firmware for RD51 VMM3a hybrid

15/02/2021

### Inkind project for NMX

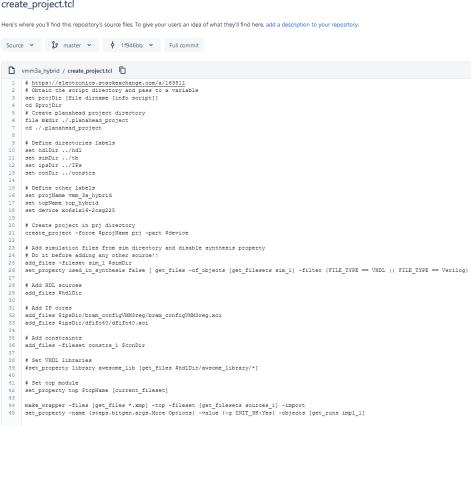
Tallinn University: Refactoring firmware for RD51 VMM3a hybrid



- Project between the electronics department of Tallinn University and ESS NMX, signed just before Xmas in 2019
- Aim of the project was to clean up the hybrid firmware, refactor and document it
- Person chosen: Sergei Odintsov, Electronics Engineer, FPGA expert, at the moment finishing his PhD
- Original plan was, Sergei comes to CERN for a few weeks to get familiar with the SRS, and works together with Marek
- But then came Corona...
- We did not have a spare SRS system to send to Tallinn, therefore we set up a PC so that Sergei could have remote access to an SRS system via Teamviewer



- Xilinx Vivado (tool for series 7), the successor of the much hated ISE, was build using Planahead technology
- Planahead can be used instead of ISE for Virtex 6 and Spartan 6
- Repo does not store numerous ISE project files anymore, or even Planahead project, just tcl script (fun fact: Marek, Sergei and Steven came up in parallel with the same solution)
- TCL script is executed in Planahead and creates the project


| PlanAbrad 14.7                              |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 🗆 ×                                   | Planshead 14.7                                                                       |                                                                                                                                                                                                                                                     |                                                                                                |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| File Tools Window Help                      |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q+ Search commands                      | File Tools Window Help                                                               |                                                                                                                                                                                                                                                     |                                                                                                |
| Concommenta :<br>R Open-<br>Sector and 14.7 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ٤ XILINX.                               | PlanAhead 14.7                                                                       |                                                                                                                                                                                                                                                     |                                                                                                |
|                                             | Getting Started                                                                                                                                                             | Documentation           States         Notes: Guide           Detention and instantion and ress 200 features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                      | Getting Started                                                                                                                                                                                                                                     | Documentation                                                                                  |
|                                             | More Project Wand of a gode you through the process     of design you can and a target device the     energinger.     Open Project     Open any previously created project. | In the relation:     When Coulder the set means the design,     address the set of |                                         |                                                                                      | Create New Project<br>New Project Ward will pude you through the process<br>of new project.                                                                                                                                                         | Refease Notes Guide<br>Information about installation and new IDS features<br>in this release. |
|                                             | Open any previousy of ealerst project.                                                                                                                                      | ef hattre     Hethodology Guides     Tythe anisten adopt plevbaal fee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                      | Open Project<br>Open any previously created project.                                                                                                                                                                                                | User Guide<br>More detailed info an Plankhead commands, dialogs,<br>and buttons.               |
|                                             | Open Example Project.<br>Open or of the tubrid project.                                                                                                                     | FilmAhoad Tutorials<br>2-sulade for fat the user or is ty new features.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                      | Open Recent Project<br>Open are of the most recently used projects.                                                                                                                                                                                 | Methodology Guides<br>Parther assistance adopting Hanshead flows.                              |
|                                             |                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                      | Open Example Project<br>Open one of the tubrid projects.                                                                                                                                                                                            | PlanAhead Tutorials<br>Invaluable for first time users or to try new features.                 |
|                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | Run Script Look in:wmilike hybrid                                                    | ×                                                                                                                                                                                                                                                   |                                                                                                |
|                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | git         git           git         gitnehed_project           constra         bit | Recent Directaries                                                                                                                                                                                                                                  |                                                                                                |
|                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | Desixop                                                                              | 1 https://electentics.statkschang.com/w/14811 *<br>28 Okeain be script directory and past to a Variab<br>3 set proplir [file dirmame [info script]]<br>& for deproplin<br>\$ 2 Create planshast project directory<br>& file moir:/planshast project |                                                                                                |
|                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | Documents<br>The PC                                                                  | 7 od ./.planabesd_project.<br>8<br>9# Define directories labels<br>10 met hullit/hdl<br>11 met sming/tb                                                                                                                                             |                                                                                                |
|                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | Netrock                                                                              | 12#st opti:/CPP<br>11#st opti:/Constra<br>14<br>15# Define ctar 14min<br>15#st popMane van_Daty<br>11#st popMane von_Daty<br>11#st popMane von_Daty                                                                                                 |                                                                                                |
| I Mone                                      |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | File name: create_project.td                                                         | × >                                                                                                                                                                                                                                                 |                                                                                                |
| 12 Contractore in Second                    |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x <sup>R</sup> ^ x = 00 US 10/12/2020 💀 | Ples of type: TO, Fle (.1d)                                                          | ∼ Cancel                                                                                                                                                                                                                                            |                                                                                                |

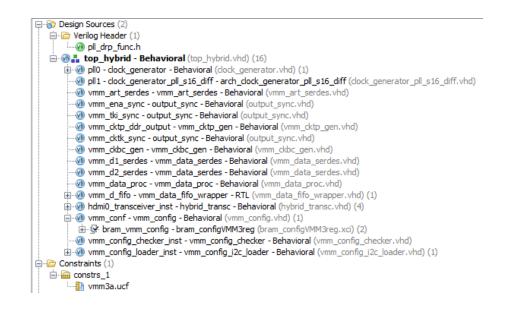
### RD51 VMM3a hybrid firmware brightness

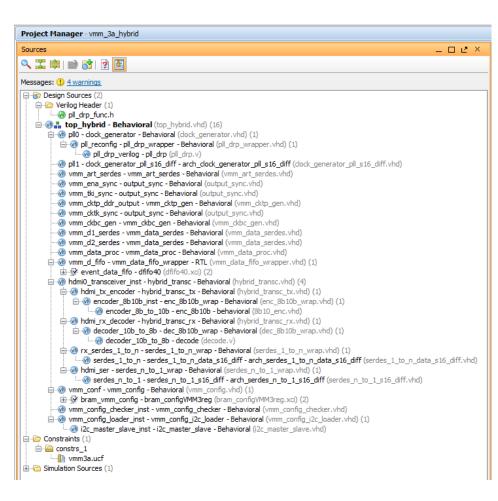
#### Change of repository logic

- create\_project.tcl script is very simple, describes which directories and files are added to the project
- Strategies for synthesis and implementation can be added, e.g. set\_property strategy TimingWithIOBPacking [get\_runs synth\_1]
- Since project is generated and not stored in repo, no more problems and errors due to temporary ISE project files (my computer was driving me insane, claiming insufficient rights all the time)
- Repo contains only vhdl, verilog files and xci files for IP cores
- Repo structure follows "quasi" standard: vhdl/Verilog files are in hdl, xci files for IP cores in IPs, ucf constraints files in constrs, and test benches in tb
- Sub folders used in hdl to create logical structure of the source code

| 1    | gnts                              | a         | I      | the t                   | ime)                 |                                 |                        | 19<br>20<br>21<br>22       |
|------|-----------------------------------|-----------|--------|-------------------------|----------------------|---------------------------------|------------------------|----------------------------|
|      | pean Spallation Sou<br>m3a_hybric |           | )etec  | tor Group TTU In-Kir    | d                    |                                 |                        | 23<br>24<br>25<br>26<br>27 |
| •    | Sonar for Bitbu<br>Access denied. |           |        | write or admin access   |                      |                                 |                        | 28<br>29<br>30<br>31       |
| lere | 's where you'll find              | this repo | ositor | y's source files. To gi | ve your users an ide | ea of what they'll find here, a | dd a description to yc | 32<br>33<br>34<br>35       |
| រូ   | master 👻                          | Files     | ~      | Filter files            | Q                    |                                 |                        | 36                         |
|      |                                   |           |        |                         |                      |                                 |                        | 37<br>38<br>39<br>40       |
| lam  | e                                 |           |        |                         |                      | Size                            | Last commit            | 41                         |
|      | IPs                               |           |        |                         |                      |                                 | 2 days ago             | 42<br>43                   |
|      | constrs                           |           |        |                         |                      |                                 | 6 hours ago            | 44<br>45                   |
|      | hdl                               |           |        |                         |                      |                                 | 7 hours ago            |                            |
| 6    | tb                                |           |        |                         |                      |                                 | yesterday              |                            |
| Ð    | .gitignore                        |           |        |                         |                      | 131 B                           | 2020-07-13             |                            |
| Đ    | README.md                         |           |        |                         |                      | 565 B                           | 2020-07-03             |                            |
| Ð    | create_project.tcl                |           |        |                         |                      | 1.34 KB                         | 2020-11-09             |                            |
|      |                                   |           |        |                         |                      |                                 |                        |                            |




European Spallation Source / Detector Group TTU In-Kind / vmm3a\_hybrid




### RD51 VMM3a hybrid firmware brightness

#### Change of unit names and cleaning of code

- Unused modules removed
- Unused code in modules removed
- Units were renamed so that names are consistent
- Code structured in three major parts, PLLs, HDMI transceivers and VMM





### RD51 VMM3a hybrid firmware brightness Coding standard

85

86

87

88

89

91

92

96

97

98

100

101

102

108

109

110

- Naming of signals according to following coding standard
  - Constants: capital letters starting with C ٠
  - Wires connected to output, i\_ or o\_ depending on direction ٠
  - Types: t\_ •
  - Internal wires: w ٠
  - Registers: f ٠
  - Outputs of combinatorial logic: k\_ ٠
- Components are changed to entities
- Use of generics and constants instead of numbers
- Reformatting of code
- Correction of sensitivity lists of processes, replacing clk'event by rising edge
- Explanatory comments added
- Structural changes to simplify code

#### 67 architecture Behavioral of hybrid transc is 68 -- C .\* = constant 69 constant C\_RST\_SYNC\_SHIFT\_REG\_LEN : natural := 2: 70 : natural := 3; constant C VMM DATA FIFO CLEAR TTC POS 71 constant C\_VMM\_BCR\_TTC\_POS : natural := 4; 72 constant C\_VMM\_CKTP\_GENERATOR\_EN\_TTC\_POS : natural := 0; 73 -- o .\* i = wire connected to output 74 signal o hdmi tx i : std logic vector (G\_VMM\_NUM - 1 downto 0); 75 signal o\_hdmi\_rx\_config\_data\_i : std logic vector (work.hybrid transc rx pkg.C DATA WORD LEN - 1 downto 0); 76 signal o hdmi rx config addr i : std logic vector (work.hybrid transc rx pkg.C DATA WORD LEN - 1 downto 0); 77 signal o hdmi rx config data valid i : std logic; 78 signal o\_vmm\_data\_fifo\_rd\_en\_i : std logic vector (G VMM NUM - 1 downto 0); 79 : std logic; signal o\_vmm\_data\_fifo\_clear\_i 80 signal o\_hdmi\_link\_state\_acq\_i : std logic; 81 : std logic vector (G VMM NUM - 1 downto 0); signal o\_vmm\_tki\_i 82 signal o\_vmm\_bcr\_i : std logic; 83 signal o\_vmm\_cktp\_generator\_en\_i : std logic; 84 : std logic; signal o hdmi 8b10b decoding error i -- t .\* = type type t\_8bl0b\_encoder\_output\_array is array (natural range <>) of std logic vector(C\_8Bl0B\_ENCODER\_OUTPUT\_LEN - 1 downto 0); -- w .\* = wire signal w\_rst\_sync : std logic; signal w\_tx\_data\_10b : t\_8b10b\_encoder\_output\_array(1 downto 0); signal w\_reset\_phy : std logic; signal w rx data bitslip : std logic; signal w ttc : std logic vector (work.hybrid transc rx pkg.C DATA WORD LEN - 1 downto 0); 93 signal w\_ttc\_valid : std logic; 94 signal w rx data 10b : std logic vector (C 8B10B DECODER INPUT LEN - 1 downto 0); 95 signal w\_8b10b\_code\_err : std logic; : std logic; signal w\_8b10b\_disp\_err signal w\_rx\_link\_state\_init : std logic; signal w\_rx\_link\_state\_link : std logic; 99 signal w rx link state idle : std logic; signal w rx link state acq : std logic; : std logic; signal w rx serdes init done -- f .\* = register 103 signal f\_link\_state\_acq : std logic; 104 signal f f link state acq : std logic; : std logic vector (G\_VMM\_NUM - 1 downto 0); 105 signal f\_vmm\_tki 106 signal f\_rx\_serdes\_toggle : std logic; 107 signal f\_rst\_sync : std logic vector (C\_RST\_SYNC\_SHIFT\_REG\_LEN - 1 downto 0); attribute ASYNC REG : string; attribute ASYNC REG of f rst sync : signal is "TRUE"; -- k .\* = combinational logic output 111 signal k reset serdes : std logic;



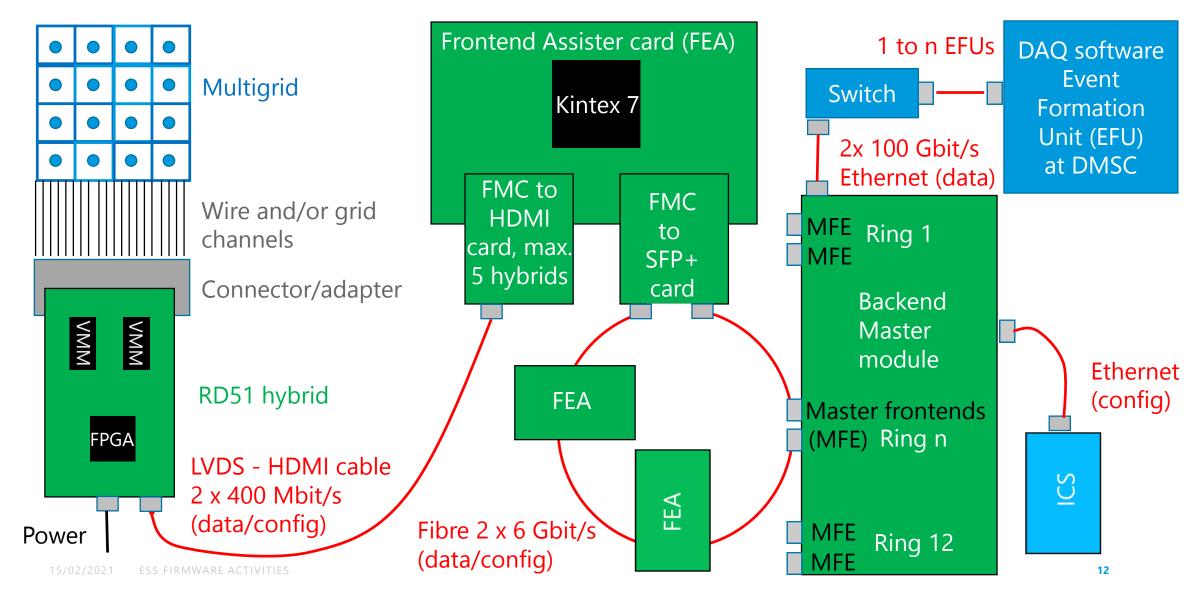
### RD51 VMM3a hybrid firmware brightness Status summary and future

- Refactoring finished, documentation and writing of test benches still ongoing
- Private bitbucket.com project <u>https://bitbucket.org/europeanspallationsource/vmm3a\_hybrid</u>
- Access can be granted to anybody, not limited to people with CERN or ESS email address
- Project based on latest commit 5c5eb939 from Marek to gitlab.com (02.09.2020 firmware flashed to new hybrids)
- Firmware will now be ported to Spartan7
- After porting, ESS firmware will evolve in different direction : No ART, different BC clock and data clock (ESS facility clock 88 MHz, hence BCCKL 44 MHz, SERDES for HDMI 440 MHz, CKDT 176 MHz DDR)

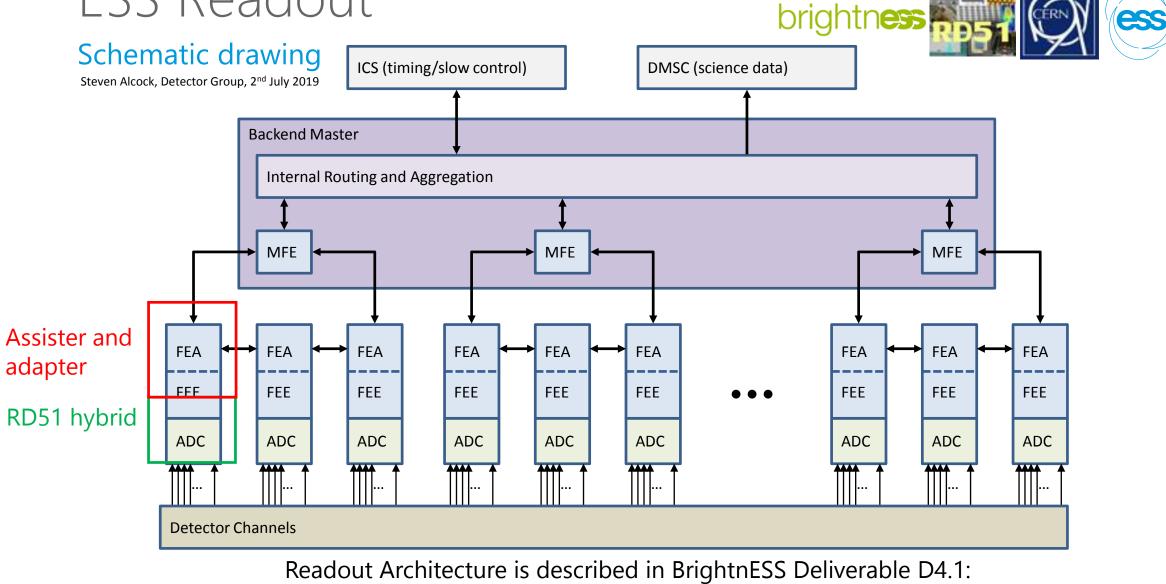


### Integration of RD51 VMM3a hybrid into ESS Readout

### RD51 VMM3a hybrid at ESS




#### Integration into the ESS readout


- Since 2018 ESS has shown that VMM3a can also be used for non-MPGD gaseous detectors like Multigrid and Multiblade (analog and digital data taken)
- Multigrid is basically grids of single wires, Multiblade is a cathode strip chamber
- VMM3a is the electronics choice to read out the NMX (GEM), CSPEC (Multigrid), ESTIA, TREX and FREIA (all Multiblade) detectors
- •Successful Multigrid detector review in August, reviewers agree with the choice of RD51 VMM3a hybrid as front end
- Only worry: Limitation of <= 4 Mhits/s per channel might be too low if ESS is operated at full power, in cases of very high instantaneous rates on grid, since a grid has a surface area of several cm<sup>2</sup>

### Readout chain Multigrid





### ESS Readout



https://dx.doi.org/10.17199/BRIGHTNESS.D4.1

### FEA for RD51 hybrid Integration of RD51 hybrid into ESS readout

#### Adapter card connects two RD51 hybrids to the FMC connector of the Kintex KC705 evaluation board

- Upgraded version will contain 5 HDMI ports
- RD51 SRS FEC Virtex6 firmware ported to FEA Kintex 7
- Substantial changes: E.g. new ethernet MAC since IP could not be ported
- No problems with FIFO IP
- Care needed with Xilinx components like SERDES and DELAY





### FEA for RD51 hybrid Integration of RD51 hybrid into ESS readout

- Data transmission via UDP and configuration of VMMs operational
- Xilinx KCU 705 has now all functionalities of the RD51 SRS FEC that are compatible with the hardware of the evaluation board, and can be used with the slow control and ESS DAQ
- Now changing the data format to the ESS data format, and transfer data to the well established assister firmware so that the RD51 hybrid can be used with the full ESS readout (rings, backend)

| Logging               |            |           | Ethernet                   |                          |                                                  |                      |                  |                                                                |                          | - 0                | ×          |
|-----------------------|------------|-----------|----------------------------|--------------------------|--------------------------------------------------|----------------------|------------------|----------------------------------------------------------------|--------------------------|--------------------|------------|
|                       |            |           | File Edit View Go          | Capture Analyze          | Statistics Telephony Wir                         | eless Tools Help     |                  |                                                                |                          |                    |            |
| C 1                   |            |           | 🚄 🔳 🔬 🔘 📙 🔚                | । 🔀 🖸 । ९. 👄 👳           | 🕾 🗿 🛓 📃 🔳 🍳                                      | Q. Q. 👥              |                  |                                                                |                          |                    |            |
| ieneral Advanced      |            |           | srsvmm                     |                          |                                                  |                      |                  |                                                                |                          | X                  |            |
|                       | HDMI 1     | HDMI 2    | No. Time                   | Source                   | Destination                                      | Protocol             |                  | Length Info                                                    |                          |                    |            |
| 0 settings            | Hybrid     | ( name    | 7 0.014444                 | 10.0.0.2                 | 10.0.0.3                                         | SRSVM13a             |                  | Length Info<br>8974 FEC: 2, Hits: 1482, Marl                   | ann A Time an            | 0.01 0             |            |
| sL0ensV               |            | Hybrid 1  | 8 0.016840                 | 10.0.0.2                 | 10.0.0.3                                         | SRSVM13a             |                  | 8974 FEC: 2, Hits: 1482, Mark<br>8974 FEC: 2, Hits: 1482, Mark |                          |                    |            |
|                       |            |           | 9 0.019280                 | 10.0.0.2                 | 10.0.0.3                                         | SRSVMIJa             |                  | 8974 FEC: 2, Hits: 1482, Mark                                  |                          |                    |            |
| sLOena                |            | VMM       | 10 0.021679                | 10.0.0.2                 | 10.0.0.3                                         | SRSVM13a             |                  | 8974 FEC: 2, Hits: 1486, Marl                                  |                          |                    |            |
| I0offset 0 🗘          |            |           | 11 0.024097                | 10.0.0.2                 | 10.0.0.3                                         | SRSVMM3a             |                  | 8974 FEC: 2, Hits: 1482, Marl                                  |                          |                    |            |
|                       |            |           | 12 0.026476                | 10.0.0.2                 | 10.0.0.3                                         | SRSVMM3a             |                  | 8974 FEC: 2, Hits: 1482, Marl                                  |                          |                    |            |
| offset 0 🌻            |            | ✓ 1       | 13 0.028925                | 10.0.0.2                 | 10.0.0.3                                         | SRSVMM3a             |                  | 8974 FEC: 2, Hits: 1482, Mar                                   | ers: 4, Time er          | or: 0              |            |
| rollover 0 🌲          |            |           | 14 0.031293                | 10.0.0.2                 | 10.0.0.3                                         | SRSVMM3a             |                  | 8974 FEC: 2, Hits: 1486, Mar                                   |                          |                    |            |
|                       |            |           | 15 0.033718                | 10.0.0.2                 | 10.0.0.3                                         | SRSVMM3a             |                  | 8974 FEC: 2, Hits: 1482, Mar                                   |                          |                    |            |
| window 0 🌲            |            | _         | 16 0.036135                | 10.0.0.2                 | 10.0.0.3                                         | SRSVMM3a             |                  | 8974 FEC: 2, Hits: 1482, Mar                                   |                          |                    |            |
|                       |            | Position  | 17 0.038521                | 10.0.0.2                 | 10.0.3                                           | SRSVMM3a             |                  | 8974 FEC: 2, Hits: 1482, Mar                                   |                          |                    |            |
| truncate 0 🌻          |            |           | 18 0.040988                | 10.0.0.2                 | 10.0.0.3                                         | SRSVMM3a             |                  | 8974 FEC: 2, Hits: 1486, Mar                                   |                          |                    |            |
| nskip 0 🌲             |            | Axis      | 19 0.043307                | 10.0.0.2                 | 10.0.0.3                                         | SRSVM3a              |                  | 8974 FEC: 2, Hits: 1482, Marl                                  |                          |                    |            |
|                       |            | Poste     | 20 0.045785<br>21 0.048177 | 10.0.0.2                 | 10.0.0.3                                         | SRSVMM3a<br>SRSVMM3a |                  | 8974 FEC: 2, Hits: 1482, Mark<br>8974 FEC: 2, Hits: 1482, Mark |                          |                    |            |
| sL0 cktest            |            |           | 22 0.050557                | 10.0.0.2                 | 10.0.0.3                                         | SRSVMM3a             |                  | 8974 FEC: 2, Hits: 1482, Mark<br>8974 FEC: 2, Hits: 1486, Mark |                          |                    |            |
| VM Settings           |            | 655       | 23 0.052998                | 10.0.0.2                 | 10.0.0.3                                         | SRSVM13a             |                  | 8974 FEC: 2, Hits: 1480, Mark<br>8974 FEC: 2, Hits: 1482, Mark |                          |                    |            |
| Set minimum eye 0     |            |           | 24 0.055403                | 10.0.0.2                 | 10.0.0.3                                         | SRSVM3a              |                  | 8974 FEC: 2, Hits: 1482, Mark                                  |                          |                    |            |
|                       |            | 12C       | 25 A A57770                | 10 0 0 7                 | 10 0 0 3                                         | CDCIMMRD             |                  | 8074 EEC - 7 Hite - 1486 Mar                                   |                          |                    | ×          |
| 0                     |            | Hybrid    | <                          |                          |                                                  |                      |                  |                                                                |                          |                    | >          |
| Set minimukm eye 1    |            |           | > Hit: 49, off             | et: 18, vmmID: 0         | , ch: 31, bcid: 101, 1                           | :dc: 92, adc:        | 200, over thr: 1 |                                                                |                          |                    | ^          |
|                       |            |           |                            |                          | , ch: 32, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| 0                     |            |           |                            |                          | , ch: 33, bcid: 101, 1                           |                      |                  |                                                                |                          |                    |            |
| ✓ PE trg/olk          |            |           |                            |                          | , ch: 34, bcid: 101, 1                           |                      |                  |                                                                |                          |                    |            |
| ✓ DE d0/d1            |            |           |                            |                          | , ch: 35, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
|                       |            | S6        |                            |                          | , ch: 36, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| Set DVM settings      | <b>√</b> 1 | СКТК      |                            |                          | , ch: 37, bcid: 101, 1<br>, ch: 38, bcid: 101, 1 |                      |                  |                                                                |                          |                    |            |
| Write EEPROM          |            |           |                            |                          | , ch: 30, bcid: 101, 1                           |                      |                  |                                                                |                          |                    |            |
| EC Status             |            | СКВС      |                            |                          | , ch: 40, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
|                       |            | 40 -      |                            |                          | , ch: 41, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| WarmInit FEC          |            | CKDT      |                            |                          | , ch: 42, bcid: 101, 1                           |                      |                  |                                                                |                          |                    |            |
| reboot FEC, not impl. |            | CKDT      | > Hit: 61, off:            | set: 18, vmmID: 0        | , ch: 43, bcid: 101,                             | dc: 106, adc:        | 204, over thr: 1 |                                                                |                          |                    |            |
| reboorree, nor mpr    |            | CKBC st   |                            |                          | , ch: 44, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| Link Status           |            | 0 ns      |                            |                          | , ch: 45, bcid: 100, 1                           |                      |                  |                                                                |                          |                    |            |
| Reset Links           |            |           |                            |                          | , ch: 46, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| Keber Links           |            | TK Pulse  |                            |                          | , ch: 47, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| Read System           |            | 2 3       |                            |                          | , ch: 48, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| Parameters            |            | 4 .       |                            |                          | , ch: 49, bcid: 101, 4<br>, ch: 50, bcid: 101, 4 |                      |                  |                                                                |                          |                    |            |
| EC Response           |            |           |                            |                          | , ch: 50, bcid: 101, 1<br>, ch: 51, bcid: 101, 1 |                      |                  |                                                                |                          |                    |            |
| version:              |            | Test Pult |                            |                          | , ch: 52, bcid: 101, 1                           |                      |                  |                                                                |                          |                    |            |
| 0007                  |            | Skew      |                            |                          | , ch: 51, bcid: 101, 1                           |                      |                  |                                                                |                          |                    |            |
|                       |            | Skew      |                            |                          | , ch: 54, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| FEC IP:               |            | Width     |                            |                          | , ch: 55, bcid: 101, 1                           |                      |                  |                                                                |                          |                    |            |
| 10.0.0.2              |            | 128       | > Hit: 74, off:            | set: 18, vmmID: 0        | , ch: 56, bcid: 101,                             | :dc: 111, adc:       | 141, over thr: 1 |                                                                |                          |                    |            |
| DAQ                   |            |           |                            |                          | , ch: 57, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| destination IP:       |            | Polar     |                            |                          | , ch: 58, bcid: 101, 1                           |                      |                  |                                                                |                          |                    |            |
| 10.0.0.3              |            | Pos       |                            |                          | , ch: 59, bcid: 101,                             |                      |                  |                                                                |                          |                    |            |
| *****                 |            |           |                            |                          | , ch: 60, bcid: 100,                             |                      |                  |                                                                |                          |                    |            |
| Ŧ                     |            | Seta      |                            |                          | , ch: 61, bcid: 101, 1                           |                      |                  |                                                                |                          |                    |            |
| Clear                 |            |           |                            |                          | , ch: 62, bcid: 253,<br>, ch: 63, bcid: 251,     |                      |                  |                                                                |                          |                    |            |
| Clear                 |            |           | / MIT: 01, 0TT             | sec. 10, VHHID: 0        | , cm. 65, 8618; 251, 1                           | .uc. /5, adc:        | 145, over thr: 1 |                                                                |                          |                    | ~          |
|                       |            |           | 0 m                        |                          |                                                  |                      |                  |                                                                |                          |                    |            |
|                       |            | _         | SRSVMM Protoc              | ol (srsvmm), 8,932 bytes |                                                  |                      |                  | Packets: 100 · Displayed                                       | : 100 (100.0%) · Dropped | : 0 (0.0%) Profile | e: Default |
|                       |            |           |                            |                          |                                                  |                      |                  |                                                                |                          |                    |            |
| trl+K) 1 Issu         |            |           | olication Output 4 Comp    |                          |                                                  | _                    |                  |                                                                |                          |                    |            |





# SRS FEC firmware and slow control changes



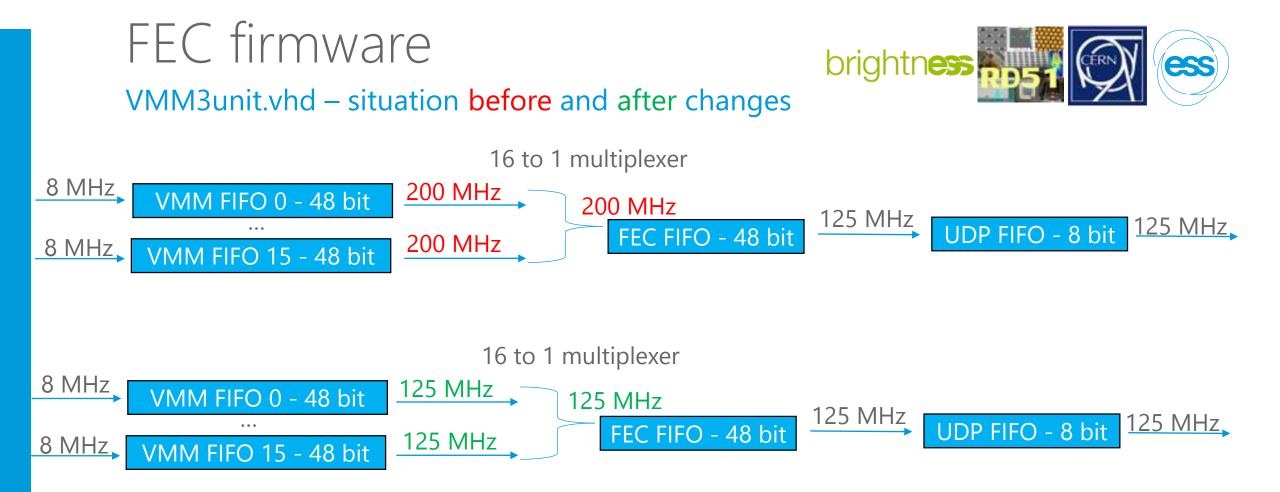
### Slow control Cleaning up and changes

- Lucian created very nice new repo <u>https://gitlab.cern.ch/rd51-slow-</u> <u>control/vmmsc</u>
- Major clean-up, restructuring and adding of new features
- Hard reset for all VMMs, copy of channel settings to all VMMs, new calibration features
- For fitting of data (linear and non-linear regression), integration of alglib (cross-platform numerical analysis and data processing library) https://www.alglib.net/
- In ESS branch work in progress, implementation of new features, in master branch more stable version

| S DCS new        |                               |                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|-------------------------------|------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| trol Calibration | Logging Testing               |                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | 550.4                         |                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ommunication     | FEC 1                         |                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                               |                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | IP address FEC                | Hybrid 1 Hybrid 2      |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Send             | 10.0.0.2 FEC IP               | Hybrid I Hybrid 2      |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | 10.0.0.3 DAQ IP               | VMM                    | VMM 1 VMM 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | Hybrids                       |                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Warnings         |                               | ✓ 1 ✓ 2                | General Settings Advanced Settings              | Channel Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | <b>√</b> 1 <b>√</b> 2 □ 3 □ 4 | Position               | Input charge polarity negative -                | SD SZ010b SZ08b SZ06b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 5 6 7 8                       | 1 USILION              |                                                 | SC SL ST STH SM 0 mV * SMX 0 mV * 0 ns * 0 m' *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                               | Axis Y 👻               | Analog (Channel) Monitor Temperature sensor 💌   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | Acquisition/Test pulse        | Position 1             | Gain (sg) 3.0 mV/fC 🔹                           | 1 0 0 mV - 0 mV - 0 mV - 0 m - 0 m -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | 53  reset                     |                        | TAC Slop Adj (stc) 60 ns 👻                      | 2 0 0 mV + 0 mV + 0 mV + 0 m' +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | latency                       | 12C                    |                                                 | 3 0 0 0 mV - 0 mV - 0 ns - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | 4091 data latency<br>maximum  | Hybrid ID 👻            | Peak time (st) 200 ns 💌                         | 4 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |                               | Hybrid ID              | ReadADC ADC res.                                | 5 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | 4 adata latency<br>error      |                        | SRAT Mode Timing At Peak -                      | 6 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | debug data format             | Read                   |                                                 | 7 0 0 0 mV - 0 mV - 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                               | Incau                  | Neighbor Trigger (sng) Disable At Peak          | 8 0 0 mV - 0 ns - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 71 2 latency TP               | S6                     | Analog tristates Sub Hysterisis                 | 9 0 mV - 0 mV - 0 mV - 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | 100  first TF                 |                        | Analog tristates Sub Hysterisis                 | 10 0 mV - 0 mV - 0 mV - 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                               |                        | ADC                                             | 11 0 0 mV • 0 mV • 0 ns • 0 m <sup>1</sup> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  | 1 anumber of<br>TPs           | CKBC 40MHz -           |                                                 | $12 \qquad 0 \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| II FECs          | offeet                        |                        | ADCs on/off 8-bit Conv. Mode                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 1000 tonset<br>next TPs       |                        | 10b ADC (Ampl) 200 ns 🔻                         | $14 \qquad 0 \qquad mV = 0 \qquad m$ |
| trigger          |                               | CKBC                   | 6b ADC (Direct out) 25 ns -                     | 16 0 0 mV - 0 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| s ĂČQ            | off • Trigger In              | CKBC<br>skew 0.00 ns 👻 |                                                 | 17 0 0 0 0 0 V - 0 0 V - 0 0 N - 0 N -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | off - Trigger Out             |                        | 8b ADC (Time) 100 ns 💌                          | 18 0 0 mV - 0 mV - 0 mV - 1 m -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Q On             | 0 Trigger Out                 |                        | Dual Clock                                      | 19 0 0 0 mV - 0 mV - 0 mV - 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a on             | Time                          |                        | But olock                                       | 20 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | ACQ                           | CKDT 180 MH; *         | Dual Clock ART Dual Clock Data Dual Clock 6-bit | 21 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Q Off            |                               |                        |                                                 | 22 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | On Off                        |                        |                                                 | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |                               |                        | Threshold DAC 300 265 mV                        | 24 0 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | FEC Status                    |                        | Test Pulse DAC 300<br>393 mV pulse height       | 25 0 mV • 0 mV • 0 mV •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | Warm Init FEC                 | Test Pulse             | 393 mV pulse height                             | 26 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | Link Status                   |                        |                                                 | 27 0 0 mV - 0 mV - 0 ns - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | System Parameters             | Skew 0 ns 👻            | All MMMax Catting and report                    | 23 0 0 mV - 0 mV - 0 ns - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | Clear Info                    | Width 128x2! -         | All VMMs: Settings and reset                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                               |                        | Set global settings Set channel settings        | 30 0 mV - 0 mV - 0 mV - 0 mV - 31 0 mV - 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| oad              |                               | Polarity Positiv *     | Hard reset VMM Hard reset all                   | $32 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                               | Amphata all hat 11     |                                                 | 33 0 0 mV - 1 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Save             |                               | Apply to all hybrids   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



### FEC firmware


#### Repo, project and timing errors

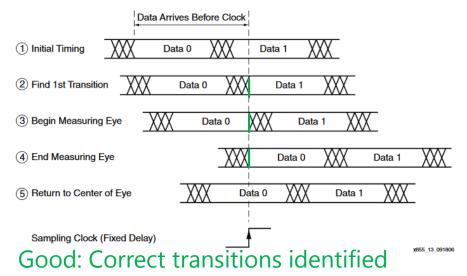
- Change to Planahead project like hybrid firmware
- Removal of unused modules, cleaning up code, cleaning up constraints file
- Code not yet refactored like hybrid firmware
- Aim of changes: reliable and fast continuous mode without timing errors
- Main sources of timing errors (timing score of around 40000):
- Triggered mode (not correctly working anyway, compared non-gray encoded FEC trigger counter with gray encoded VMM BCID)
- FIFO logic in vmm3unit.vhd
- Due to use of DDR3 memory, logic that determines the next VMM FIFO to read is run at 200 MHz, combinatorial logic too slow to meet timing requirements

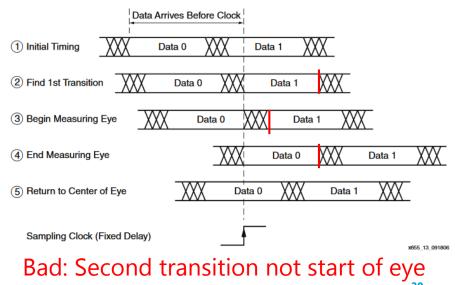
| i‡ <b>+</b> +                    | Timing Checks - Setup                              |                                                                                                    |                                                                                              |             |             |            |           |
|----------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|-------------|------------|-----------|
| ings                             | Name ^1 From                                       |                                                                                                    | To                                                                                           | Total Delay | Logic Delay | Net % Stag | es Source |
| istics                           | Constrained (10)                                   |                                                                                                    |                                                                                              |             |             |            |           |
| ng Checks (613)                  | a E A TS dk200 = PERIOD TIMEGRP "TNM dk200" 5 ns H | 604 50%- (10)                                                                                      |                                                                                              |             |             |            |           |
| inter of the                     |                                                    | st/dadpk.wr[4].u_vmm_fifo/U0/xst_fifid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram     | appUnit_j/Inst_vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 6,186       | 3,197       | 48.3       | 5 dk200   |
| Component Switching Limits (346) |                                                    | it/dadbik.wr[4].u vmm fifo/U0/xst fifid.cstr/ram/oop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit i/Inst vmm3unit/dapbk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram   | 6.158       |             |            | 5 ck200   |
| -MAXPERIOD (6)                   |                                                    | it/daqbik.wr[4].u vmm fifo/U0/xst fifid.cstr/ramloop[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram    | appUnit i/Inst vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 6.134       |             |            | 5 dk20    |
| - MINHIGHPULSE (88)              |                                                    | it/dadbik.wr[4].u vmm fifoAJ0/xst fifid.cstr.hamloop[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram    | appUnit i/Inst vmm3unit/dappk.u fec fifoJU0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram   | 6.086       |             |            | 5 dk20    |
| - MINLOWPULSE (43)               | Path 5 -1.167 anni Init Minst ymm Bun              | it/daqbik.wr[4].u vmm fifo/U0/xst fifid.cstr/ramloop[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram    | appUnit i/Inst vmm3unit/dagblk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram  | 6.035       |             |            | 5 dk20    |
| -MINPERIOD (209)                 |                                                    | it/daobik.wr[4].u ymm fifoAJ0/xst fifid.cstr/ram/pop[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram    | appUnit (/Inst_vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 6.021       |             |            | 5 dk20    |
|                                  |                                                    | it/dagbik.wr[4].u vmm fifo/U0/xst fifid.cstr/ramloop[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram    | appUnit i/Inst vmm3unit/dappk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram   | 6.001       | 3.192       | 46.8       | 5 dk20    |
|                                  |                                                    | it/daqbik.wr[4].u. vmm_fifo/U0/xst_fifid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram   | appUnit i/Inst vmm3unit/dagblk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram  | 5.995       |             |            | 5 dk20    |
|                                  |                                                    | it/daobik.wr[4].u vmm fifo/Li0/xst fifid.cstr/ramloop[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram   | appUnit_i/Inst_vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.990       |             |            | 5 dk20    |
|                                  |                                                    | it/daqblk.wr[4].u vmm fifo/U0/xst fifid.cstr/ramloop[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram    | appUnit_j/bnst_vmm3unit/dagbk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SDMPLE_PRIM36.ram   | 5.986       |             |            | 5 dk20    |
|                                  |                                                    | it/dagbik.wr[4].u_vmm_fifo/U0/xst_fifid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit //Inst_vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.959       |             |            | 5 dk20    |
|                                  |                                                    | it/dadbik.wr[4].u vmm fifo/U0/xst fifid.cstr/ramlooo[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram    | appUnit i/Inst vmm3unit/dappk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram   | 5.906       |             |            | 5 dk20    |
|                                  |                                                    | it/dagbik.wr[4].u. vmm_fifo/U0/xst_fifid.cstr/ramloop(0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram   | appUnit i/Inst vmm3unit/dagblk.u_fec_fifo/U0/x[0].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.890       |             |            | 5 dk20    |
|                                  |                                                    | it/dadbik.wr[8].u ymm fifo/U0/xst fifid.cstr/ram/oco[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram    | appUnit i/Inst vmm3unit/dappk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram   | 5.815       |             |            | 5 dk20    |
|                                  |                                                    | it/dagbik.wr[3].u ymm fifo/U0/vst fifid.cstr/ram/oop[0].ram.r/v6 noinit.ram/SDP.WIDE PRIM36.ram    | appUnit i/Inst vmm3unit/dapblk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram  | 5.782       |             |            | 5 dk20    |
|                                  |                                                    | it/daobik.wr[0].u_vmm_fifo,U0/xst_fifid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit i/Inst_vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.781       |             |            | 5 dk20    |
|                                  |                                                    | it/dagbik.wr[2].u ymm fifo/U0/xst_fifid.cstr/ram/oop[0].ram.r/v6_noinit.ram/SOP.WIDE_PRIM36.ram    | appUnit i/Inst vmm3unit/dappk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram   | 5.762       |             |            | 5 dk20    |
|                                  |                                                    | it/dagblk.wr[13].u. vmm_fifo/U0/xst_fiid.cstr/ramloop(0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram   | appUnit i/Inst vmm3unit/dagbk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram   | 5.744       |             |            | 5 dk20    |
|                                  |                                                    | it/dacbik.wr[4].u_vmm_fifo/U0/xst_fifid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit_i/Inst_vmm3unit/dagblc.u_fec_fifo/U0/x[1].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.750       |             |            | 5 dk20    |
|                                  |                                                    | it/dagbik.wr/9).u vmm fifo/U0/vst fifid.cstr.hamloop/01.ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit i/Inst vmm3unit/dapbk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram   | 5.757       |             |            | 5 dk20    |
|                                  |                                                    | it/daobik.wr[9].u_vmm_fifo/U0/xst_fifid.cstr/ramloop(0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit //Inst_vmm3unit/dagbk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram   | 5.755       |             |            | 5 dk20    |
|                                  |                                                    | it/daobik.wr[12].u_vmm_fifo/U0/xst_fiid.cstr/ranloop(0).ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit_j/Inst_vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.700       |             |            | 5 dk20    |
|                                  |                                                    | it/dadbik.wr[3].u. vmm_fifo/U0/xst_fifid.cstr.iramloop(0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram  | appUnit i/Inst vmm3unit/dapbk.u fec fifo/J0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram   | 5.686       |             |            | 5 dk20    |
|                                  |                                                    | it/daoblk.wr[1].u_vmm_fifo/U0/vst_fifid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit j/Inst_vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.678       |             |            | 5 dk20    |
|                                  |                                                    | it/dadblk.wr[5].u_vmm_fifo.U0/vst_fifid.cstr.iramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram   | appUnit i/Inst vmm3unit/dapblk.u fec fifo/U0/x[2].ram.r/v6 nonit.ram/SDP.SIMPLE PRIM36.ram   | 5.674       |             |            | 5 ck20    |
|                                  |                                                    | it/daobik.wr[11].u. ymm fifo/U0/xst_fiid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram   | appUnit i/Inst vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.661       |             |            | 5 dk20    |
|                                  |                                                    | it/daobik.wr[3].u_vmm_fifo/U0/xst_fifid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit //Inst_vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.640       |             |            | 5 dk20    |
|                                  |                                                    | it/dadbik.wr[11].u. ymm fifo/U0/xst. fiid.cstr/ramloop[0].ram.r/y6_noinit.ram/SDP.WIDE_PRIM36.ram  | appUnit i/Inst vmm3unit/dapbk.u fec. fifo/J0/x[2].ram.r/v6 nomit.ram/SDP.SIMPLE PRIM36.ram   | 5.659       |             |            | 5 dk20    |
|                                  |                                                    | it/daoblk.wr[0].u.vmm_fifo/U0/vst_fifid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram    | appUnit i/Inst vmm3unit/dagblk.u fec fifo/U0/x[2].ram.r/v6 noinit.ram/SDP.SIMPLE PRIM36.ram  | 5.653       |             |            | 5 dk20    |
|                                  |                                                    | it/dacjok.wr[12].u_vmm_ffo/U0/xst_fiid.cstr/ramloop[0].ram.r/v6_noinit.ram/SDP.WIDE_PRIM36.ram     | appUnit_//Inst_vmm3unit/dagblk.u_fec_fifo/U0/x[2].ram.r/v6_noinit.ram/SDP.SIMPLE_PRIM36.ram  | 5.632       |             |            | 5 ck20    |
|                                  |                                                    | PERIOD TIMEGRP "sysUnit   Inst sysCliMgrCTF dock unit ckfx" TS ck200 / 0.2 HIGH 50%; (             |                                                                                              |             |             |            |           |
|                                  |                                                    | it/daqbik.wr[8].u ymm fifo/U0/xst fifo/gcanyfifo.rf/grf.rf/gnty ar sync fifo.gcx.dkx/rd pntr ac 3  | appUnit i/Inst vmm3unit/dagblk.wr[8].u vmm fifofo.gcx.ckx/gsvnc stage[1].wr stg inst/Q reg 3 | 1.449       | 0.435       | 70.0       | 2 dk20    |
|                                  |                                                    | it/dadbik.wr[8].u vmm fifo/U0/xst fifo/gconvfifo.rf/grf.rf/gntv or sync fifo.gcx.clxx/rd pntr gc 1 | applinit i/Inst vmm3unit/dapbk.wr/81.u vmm fifofo.gcx.ckx/gsvnc stage[1].wr stg inst/O reg 1 |             |             |            | 2 dk20    |
|                                  |                                                    | it/daqbik.wr[12].u ymm fifo/U0/xst fifo/gconvfifo.rf/grf.rf/gnty or sync fifo.gcx.ckx/rd pntr gc 5 | appUnit i/Inst vmm3unit/dagblk.wr[12].u vmm fiffo.gcx.ckx/gsvnc stage[1].wr stg inst/O reg 5 |             |             |            | 2 dk200   |
|                                  |                                                    | it/dagbik.wr[8].u ymm fifo/U0/xst fifo/gconvfifo.rf/grf.rf/gntv or sync fifo.gcx.dkx/rd pntr.gc 0  | appUnit i/Inst vmm3unit/dagblk.wr[8].u vmm_fifofo.gcx.ckx/gsync_stage[1].wr_stg_inst/Q_reg_0 |             |             |            | 2 dk200   |
|                                  |                                                    | it/dagbik.wr[3].u ymm fifo/U0/xst fifo/gconyfifo.rf/grf.rf/gnty or sync fifo.gcx.dkx/rd pntr gc 8  | appUnit i/Inst vmm3unit/dagbik.wr[3].u vmm fifofo.gcx.ckx/gsvnc stage[1].wr stg inst/O reg 8 |             |             |            | 2 dk200   |
|                                  |                                                    | it/dadbk.wr[8].u vmm fifo/U0/xst fifo/gconvfifo.rf/grf.rf/gntv or sync fifo.gcx.dkx/rd pntr gc 6   | appUnit //Inst vmm3unit/dagbk.wr[8].u vmm fifofo.gcx.ckx/gsvnc stage[1].wr stg inst/Q reg 6  |             |             |            | 2 dk20    |
|                                  |                                                    | it/dadpk.wr[3].u_vmm_fifo/U0/xst_fifo/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.ckx/rd_pntr_gc_6   | appUnit //Inst_vmm3unit/dagbk.wr[3].u_vmm_fifofo.gcx.ckx/gsync_stage[1].wr_stg_inst/Q_reg_6  |             |             |            | 2 dk20    |
|                                  | 1                                                  |                                                                                                    |                                                                                              |             |             |            |           |



| 831 | check if the pointed vmm_fifo has data and the connected fifo is full or no        |
|-----|------------------------------------------------------------------------------------|
| 832 | vmm3_rden_gen : FOR i IN 0 TO 15 GENERATE                                          |
| 833 | PROCESS (nextvmmpointer, fec_fifo_pgfull, vmm_fifo_emptyn)                         |
| 834 | BEGIN                                                                              |
| 835 | IF nextvmmpointer = i THEN                                                         |
| 836 | IF vmm_fifo_emptyn(i) = '1' THEN                                                   |
| 837 | IF fec_fifo_pgfull = '0' THEN                                                      |
| 838 | <pre>vmm_fifo_rden(i) &lt;= 'l';</pre>                                             |
| 839 | ELSE                                                                               |
| 840 | <pre>vmm_fifo_rden(i) &lt;= '0';</pre>                                             |
| 841 | END IF;                                                                            |
| 842 | ELSE                                                                               |
| 843 | <pre>vmm_fifo_rden(i) &lt;= '0';</pre>                                             |
| 844 | END IF;                                                                            |
| 845 | ELSE                                                                               |
| 846 | <pre>vmm_fifo_rden(i) &lt;= '0';</pre>                                             |
| 847 | END IF;                                                                            |
| 848 | END PROCESS;                                                                       |
| 849 | END GENERATE;                                                                      |
| 850 |                                                                                    |
| 851 | look for a nonempty vmm_fifo                                                       |
| 852 | <pre>vmm_fifo_emptyn &lt;= cfg_chmask(15 DOWNTO 0) AND (NOT vmm_fifo_empty);</pre> |
| 853 |                                                                                    |
| 854 | PROCESS (clk200)                                                                   |
| 855 | VARIABLE var1 : INTEGER RANGE 0 TO 15 := 0;                                        |
| 856 | VARIABLE var2 : INTEGER RANGE 0 TO 15 := 0;                                        |
| 857 | BEGIN                                                                              |
| 858 | var1 := 0;                                                                         |
| 859 | var2 := 0;                                                                         |
| 860 | IF rising_edge(clk200) THEN                                                        |
| 861 | FOR i IN 0 TO 15 LOOP                                                              |
| 862 | IF vmm_fifo_emptyn(15-i) = '1' THEN                                                |
| 863 | varl := 15 - i;                                                                    |
| 864 | IF 15 - i > nextvmmpointer THEN                                                    |
| 865 | var2 := 15 - i;                                                                    |
| 866 | END IF;                                                                            |
| 867 | END IF;                                                                            |
| 868 | END LOOP;                                                                          |
| 869 | IF var2 > var1 THEN                                                                |
| 870 | <pre>nextvmmpointer &lt;= var2;</pre>                                              |
| 871 | ELSE                                                                               |
| 872 | <pre>nextvmmpointer &lt;= varl;</pre>                                              |
| 873 | END IF;                                                                            |
| 874 | END IF;                                                                            |
| 875 | END PROCESS;                                                                       |
|     |                                                                                    |




- Bottleneck is UDP, 8bit send with125 MHz (1 Gbits/s ethernet)
- Reading of the 48 bit VMM FIFOs with 200 MHz does not make sense, choosing VMM FIFO to read and write to FEC FIFO does not work at 200 MHz (logic too slow)
- Performance stays the same, if VMM FIFOs are read with 125 MHz, and FEC FIFO is written with 125 MHz, timing is met


### FEC firmware

#### Link status

- HDMI SERDES use master and slave ISERDES\_NODELAY together with IODELAY
- IODELAY has 64 taps of 78 ps that can shift the data (tap 64 is identical to tap 0 again)
- ISERDES can do bitslip to rearrange the 10 bits (after 10 bitslips one arrives again at the original word)
- Aim of alignment: To be in the center of the eye and receive correct 8b/10b control word from Spartan 6 on hybrid (link control word)
- Originally FEC was using bit align machine of Xilinx <u>https://www.xilinx.com/support/documentation/application\_notes/xapp855.pdf</u>
- Problem: If after finding the first transition, the second transition that is found is not on the other side of the window, but just the end of the same transition as the first, the center of the eye is not found
- Therefore Xilinx released update
   <u>https://www.xilinx.com/support/answers/38672.html</u>
- Now user has to set a parameter that specifies the minimum width of the eye, to avoid the identification of a transition as eye
- With new DVM card, XAPP855 was unstable, thus successfully implemented update in spring 2020







### FEC firmware

#### Link status



- When using the CTF card, we still had problems to obtain a stable link status 4 (probably the minimum eye width parameter would have to be adapted per channel and would be different for use with CTF and without)
- I implemented thus my own bit align code, based on firmware I wrote for the Kintex 7
- On Kintex 7, the Xilinx bit align machine does not work anymore at all (no surprise, it was for Virtex 5)
- IODELAY has only 32 taps of 78 ps, so that one cannot scan through the whole eye when running the SERDES with 400 MHz (delays between 0 and 2.418 ns possible), 400 MHz is slow for Series 7
- New code measures all combinations of bitslip and tap and chooses setting in the center of the largest stable region
- A tab /bit slip combination is stable if the correct link word has been received 128 times in a row
- If e.g. at the same bit slip, taps 10-30 are stable, we have a stable region of 21 taps for this bit slip. The center of the window is then tap 20
- After changes a very stable link status 4 is obtained with or without CTF on all HDMI ports

#### NIM trigger and multiple test pulses



- For trigger in and trigger out now the "polarity" of the digital signal can be set via the slow control
- Trigger input can be given out on trigger output
- Alternatively, trigger output can be configured to occur at any time in the cycle
- Michael's "Registering trigger timestamp feature" unchanged, just checkbox removed, as soon as the trigger input is activated in the slow control, timestamp is sent out
- Instead of starting the acquisition directly after clicking "ACQ ON" in the slow control, feature to only start the acquisition with the arrival of the first NIM trigger
- It is now possible to have several internal test pulses at defined times

| PEC1         Send       Paders FEC         10002       FEC1         Rest Warnings       Paders FEC         Address FEC       Paders FEC         10002       FEC1         NAM       VAM         VI       V         VI       V         VI       V         VI       V         VI       VI         VI       VI         VI       VI         VI       VI         VI       VI         VI       VII         VIII       VIIII         VIIII       VIIIII         VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Slow Control Calibration | Logging Testing         |        |                      |                                                   |                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|--------|----------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Seen d       P address FEC         I 00.02 FEC P       HOMI 2         HOMI       VMM 1         VMM 1       VMM 2         G       0.0.02 FEC P         I 1 2 3 4       Postion 7 8         Acquasiton/Test pulse       VMM 1         Acquasiton/Test pulse       Postion 8         Acquasiton/Test pulse       Postion 0         Postion 0       Postion 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | FEC 1                   |        |                      |                                                   |                                                                                                                                           |
| Bend         P advess FEC           Send         DUM 2           Nome         Dum 2           Hond         VMM         VMM         VMM           VIM         VMM         VMM         VMM         VMM           VIM         VIM         VIM         VIM         VIM         VIM         VIM           C         AcquisitonTest pulse         VIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pen Communication        |                         |        |                      |                                                   |                                                                                                                                           |
| Send         HOM 2           Reset Warnings         10.00.2 [FEC/P]<br>10.00.8 DAD/P         Hybrid           I 10.00.2 [FEC/P]<br>10.00.8 DAD/P         Hybrid         VMM V MM 2           C         Acquisition/Test place         Hybrid           I 10.00.2 [FEC/P]<br>2.2 [10.00.8 DAD/P         Hybrid         VMM V MM 2           C         Acquisition/Test place         Hybrid I 1/2 [<br>Postion         Postion         C           Acquisition/Test place         Hybrid II 1/2 [<br>Postion         Postion         C         C           Acquisition/Test place         Hybrid III 1/2 [<br>Postion         Postion         C         C           I 10.0 g dise fear IT<br>Tree debug data format         Adamset Strings         C         C         FeadADC         44 565 1/2 (1)         C         C         FeadADC         44 565 1/2 (1)         C         FeadADC         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | IP address FEC          |        |                      |                                                   |                                                                                                                                           |
| 0.000       0.00.0 DD /P       Hohid       Hybrid 1         HDMI       YMA       VMA       VMA         HDMI       YMA       VMA       VMA         C       Acquisition/Test pulse       Adarced Strings       S20 b       S20 b </td <td>unre</td> <td></td> <td>HDMI 2</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | unre                     |                         | HDMI 2 |                      |                                                   |                                                                                                                                           |
| HDM       I       VIAI       Carread Settings       Charnel Settings       Chare       Chare       Charn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Send                     |                         | Hubrid |                      |                                                   |                                                                                                                                           |
| Reset Warnings       I V 2 3 4         I V 2 3 4         S 6 7 8         Acquisition/Test pulse         Acquisition/Test pulse         Acquisition/Test pulse         Acquisition/Test pulse         Acquisition/Test pulse         Acquisition/Test pulse         Acquise channel Settings         Position 0         Action Cannel Settings         Bebrage tablemany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                         | Typha  | Hybrid 1             |                                                   |                                                                                                                                           |
| Reset Warnings       1 1 2 3 4       4         1 1 2 3 4       4         2 4       6 6 7 8       8         2 4       reset       Jatancy TP         3 6 6 6 7 8       8       10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | HDMI                    |        | VMM                  | VMM 1 VMM 2                                       |                                                                                                                                           |
| C       Acquisition/Test poles       Position         41       Acquisition/Test poles       Axis       X         42       figst       Axis       X         42       figst       Axis       X         43       X       Position       Axis       X         44       figst       Position       Position       Position       Position         44       figst       Position       Position       Position       Position       Position         44       figst       Position       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reset Warnings           | 1 2 3 4                 |        |                      |                                                   |                                                                                                                                           |
| C       Acquisition/Test pulse       Position       Position       Analog (Channel) Monitor Test pulse       SC SL ST STH SM 0 mV + 0 ms + 0 mt + 1         1       4 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | 5 6 7 8                 |        | ✓ 1 ✓ 2              | General Settings Advanced Settings                |                                                                                                                                           |
| C       Analog (Channel) Montor Temperature sensor       Sk: Sk: Ski: Ski: Ski: Ski: Ski: Ski: Sk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                        |                         |        | Position             | Input charge polarity negative -                  |                                                                                                                                           |
| 1       Aus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C                        | Acquisition/ lest pulse |        |                      | Analog (Channel) Monitor Temperature sensor       | SC SL SI SIH SM U mV + SMX U mV + U ns + U m +                                                                                            |
| 12       ada latency<br>maximum       Position 0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>1</td><td></td><td></td><td>Axis X •</td><td></td><td>0 0 mV - 0 mV - 0 mV - 0 mV - 0 m' -</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                        |                         |        | Axis X •             |                                                   | 0 0 mV - 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                      |
| 13       14000\$ maximum         14       6       data latency<br>error         15       data latency<br>error       12C         14       15       0 mW + 0 mW                                                                                                                                                                       | 2                        | intericy                |        | Position 0           | Gain (sg) 3.0 mV/fC *                             |                                                                                                                                           |
| 14       6       deta latency<br>error       Pack time (st)       20 ns       1         15       1       0 mV + 0 mV                                                                                                                      |                          |                         |        |                      | TAC Slop Adj (stc) 60 ns 👻                        |                                                                                                                                           |
| 14       Image error       Hybrid ID       Hybrid ID       ReadADC       44 8649 °C       Image All Peak         15       66       63       1atency TP       ReadADC       44 8649 °C       Image All Peak         16       100       offset first TF       ReadADC       1atency TP       0mV + 0mV                                                                                                                                                                                                                                             | 3                        | data latency            |        | I2C                  | Peak time (st) 200 ns                             |                                                                                                                                           |
| 5       0 doub dual domain         6       1 doub dual domain         7       100 0 dota domain         7       100 0 dota first TF         100 0 dota first TFs       S6         1 0 runs pris       S6         1 0 runs pris       S6         1 0 runs pris       CKBC 40MHz *         Aco on       CKBC 40MHz *         Aco on       CKBC 40MHz *         Aco on       CKBC 0 on s *         S6       CKBC 0 on s *         Aco off       CKBC 0 on s *         First trigger       CKBC 0 on s *         S6       CKBC 0 on s *         S6 ACC (Pirect out) 25 ns       100 *         Co on V + 0 on V + 0 on V + 0 on V + 0 on S * 0 m *         Test Pulse       CKDT 180 MHz *         Vidit 128/22*       Polarity Positi*         Vidit 128/22*       Polarity Positi*         Apply to all VIMMs       30 0 mV + 0 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                        | error                   |        | Hybrid ID 🔹          |                                                   |                                                                                                                                           |
| 16       63       1atency TP         7       100       offset first TF         18       100       offset first TF         100       offset first TF         100       offset first TF         100       offset first TF         110       umber of         110       trigger law         110       offset first TF         1100       offset first TF         11000       offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                        | debug data format       |        |                      | ReadADC 44.8649 °C +                              |                                                                                                                                           |
| 77       100 w diskty fr       Read         88       100 w diskty fr       S6         1 w Trys of diskt first TF       S6         1 w Trys of diskt first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                         |        |                      | SRAT Mode Timing At Peak 👻                        |                                                                                                                                           |
| 100 ° offset first TF       S6         1 ° unwber of<br>TFS       CKBC 40MHz *         1 ° unwber of<br>TTS       CKBC 0 · o mv *         1 ° unwber of<br>TTS       CKBC 0 · o mv *         1 ° unwber of<br>TTS       CKDT 180 MH: *         0 ° unvber of<br>TTS       0 ° mv *       0 ° mv *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 63 📮 latency TP         |        | Read                 |                                                   |                                                                                                                                           |
| 38       1       • member of Tres         20 for all FECs       0 move of tres       0 m/v       0 m/v <td< td=""><td>7</td><td>100 🗘 offset first TF</td><td></td><td>66</td><td>Neighbor Trigger (sng) Disable At Peak</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                        | 100 🗘 offset first TF   |        | 66                   | Neighbor Trigger (sng) Disable At Peak            |                                                                                                                                           |
| Q for all FECS       I to s       offset<br>next TPs<br>mext Tps<br>inset trigger Out<br>starts ACQ       VI 1       CKBC 40MHz *       ADC         First trigger<br>starts ACQ       I innomal *       Trigger Out<br>Tigger Out<br>Tigger Out       VI 1       CKBC 40MHz *       ADC         ACQ On       VI 1       CKBC 0 0n s *       Bb ADC (Jinet out) 25 n s *       III *       0 mV * 0 ms * 0 m* *         ACQ Off       0 mV * 0 ms * 0 m*       0 mV * 0 ms * 0 m* *       0 mV * 0 ms * 0 m* *         ACQ Off       0 m 0 m       0 mV * 0 ms * 0 m* *       0 mV * 0 ms * 0 m* *         Ming file       CKDT 180 MH: *       CKDT 180 MH: *       Dual Clock 8-bit         Warn Int FEC       System Parameters       Test Pulse       Threshold DAC 250 ‡ 225 mV       III * 0 mV * 0 ms * 0 m* *         System Parameters       Clear info       0 mV * 0 ms * 0 m* *       0 mV * 0 ms * 0 m* *       0 mV * 0 ms * 0 m* *         Apply to all VMMs       20 * 0 mV * 0 mV * 0 ms * 0 m* *       0 mV * 0 mV * 0 ms * 0 m* *       0 mV * 0 mV * 0 mV * 0 ms * 0 m* *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                        | number of               |        | 50                   | Analog tristates Sub Hysterisis                   |                                                                                                                                           |
| ACQ Off       Off       CKBC 40MH2         ACQ Off       Off       CKBC 00 ns *         ACQ Off       Off       CKDT 180 MH2         ACQ Off       Off       CKDT 180 MH2         Pic Status       CKDT 180 MH2       Dual Clock ART Dual Clock Dats Dual Clock 6-bit         Pic Status       Test Pulse       Test Pulse         Vidth 128/2*       Polarity Positi*       Test Pulse         Apply to all VMMs       0 mV + 0 mv + 0 ns + 0 m*         30 0 mV + 0 mv + 0 ns + 0 m*       0 mV + 0 ns + 0 m*         Acq Off       Off         Pic Status       CKDT 180 MH2*         Apply to all VMMs       0 mV + 0 ns + 0 m*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | TPs                     |        |                      |                                                   | 11 0 0 mV + 0 mV + 0 mV + 0 m + 0 m +                                                                                                     |
| First trigger<br>starts ACQ       Immed imigger lui       CKBC 400/m2 *         ACQ On       CKBC 00 ns *         ACQ Off       CKBC 00 ns *         ACQ Off       OmV *       OmV *       OmV *       OmV *       OmV *         ACQ Off       Om       OmV *       OmV *       OmV *       OmV *       OmV *         ACQ Off       Om       Om       OmV *       OmV *       OmV *       OmV *       OmV *         ACQ Off       On       Off       CKDT 180 MH **       CKDT 180 MH **       Dual Clock 5-bit       Dual Clock 5-bit       Dial Clock 5-bit       OmV *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q for all FECs           |                         |        |                      | ADC                                               | 12 🛛 🖉 💭 OmV 🕶 OmV 🕶 Ons 🕶 Om) 💌                                                                                                          |
| Internal * Trigger Out       Skew       0 00 ns *         ACQ Off       0 mV *       0 mV * <t< td=""><td></td><td>next IPs</td><td>⊻ 1</td><td>CKBC 40MHz *</td><td>ADCs on/off 8-bit Conv. Mode</td><td>13 🛛 🗧 💭 0 mV 🕶 🖉 0 mV 🖛 0 ns 💌 0 m' 👻</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | next IPs                | ⊻ 1    | CKBC 40MHz *         | ADCs on/off 8-bit Conv. Mode                      | 13 🛛 🗧 💭 0 mV 🕶 🖉 0 mV 🖛 0 ns 💌 0 m' 👻                                                                                                    |
| starts AČQ       normal ~ Trigger Out       CKBC       0.00 ns ~       CKBC       0.00 ns ~         ACQ On       Trigger Out       Skew       0.00 ns ~       6b ADC (Direct out)       25 ns ~       16       0 mV ~       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - First trigger          | invert 👻 Trigger In     |        |                      | 10b ADC (Ampl) 200 pc                             | 14                                                                                                                                        |
| ACQ On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | normal x Triagor Out    |        |                      |                                                   |                                                                                                                                           |
| ACQ On       Image: Status       Status       Status       CKDT 180 MH: *       Dual Clock Case       Dual Clock 6-bit       D mV + 0 mV +                                                                                                |                          |                         |        | CKBC 0.00 ns *       | 6b ADC (Direct out) 25 ns *                       |                                                                                                                                           |
| ACQ         Off         CKDT         Dual Clock         Dual Clock         Iff         Iff         Iff         Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACO On                   | 40 Time                 |        | skew                 | 8b ADC (Time) 100 ns 👻                            |                                                                                                                                           |
| ACQ Off       On       Off       CKDT       180 MH+*       Dual Clock ART       Dual Clock 5-bit       20       0 mV +       0 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Add on                   |                         |        |                      |                                                   |                                                                                                                                           |
| On         Off         CKDT         100 MH: *         Dual Clock ART         Dual Clock 6-bit         21         0 mV *         0 mV * <th< td=""><td></td><td>ACQ</td><td></td><td></td><td>Dual Clock</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | ACQ                     |        |                      | Dual Clock                                        |                                                                                                                                           |
| FEC Status       Fest Pulse         Warm init FEC       Test Pulse         System Parameters       Skew Ons *         Width 128/21*       Polarity Positin*         Polarity Positin*       Apply to all VMMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACQ Off                  | On Off                  |        | CKDT 180 MH; -       | Duel Cleak ABT, Duel Cleak Date, Duel Cleak & bit |                                                                                                                                           |
| FEC Status     23     0 mV + 0 mV + 0 nm + 0 mN + 0                                    |                          |                         |        |                      | Dual Clock ART Dual Clock Data Dual Clock 6-bit   |                                                                                                                                           |
| Warm Int FEC         Test Pulse           Link Status         System Parameters           System Parameters         Skew Ons *           Ubdd         Ubdd           Load         D mV + 0 mV + 0 ms + 0 mh +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | FEC Status              |        |                      |                                                   |                                                                                                                                           |
| Visit Rest         Dest Pulse         Threshold DAC         250         252 mV         250         0 mV +         0 mV + <t< td=""><td>nfig file</td><td>Warm Init EEC</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nfig file                | Warm Init EEC           |        |                      |                                                   |                                                                                                                                           |
| ybrid2         Link class         Skew Ons *         Test Pulse DAC 655 ‡ 714 mV DAC         26         0 mV * 0 mV * 0 ns * 0 m' *           System Parameters         Width 12b:2*         Polarity Positiv. *         Polarity Positiv. *         Apply to all VMMs         26         0 mV * 0 mV * 0 ns * 0 m' *           Load         0 mV * 0 mV * 0 ns * 0 m' *         0 mV * 0 nv * 0 nv * 0 mv *         0 mV * 0 nv * 0 nv *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                         |        | lest Pulse           | Threshold DAC 250 225 mV                          |                                                                                                                                           |
| Clear Info         Width         128x2: *         28         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iybrid2                  |                         |        | Skew Ons -           | Test Pulse DAC 959 1 714 mV DAC                   |                                                                                                                                           |
| Load         28         0 mV + 0 mV + 0 ns + 0 mV +           Polarity Positin +         Apply to all VMMs         29         0 mV + 0 mV + 0 ns + 0 mV +           Load         0 mV + 0 mV                                                                                                                                  |                          |                         |        | M/dth 128x21 -       | 800 mV pulse height                               | 27 🔲 📕 💭 0 mV 🕶 0 mV 🖛 0 ns 👻 0 m' 👻                                                                                                      |
| Load Apply to all VMMS 30 0 mV + 0 mV + 0 mV + 0 mV +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | Oldar mild              |        |                      |                                                   | 28 🛛 💭 💭 🐨 💭 0 mV 🕶 🖉 0 mV 🕶 🖉 0 m' 🕶                                                                                                     |
| Load 30 0 mV + 0 |                          |                         |        | Polarity Positiv *   | Apply to all VMMs                                 |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Load                     |                         |        | Apply to all hybrids | Hard Reset                                        | $30 \qquad \qquad$ |

#### Continuous data taking without window

- For the use at ESS (neutron time of flight measurements), we have to be able to take data all the time without regularly occurring dead time
- BC clock at ESS will be derived from facility clock and have fixed relation with proton pulse
- Problem so far has been the overflow of the BCID on the VMM
- As a 12 bit value, the BCID on the VMM only covers times between 0 and 102.4 us (at 40 MHz)
- Due to limited bandwidth, we do not add a higher order timestamp to the hits on the Spartan6, since then the hit size would considerably increase from 40 bits to >= 100 bits
- Higher order 42 bit timestamp with 25 ns resolution and a BCID overflow counter (offset) is added upon arrival of the hits on the FEC

| Logging Testing              |        |                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|--------|------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cogging rooming              |        |                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FEC 1                        |        |                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              |        |                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IP address FEC               | HDMI 2 |                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10.0.0.2 FEC IP              |        |                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10.0.0.3 DAQ IP              | Hybrid | Hybrid 1               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HDMI                         |        | VANA                   | VMM 1 VMM 2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 🗸 2 🗌 3 🗌 4                |        | VMM                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5 6 7 8                      |        | ✓ 1 ✓ 2                | General Settings Advanced Settings                     | Channel Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              |        | Position               | Input charge polarity negative -                       | SD SZ010b SZ08b SZ06b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Acquisition/Test pulse       |        |                        | Analog (Channel) Monitor Temperature sensor 🔻          | SC SL ST STH SM 0 mV * SMX 0 mV * 0 ns * 0 m' *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 47<br>atency                 |        | Axis X 👻               |                                                        | 0 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| intency                      |        | Position 0             | Gain (sg) 3.0 mV/fC -                                  | 1 0 0 mV - 0 mV - 0 mV - 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4000 Cata latency<br>maximum |        |                        | TAC Slop Adj (stc) 60 ns 👻                             | 2 0 mV - 0 mV - 0 ns - 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6 Cata latency<br>error      |        | I2C                    | Peak time (st) 200 ns 👻                                | 3 0 0 mV - 4 0 mV - 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 61101                        |        | Hybrid ID *            | ReadADC 44.8649 °C                                     | 5 0 0 WV + 0 WV + 0 mV + 0 mV +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| debug data format            |        |                        | SRAT Mode Timing At Peak *                             | 6 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 63  Clatency TP              |        | Read                   | Citer Mode Inning Act eak                              | 7 0 mV - 0 mV - 0 mV - 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100 🗘 offset first TF        |        |                        | Neighbor Trigger (sng) Disable At Peak                 | $8 \qquad 0 \text{ mV} \neq 0  $                                                                                                                                                                                         |
|                              |        | S6                     | Analog tristates Sub Hysterisis                        | 9 0 0 mV - 0 mV - 0 mV - 0 mV - 10 mV - 10 mV - 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 TPs                        |        |                        |                                                        | 11 0 0 mV - 0 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1000 Confiset                |        |                        | ADC                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IIII IIIII                   | ✓ 1    | CKBC 40MHz *           | ADCs on/off 8-bit Conv. Mode                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| invert 👻 Trigger In          |        |                        | 10b ADC (Ampl) 200 ns -                                | $14 \qquad 0 \qquad mV \neq 0 \qquad mV \qquad mV = 0 \qquad mV \neq 0 \qquad mV = $ |
| normal 👻 Trigger Out         |        |                        | 6b ADC (Direct out) 25 ns -                            | 15 0 0 mV + 0 mV + 0 mV + 0 mV + 16 0 mV + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40 Trigger Out               |        | CKBC<br>skew 0.00 ns * |                                                        | 17 0 mV + 0 mV + 0 mV + 0 mV + 1 mV + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Time                         |        |                        | 8b ADC (Time) 100 ns 🔹                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ACQ                          |        |                        | Dual Clock                                             | 19 0 mV - 0 mV - 0 mV - 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| On Off                       |        | CKDT 180 MH: -         |                                                        | 20 0 mV + 0 mV + 0 mV + 0 mV + 21 0 mV + 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              |        |                        | Dual Clock ART Dual Clock Data Dual Clock 6-bit        | 21 0 mV - 0 mV - 0 mV - 0 mV - 22 0 mV - 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FEC Status                   |        |                        |                                                        | 23 0 0 mV - 0 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Warm Init FEC                |        | Test Pulse             |                                                        | 24 0 0 mV - 0 mV - 0 ns - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Link Status                  |        |                        | Threshold DAC 250 225 mV                               | 25 0 mV - 0 mV - 0 mV - 0 m' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| System Parameters            |        | Skew Ons *             | Test Pulse DAC 858 + 714 mV DAC<br>800 mV pulse height | 26 0 mV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Apply to all VMM

Hard Rese

brightness

VMM3 - SRS DCS

Open Commu

Reset Wa

FEC

5 6

7 8 ACQ for all FE

> First trigg starts AC

> > ACQ O

ACQ (

Config file

hybrid2

Load

Save

Clear Info

Width 128x2! -

Polarity Positiv \*

Apply to all hybrids

Sen

) 🔲 0 mV 🔻

0 mV ·

#### Continuous data taking without window

• Challenge: Since the data is read out out from the VMM via the Spartan6 and the HDMI in a serial fashion, there is a large difference between hits arriving with minimum and maximum latency

~

- One solution to ensure data integrity is to use a acceptance window as before
- New solution:
- The FEC has a clock counter (TRG) that counts for each BC clock frequency from 0 to 4095
- At the beginning of the acquisition, the BCID on the VMMs is reset (soft reset), and the S6 FIFO is emptied
- The moment, at which the reset is sent, can be determined with the field "reset latency"
- In the new debug data mode, the value of the FEC clock counter, at which the hit arrived, is sent out in the data instead of the ADC and TDC
- Two steps to set things up:
- The "reset latency" has to be set in such a way, that the BCID and the TRG in Wireshark show the same value (please pulse only one channel)
- If TRG and BCID show the same value, but the BCID too large or too small (e.g. 105 instead of 100), then the "TP latency" has to be increased or decreased

| SR | S Header                                                |                                         |                            |   |  |  |  |  |  |  |  |  |
|----|---------------------------------------------------------|-----------------------------------------|----------------------------|---|--|--|--|--|--|--|--|--|
|    | Frame Cou                                               | nter: 26028 (-85510)                    |                            |   |  |  |  |  |  |  |  |  |
|    | Data Id: VMM3a Data FEC clock counter at which hit arri |                                         |                            |   |  |  |  |  |  |  |  |  |
|    | FEC ID: 2                                               |                                         | unter at which hit arrives |   |  |  |  |  |  |  |  |  |
|    | UDP Times                                               | tamp: 86917232 (-27161085500)           |                            |   |  |  |  |  |  |  |  |  |
|    | Offset overflow last frame: 12                          |                                         |                            |   |  |  |  |  |  |  |  |  |
| >  | Hit: 1,                                                 | offset: 4, vmmID: 2, ch: 0, bcid: 100,  | trg: 99, latency: -1       |   |  |  |  |  |  |  |  |  |
| >  | Hit: 2,                                                 | offset: 5, vmmID: 2, ch: 0, bcid: 100,  | trg: 99, latency: -1       |   |  |  |  |  |  |  |  |  |
| >  | Hit: 3,                                                 | offset: 6, vmmID: 2, ch: 0, bcid: 100,  | trg: 100, latency: 0       | ) |  |  |  |  |  |  |  |  |
| >  | Hit: 4,                                                 | offset: 7, vmmID: 2, ch: 0, bcid: 100,  | trg: 101, latency: 1       |   |  |  |  |  |  |  |  |  |
| >  | Hit: 5,                                                 | offset: 8, vmmID: 2, ch: 0, bcid: 100,  | trg: 101, latency: 1       |   |  |  |  |  |  |  |  |  |
| >  | Hit: 6,                                                 | offset: 9, vmmID: 2, ch: 0, bcid: 100,  | trg: 99, latency: -1       |   |  |  |  |  |  |  |  |  |
| >  | Hit: 7,                                                 | offset: 10, vmmID: 2, ch: 0, bcid: 100, | , trg: 100, latency:       | 0 |  |  |  |  |  |  |  |  |
| >  | Hit: 8,                                                 | offset: 11, vmmID: 2, ch: 0, bcid: 100, | , trg: 100, latency:       | 0 |  |  |  |  |  |  |  |  |
| >  | Hit: 9,                                                 | offset: 12, vmmID: 2, ch: 0, bcid: 100, | , trg: 101, latency:       | 1 |  |  |  |  |  |  |  |  |
| >  | Hit: 10,                                                | offset: 13, vmmID: 2, ch: 0, bcid: 100, | , trg: 99, latency: -      | 1 |  |  |  |  |  |  |  |  |
| >  | Hit: 11,                                                | offset: 14, vmmID: 2, ch: 0, bcid: 100, | , trg: 100, latency:       | 0 |  |  |  |  |  |  |  |  |
| >  | Hit: 12,                                                | offset: 15, vmmID: 2, ch: 0, bcid: 100, | , trg: 100, latency:       | 0 |  |  |  |  |  |  |  |  |
| >  | Marker:                                                 | 1, VMM ID 2, SRS timestamp: 8153088     | 50                         |   |  |  |  |  |  |  |  |  |
| >  | Marker:                                                 | 2, VMM ID 3, SRS timestamp: 8153088     | 30                         |   |  |  |  |  |  |  |  |  |



#### Continuous data taking without window

- The maximum latency setting now depends on the CKDT setting
- With 180 MHz DDR one hits arrives every 5th 40 MHz clock cycles (yeah!! Thanks to Patrick!!)
- If the 4 hit deep FIFO exists, the maximum latency is 64 x 4 x 5 clock cycles
- If all 64 channels are pulsed 4 times in quick succession, the maximum latency is thus 1280 clock cycles
- Last setting needed is "latency error". We can see that there is a bit of jitter, sometimes a hit that normally arrives at 0 latency will arrive at -1 or +1. This might be due to the internal test pulses (let's do measurements with external pulsers)
- Algorithm for higher order time stamp:
- Everything is set so that a single hit (minimum latency) arrives within the latency error at the same value of the FEC clock counter (TRG) as its BCID (after gray decoding)
- TRG > = BCID and TRG BCID < = maximum latency: current offset
- TRG < BCID and BCID TRG <= latency error: current offset
- TRG < BCID and BCID TRG <= 4096 maximum latency: previous offset
- Other cases: invalid



| / | SR:                                     | S Head                        | er  |         |    |        |    |     |     |       |      |      |      |          |    |
|---|-----------------------------------------|-------------------------------|-----|---------|----|--------|----|-----|-----|-------|------|------|------|----------|----|
|   |                                         | Frame Counter: 32717 (-78821) |     |         |    |        |    |     |     |       |      |      |      |          |    |
|   |                                         | Data Id: VMM3a Data           |     |         |    |        |    |     |     |       |      |      |      |          |    |
|   |                                         | FEC ID: 2                     |     |         |    |        |    |     |     |       |      |      |      |          |    |
|   | UDP Timestamp: 140136765 (-25830597175) |                               |     |         |    |        |    |     |     |       |      |      |      |          |    |
|   | Offset overflow last frame: 12          |                               |     |         |    |        |    |     |     |       |      |      |      |          |    |
|   | >                                       | Hit:                          | 1,  | offset: | 9, | vmmID: | 2, | ch: | 0,  | bcid: | 100, | trg: | 100, | latency: | 0  |
|   | >                                       | Hit:                          | -   | offset: | -  |        | з, | ch: | 0,  | bcid: | 101, | trg: | 100, | latency: | -1 |
|   | >                                       | Hit:                          | з,  | offset: | 9, | vmmID: | з, | ch: | 1,  | bcid: | 101, | trg: | 105, | latency: | 4  |
|   | >                                       | Hit:                          | 4,  | offset: | 9, | vmmID: | 2, | ch: |     | bcid: | 100, | trg: | 105, | latency: | 5  |
|   |                                         | Hit:                          |     | offset: |    |        | з, | ch: |     | bcid: | 101, | trg: | 110, | latency: | 9  |
|   | >                                       | Hit:                          | -   | offset: | -  |        | з, | ch: | з,  | bcid: | 101, | trg: | -    | latency: | 14 |
|   |                                         | Hit:                          | -   | offset: |    |        | 2, | ch: | -   | bcid: | 100, | trg: | 110, | latency: | 10 |
|   |                                         | Hit:                          | -   | offset: |    |        | -  | ch: |     | bcid: | -    | trg: | 120, | latency: | 19 |
|   |                                         | Hit:                          | -   | offset: |    |        | -  | ch: | -   | bcid: |      | trg: | -    | latency: | 15 |
|   |                                         | Hit:                          | -   | offset: |    |        |    | ch: | -   | bcid: | -    | trg: |      | latency: | 24 |
|   |                                         | Hit:                          |     | offset: |    |        | -  | ch: |     | bcid: | -    | trg: | 120, | latency: | 20 |
|   |                                         | Hit:                          | -   | offset: |    |        | -  | ch: |     | bcid: | -    | trg: |      | latency: | 25 |
|   |                                         | Hit:                          | -   | offset: |    |        | -  | ch: | -   | bcid: | 101, | trg: | 130, | latency: | 29 |
|   |                                         | Hit:                          | -   | offset: |    |        | 2, | ch: | -   | bcid: | 101, | trg: | 130, | latency: | 29 |
|   |                                         | Hit:                          | -   | offset: |    |        | з, | ch: | 7,  | bcid: | 101, | trg: | 135, | latency: | 34 |
|   |                                         | Hit:                          |     | offset: |    |        |    | ch: | -   | bcid: | 101, | trg: | 135, | latency: | 34 |
|   |                                         | Hit:                          |     | offset: |    |        |    | ch: |     | bcid: | -    | trg: | -    | latency: | 40 |
|   |                                         | Hit:                          |     | offset: |    |        | з, | ch: | 8,  | bcid: | 101, | trg: | 140, | latency: | 39 |
|   | >                                       | Hit:                          | -   | offset: | -  |        | 2, | ch: | 9,  | bcid: | 100, | trg: | -    | latency: | 45 |
|   |                                         | Hit:                          |     | offset: |    |        | -  | ch: | -   | bcid: | 101, | trg: |      | latency: | 44 |
|   |                                         | Hit:                          | -   | offset: | -  |        | -  |     | -   | bcid: | 101, | trg: | 150, | latency: | 49 |
|   | >                                       | Hit:                          |     | offset: |    |        |    |     | -   | bcid: | 100, | trg: | 150, | latency: | 50 |
|   |                                         | Hit:                          |     | offset: |    |        |    |     |     | bcid: | 101, | trg: | 155, | latency: | 54 |
|   |                                         | Hit:                          | -   | offset: |    |        | -  |     | -   | bcid: | 101, | trg: | 155, | latency: | 54 |
|   |                                         | Hit:                          | -   | offset: |    |        | -  |     | -   | bcid: | -    | trg: | 160, | latency: | 60 |
|   |                                         | Hit:                          | -   | offset: | -  |        | -  |     | -   | bcid: |      | trg: |      | latency: | 59 |
|   |                                         | Hit:                          | -   | offset: | -  |        | -  |     | -   | bcid: | -    | trg: | -    | latency: | 64 |
|   |                                         | Hit:                          |     | offset: |    |        | -  |     | -   | bcid: | -    | trg: | -    | latency: | 64 |
|   |                                         | Hit:                          |     | offset: |    |        |    |     |     | bcid: | 101, | trg: | 170, | latency: | 69 |
|   |                                         | Hit:                          |     | offset: |    |        |    |     |     | bcid: | -    | trg: | 170, | latency: | 69 |
|   |                                         | Hit:                          | -   | offset: |    |        | -  |     | -   | bcid: |      | trg: | 175, |          | 74 |
|   |                                         | Hit:                          | -   | offset: |    |        |    |     |     | bcid: |      | trg: | 175, | latency: | 74 |
|   | >                                       | Hit:                          | -   | offset: |    |        | -  |     | -   | bcid: | 101, | trg: | -    | latency: | 79 |
|   |                                         | Hit:                          | -   | offset: | -  |        |    |     | -   | bcid: | -    | trg: | 180, | latency: | 79 |
|   |                                         | Hit:                          | -   | offset: |    |        | -  |     | -   | bcid: | 101, | trg: | 185, | latency: | 84 |
|   |                                         | Hit:                          | -   | offset: |    |        |    |     |     | bcid: | 101, | trg: | 185, | latency: | 84 |
|   | >                                       | Hit:                          | 37, | offset: | 9, | vmmID: | 2, | ch: | 18, | bcid: | 101, | trg: | 190, | latency: | 89 |
|   |                                         |                               |     |         |    | _      |    |     | -   |       |      |      |      | -        |    |

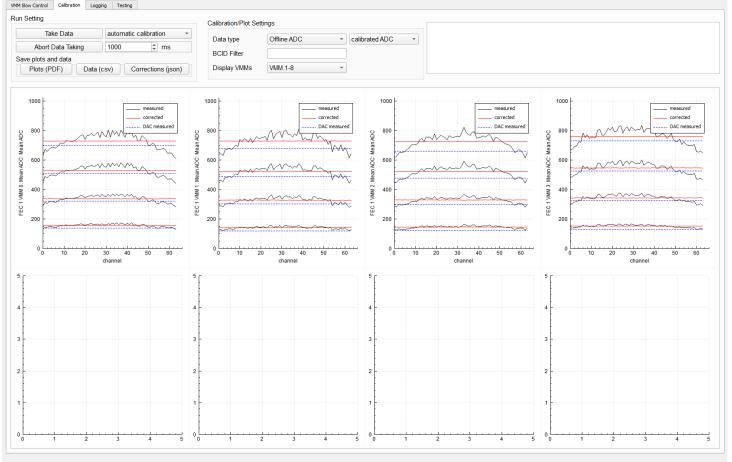
#### How cool, a new hit every 5 cycles !

#### Continuous data taking without window

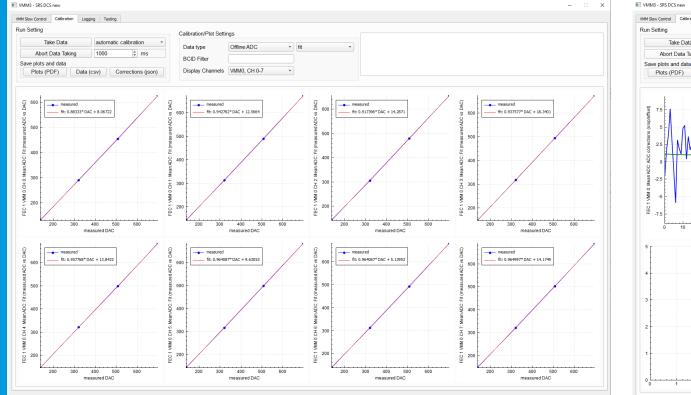
- If hits belong to previous offset, offset -1 is added as timestamp
- Only problem arising if offset on the FEC is 0, and a new marker has already been generated
- Then -1 is sent as offset
- This means the 5 bit offset is not a unsigned number any more with valid entries going from 0 to 31, but a signed number with a valid range from -1 to 15
- -16 is used as indicator for a hit that violates the latency conditions, these hits can be discarded by the DAQ (or directly on the FEC if needed)



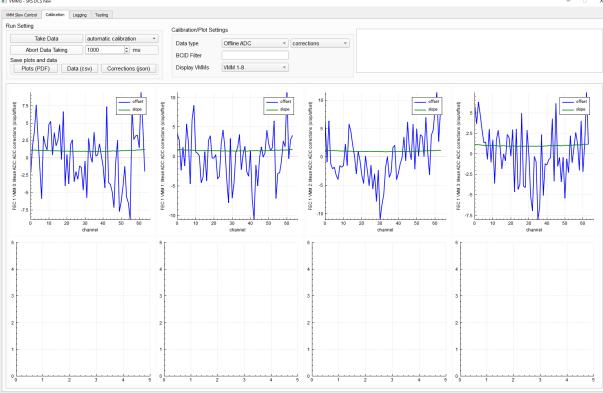

| > | Hit:  | 436, | offset:  | 15, | vmmID: | 2, | ch: | 11, | bcid: | 4001,  | trg: | 4055, | latency: | 54  |
|---|-------|------|----------|-----|--------|----|-----|-----|-------|--------|------|-------|----------|-----|
| > | Hit:  | 437, | offset:  | 15, | vmmID: | з, | ch: | 11, | bcid: | 4001,  | trg: | 4055, | latency: | 54  |
| > | Hit:  | 438, | offset:  | 15, | vmmID: | 2, | ch: | 12, | bcid: | 4000,  | trg: | 4060, | latency: | 60  |
| > | Hit:  | 439, | offset:  | 15, | vmmID: | з, | ch: | 12, | bcid: | 4001,  | trg: | 4060, | latency: | 59  |
| > | Hit:  | 440, | offset:  | 15, | vmmID: | 2, | ch: | 13, | bcid: | 4000,  | trg: | 4065, | latency: | 65  |
| > | Hit:  | 441, | offset:  | 15, | vmmID: | з, | ch: | 13, | bcid: | 4001,  | trg: | 4065, | latency: | 64  |
| > | Hit:  | 442, | offset:  | 15, | vmmID: | 2, | ch: | 14, | bcid: | 4001,  | trg: | 4070, | latency: | 69  |
| > | Hit:  | 443, | offset:  | 15, | vmmID: | з, | ch: | 14, | bcid: | 4001,  | trg: | 4070, | latency: | 69  |
| > | Hit:  | 444, | offset:  | 15, | vmmID: | 2, | ch: | 15, | bcid: | 4000,  | trg: | 4075, | latency: | 75  |
| > | Hit:  | 445, | offset:  | 15, | vmmID: | з, | ch: | 15, | bcid: | 4001,  | trg: | 4075, | latency: | 74  |
| > | Hit:  | 446, | offset:  | 15, | vmmID: | 2, | ch: | 16, | bcid: | 4000,  | trg: | 4080, | latency: | 80  |
| > | Hit:  | 447, | offset:  | 15, | vmmID: | З, | ch: | 16, | bcid: | 4001,  | trg: | 4080, | latency: | 79  |
| > | Hit:  | 448, | offset:  | 15, | vmmID: | 2, | ch: | 17, | bcid: | 4001,  | trg: | 4085, | latency: | 84  |
|   |       |      | offset:  | -   |        | -  |     | -   |       | -      | -    | -     | latency: | 84  |
| > | Hit:  | 450, | offset:  | 15, | vmmID: | 2, | ch: | 18, | bcid: | 4001,  | trg: | 4090, | latency: | 89  |
|   |       | -    | offset:  | -   |        | -  |     | -   |       | -      | -    | -     | latency: | 89  |
| > | Hit:  | 452, | offset:  | 15, | vmmID: | 2, | ch: | 19, | bcid: | 4001,  | trg: | 4095, | latency: | 94  |
|   |       | -    | offset:  | -   |        |    |     | -   |       |        |      | 4095, | latency: | 94  |
|   | Marke |      | 1, VMM 1 |     | ·      |    |     |     |       | 516236 |      |       |          |     |
|   |       |      | 2, VMM : |     |        |    |     |     |       | 516236 |      |       |          |     |
|   | Hit:  | 1    |          |     |        |    |     | -   |       | -      |      |       | latency: | 99  |
|   | Hit:  | 1    |          | -   |        |    |     | -   |       | 4001,  |      | -     | latency: | 99  |
|   | Hit:  | 1    |          | -   |        |    |     | -   |       | 4001,  |      |       | latency: | 104 |
|   | Hit:  | 1    | offset:  | -   |        |    |     | -   |       | 4001,  |      | -     | latency: | 104 |
|   | Hit:  | 1    | offset:  | -   |        |    |     | -   |       | 4001,  |      | -     | latency: | 109 |
|   | Hit:  | 1    | offset:  | -   |        |    |     | -   |       | 4001,  |      |       | latency: | 109 |
|   | Hit:  | 1    | offset:  | -   |        |    |     | -   |       | 4001,  |      | -     | latency: | 114 |
| > |       | 1    | offset:  | -   |        |    |     | -   |       | 4001,  |      |       | latency: | 114 |
| > |       | 1    | offset:  | -   |        |    |     | -   |       | 4001,  |      | -     | latency: | 119 |
|   | Hit:  | 1    |          | -   |        |    |     | -   |       | 4001,  |      |       | latency: | 119 |
|   | Hit:  | 1    |          | -   |        |    |     | -   |       | 4000,  |      |       | latency: | 125 |
| > | Hit:  | 465  | offset:  | -1, | vmmID: | з, | ch: | 25, | bcid: | 4001,  | trg: | 29,   | latency: | 124 |


Offset now 5bit signed number, to cover cases where hits arrive after generation of new marker

VMM3 - SRS DCS nev


#### New algorithm

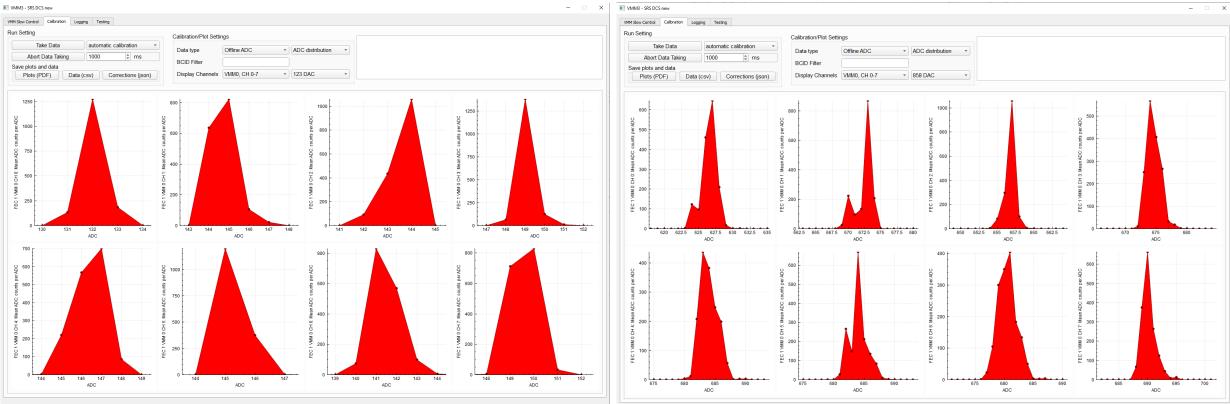
- •Pulse all channels with internal test pulses
- •For 4 different pulse heights, measure ADC
- •Measure the actual level in mV of the pulser DAC (observation: using the same DAC values, different VMMs have quite different pulse heights)
- •Fit per channel with pulse height in mV on x-axis, ADC on y-axis and determine slope and offset off the fit
- •Calculate corrections per channel






#### Fit and corrections



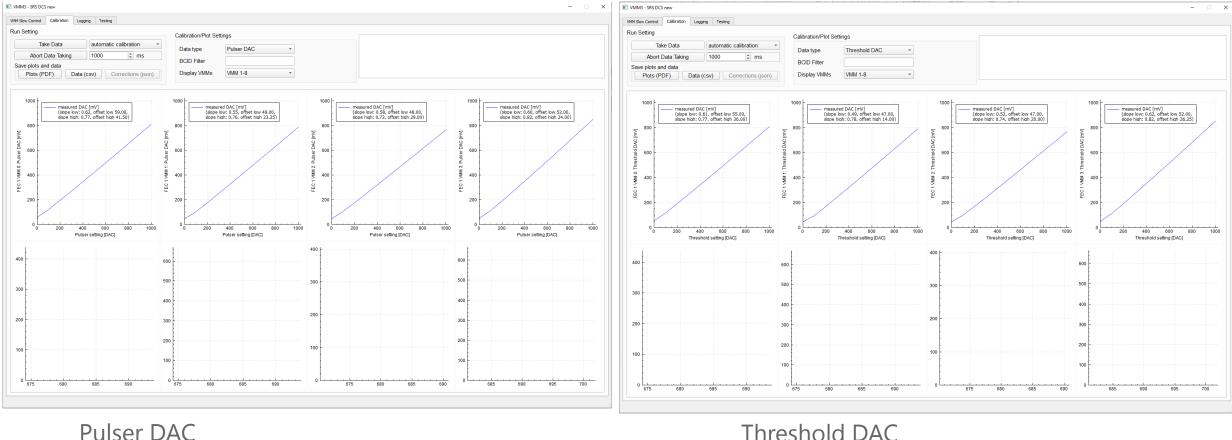

brightness for the second seco



Fit to determine offset and slope corrections Plot per channel Offset and slope corrections Plot per VMM

## brightness

#### ADC distribution




ADC distribution for DAC setting 123 Plot per channel ADC distribution for DAC setting 858 Plot per channel

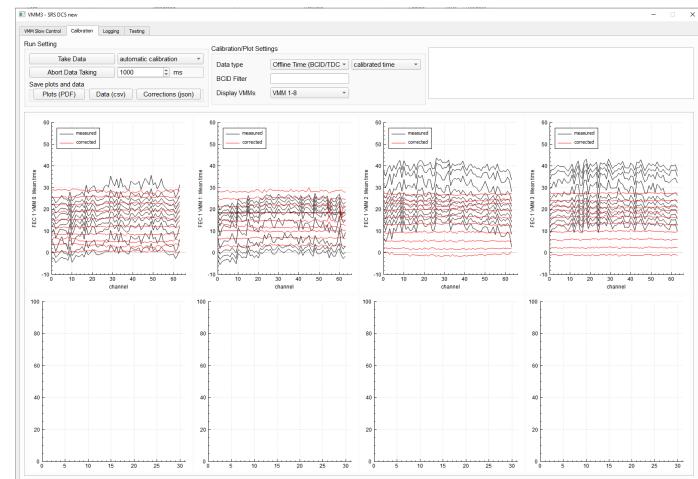
### Pulser and Threshold DAC



#### Measurement of levels [mV]

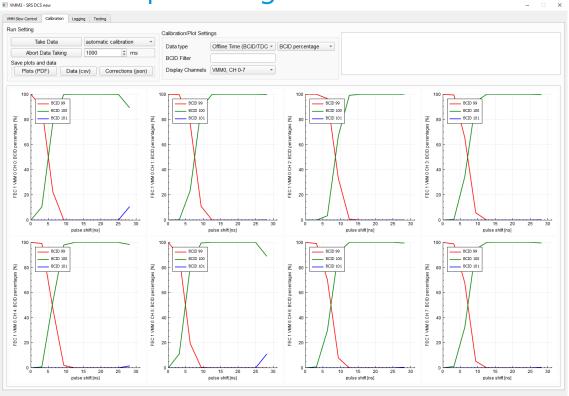


Plot per VMM


Threshold DAC Plot per VMM

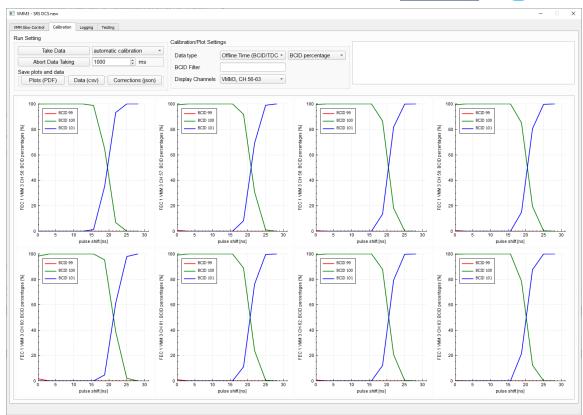
Both DACs have piece-wise two different slopes!

### New algorithm


- •Pulse all channels with internal test pulses
- •Shift test pulse between 0 ns and 31.25 ns
- •Measure TDC and the BCID for every channel
- •Look for the time shift where 50% of hits have BCID n and 50% have BCID n+1
- •At this point one has the largest TDC values for BCID n+1 and the smallest TDC values for BCID n

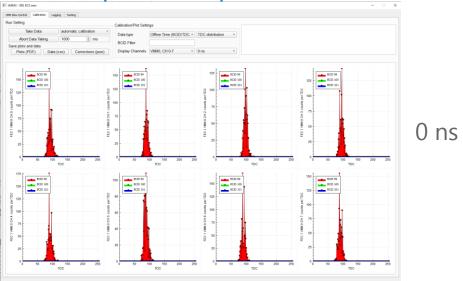


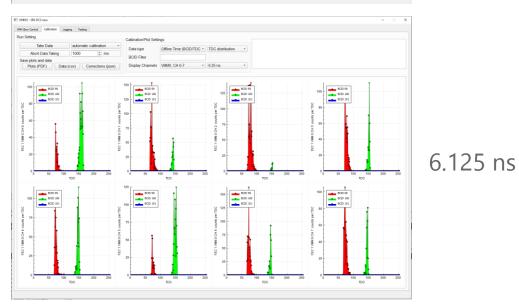


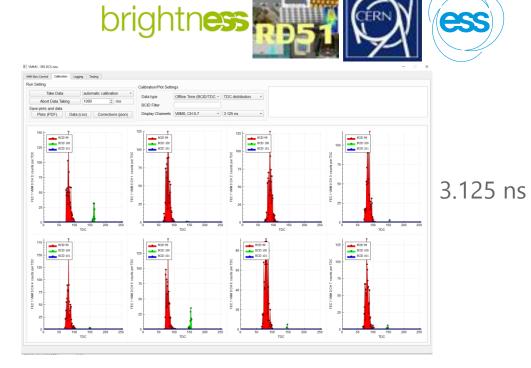

Setting 40 MHz Bc clock, TAC slope 60 ns, shaping time 200 ns

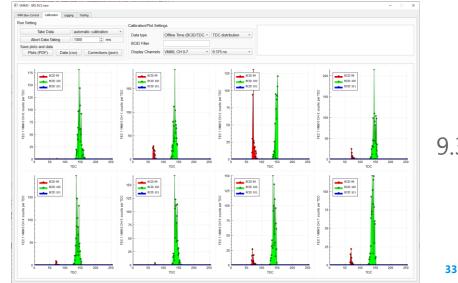
#### **BCID** percentages




BCID percentage VMM0 (BCID 99-100)

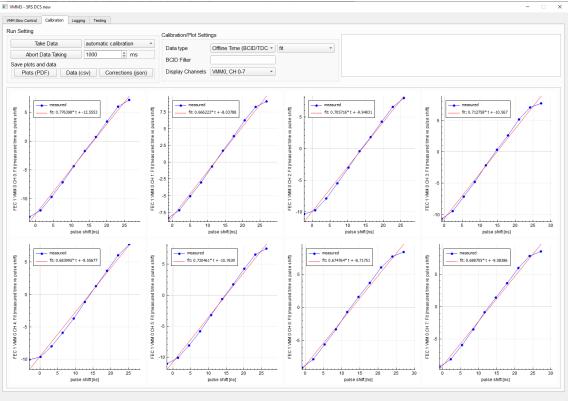


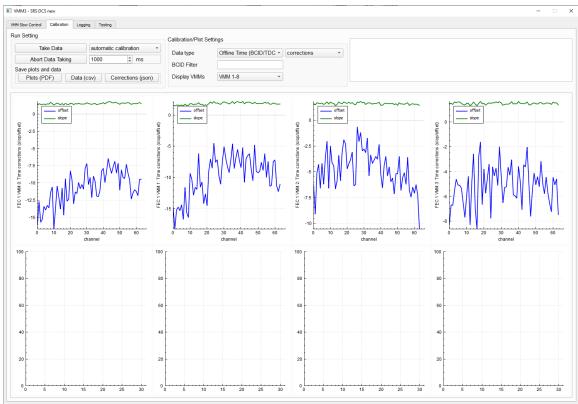


BCID percentage VMM3 (BCID 100-101)

#### TDC spectrum per BCID








9.375ns

#### Fit and corrections





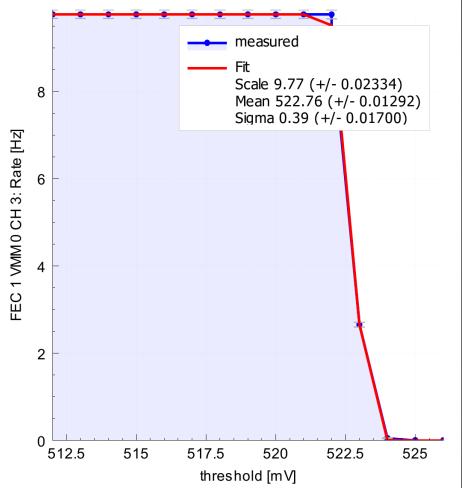


Fit to determine offset and slope corrections Plot per channel Offset and slope corrections Plot per VMM

#### To Do: compare different TAC slopes, shaping times, test whether corrections are stable over time

S-curve

threshold setting


#### •Fit complementary error function to data (alglib: nonlinear regression using function values and gradient)

•Pulse all channels with internal test pulses

•Count the number of hits per channel per

•Shift the global threshold in steps of one DAC

- •On Windows, work only for a few channels at a
- time, otherwise rates do not reach 10 kHz
- •On Linux, works for a whole VMM (64 channels)
- Problem: A step of 1 DAC is equivalent to about 0.8 mV, this is very coarse for channels with low noise, fit not always good for steep drop in rates







### EUROPEAN SPALLATION SOURCE