ENC measurements of VMM3a hybrid

Emorfili Terzimpasoglou

University of Bonn Helmholtz Institute for Radiation and Nuclear Physics (HISKP)

eterzimp@hiskp.uni-bonn.com

Research Group: B. Ketzer, M. Lupberger, M. Ball, M. Hösgen, C. Honisch, K. J. Flöthner

February 15, 2021

Emorfili Terzimpasoglou (HISKP)

Contents

Motivation

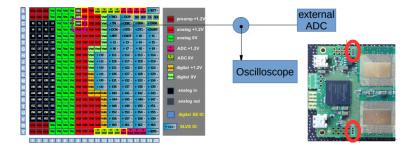
- 2 How to Measure the ENC
- 3 Test Pulse Voltage Step
 - 4 Test Pulse Checks
- **5** Temperature Effects
- 6 The Measurement Cycle
 - 7 Measurement Log
- 8 VMM1 Results
- 9 Multiple VMM Results
- **10** Comparison with ATLAS and GDD
 - 🚺 Outlook

Goal of the measurement:

Characterise VMM noise by means of equivalent noise charge (ENC).

$\checkmark\,$ Used configurations:

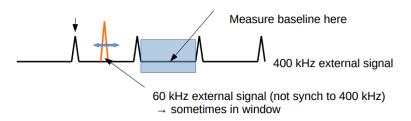
- Gains [mV/fC]: 0.5, 1, 3, 4.5, 6, 9, 12, 16.
- Peaktime [ns]: 25, 50, 100, 200.
- \checkmark # of chips:
 - 10 VMMs (5 hybrids, 2 VMMs/hybrid).


✓ Input capacitance:

- No input capacitance
- Detector simulator PCB [pF]: 8, 30, 76, 98, 338, 360, 406, 428.
- \checkmark Settings:
 - All for 1-2 chips.
 - Standard for others.

How to Measure the ENC

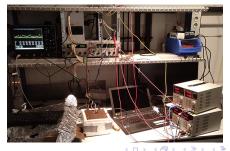
ENC = baseline rms in electrons \rightarrow how to access baseline?


- $\checkmark\,$ VMM configuration: Route shaper output of single channel to MO pad on chip periphery,
- $\checkmark\,$ ASIC MO pad wire bonded to hybrid PCB with test point
- $\checkmark\,$ MO routed to low-resolution external ADC to measure rms $\rightarrow\,$ connect to oscilloscope.

However...

 $\rightarrow\,$ Baseline rms is primarily dominated by external noise sources:

- $\checkmark~{\rm from}~{\bf backend}~{\bf electronics}$
- $\checkmark~{\rm from~other~hybrid~components}$
- \checkmark from surrounding instruments
- $\checkmark~{\rm from~connection~to~oscilloscope}$



How to Measure the ENC

Dealing with the external noise:

- ✓ from **backend electronics** → Faulty ATX power supply, removed by powering backend externally (now: new SRS crate seems fine)
- ✓ from other hybrid components → measure at ACQ on/off; switched off 160 MHz ART clock.
- $\checkmark~{\rm from~surrounding~instruments} \rightarrow {\rm Faraday~Box}$
- ✓ from connection to oscilloscope → used BNC cable (best option); adds noise rms $\sim 0.14 \,\mathrm{mV}$ < baseline rms.

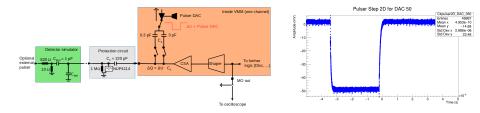
How to Measure the ENC

Figure: VMM 0, Channel 0, gain $16 \,\mathrm{mV/fC}$, peaktime 200 ns, no external capacitance.

Baseline is measured in mV \rightarrow How to convert into #electrons?

Method:

- $\checkmark~$ Induce signal of known charge into VMM channel (internal test pulse)
- $\checkmark\,$ Measure its amplitude at the MO (shaper output)


ENC calculation:

$$\frac{U_{pulse}}{Q_{pulse}} = \frac{U_{RMS}}{Q_{noise}}$$
$$Q_{noise} \to ENC[e^{-}]$$
$$ENC[e^{-}] = \frac{\Delta Q_{in}}{e} \cdot \frac{U_{RMS}}{U_{pulse}}$$

How to calculate the input charge ΔQ_{in} ?

How to Measure the ENC

How to calculate the input charge ΔQ_{in} ?

From internal test pulse circuit of VMM channel:

- $\checkmark~$ apply voltage step on test capacitance $\mathrm{C}_s=0.3\,\mathrm{pF}$
- $\checkmark\,$ adjust step size ΔU from configuring Pulser DAC.
- $\checkmark\,$ measure ΔU by routing test pulse step to MO \rightarrow access on oscilloscope.

$$\Delta Q_{in} = \Delta U \cdot C_s$$

Finally:

$$ENC[e^{-}] = (1.8645 \times 10^6) \cdot \frac{U_{RMS}}{U_{pulse}} \cdot \Delta U$$

 \checkmark For each parameter setting, need to measure: $U_{RMS},\,U_{pulse} \text{ and } \Delta U$

\downarrow

 \checkmark All accessed at MO via VMM configuration.

Test Pulse Voltage Step

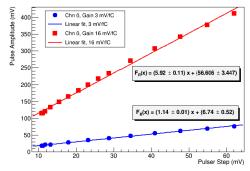
Pulser DAC - Voltage Step Calibration:

 A
 60

Pulser Step vs. DAC

- \checkmark Linear after onset \sim 20 DAC
- $\checkmark\,$ Standard measurements: DAC 50 $\approx\,28\,\mathrm{mV}$
- \checkmark Test charge: 53812.5 electrons (with C_s $0.3\,\mathrm{pF})$

Emorfili Terzimpasoglou (HISKP)

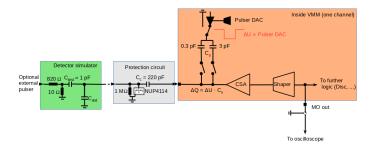

Tests with different DAC (preliminary):

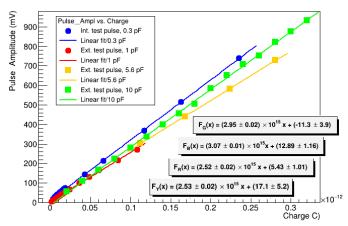
PULSER STEP JADO ENC/e 600 55 00 500 400 300 200 10 20 30 50 60 40 Channel

enc acqoff vs. channel for different pulser steps for peaktime 200 and gain 16

 \checkmark ENC does not depend on test charge.

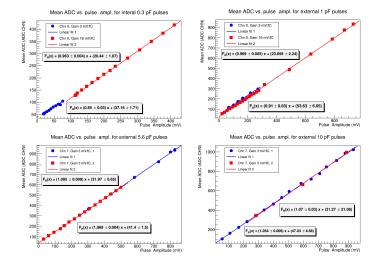
Understanding of input charge is essential to get ENC correct.




Pulse Amplitude vs. pulser step

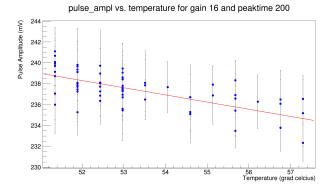
- \checkmark Mostly linear; some saturation for high gain
- ✓ Scaling with gain correct $(\frac{16}{3} \approx 5.3, \frac{5.92}{1.14} \approx 5.2)$

Is the internal capacitor 0.3 pF? \rightarrow Check with pulses on external capacitors:


- $\checkmark~$ Detector simulator: 1 pF (1%)
- $\checkmark~5.6\,\mathrm{pF}$ (10%) soldered to input
- $\checkmark~10\,\mathrm{pF}~(10\%)$ soldered to input

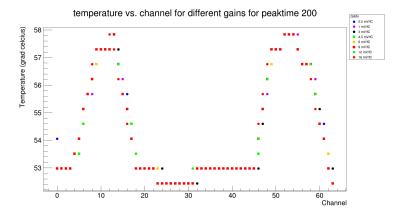
Pulse amplitude vs. charge for different test pulses at gain 3 mV/fC

 \checkmark Gain comes out correctly \rightarrow $\rm C_{\it s}$ = 0.3 pF, 8.8% error


1:1 behavior with ADC offset < 10% variation (gain, channel, charge).

Emorfili Terzimpasoglou (HISKP)

VMM ENC measurements

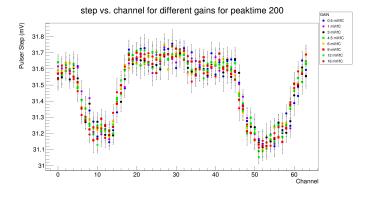

February 15, 2021

Despite cooling of setup, temperature variates between ~ 51 °C and 57 °C (due to change in room temperature, fan position, etc.).

 \checkmark Pulse amplitude seemingly depends on temperature, 3% effect.

Example: Extreme measurement, pulser DAC 55.

 \sim 9% variation


Example: Extreme measurement, pulser DAC 55.

GAIN 0.5 mV/fC Pulse Amplitude (mV) 1 mV/IC 3 mV/fC 250 4.5 mV/fC 6 mV/IC 9 mV/fC 12 mV/fC 16 mV/fC 200 150 100 50 0 10 20 30 40 50 n 60 Channel

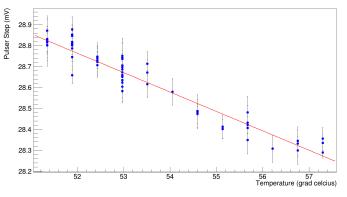
pulse_ampl vs. channel for different gains for peaktime 200

Temperature Effects

Example: Extreme measurement, pulser DAC 55.

 \sim 1.6% variation

Conclusion: It is the pulser step/test charge that is affected by the temperature, not the pulse amplitude.


Emorfili Terzimpasoglou (HISKP)

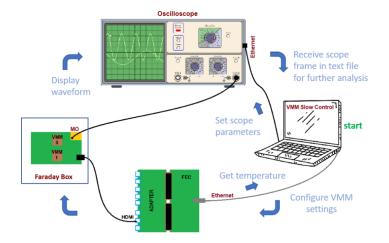
VMM ENC measurements

Temperature Effects

In this measurement: Pulser DAC 50 $\,$

step vs. temperature for gain 16 and peaktime 200

 \sim 0.5% variation

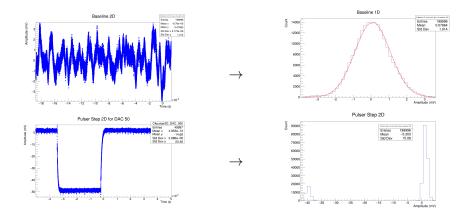

One measurement cycle corresponds to a single VMM channel, gain & peak time.

Tasks:

- $\checkmark~$ Configure VMM settings
- $\checkmark\,$ Record measurement parameters (channel, gain, etc.)
- $\checkmark\,$ Display waveform at MO using oscilloscope
- $\checkmark~$ Save ${\sim}10$ scope frames of RMS (ACQ on and off), test pulse & pulser step for data analysis
- $\checkmark\,$ Store waveforms if highest gain and peak time
- $\checkmark\,$ Store analysis results & calculated parameters in table

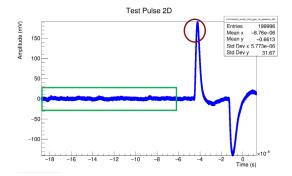
Takes $\sim 2.5 \,\mathrm{min}$ (optimised with multi-threaded online analysis).

The Measurement Cycle: Overview



February 15, 2021

-


3

The Measurement Cycle: Data Analysis

 $\sim 200,000$ data points

The Measurement Cycle: Data Analysis

Errors: From statistical analysis of 10 scope frames.

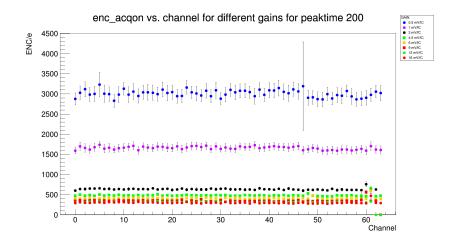
Finally: ENC Calculation.

The Measurement Cycle: Data Analysis

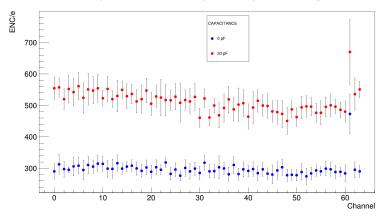
Full-reference measurement: all channels, gains, peaktimes ~ 72 hours

Table: Final Output

vmm_id	channel	gain	peaktime	rms_off	rms_on	p_ampl	ENC_on	ENC_off	ΔU	temp	>>ERRORS
0	0	0	0	0.3208	0.4063	5.7555	2935.13	4055.07	29.5917	56.2162	>>errors
0	0	0	1								
0	0	0	2								
0	0	0	3								
0	0	1	0								
0	0	1	1								
0	0	1	2								
0	0	1	3								
0	0	2	0								
0	0	2	1								
0	0	2	2								
0	0	2	3								
0	63	7	0								
0	63	7	1								
0	63	7	2								
0	63	7	3								


Emorfili Terzimpasoglou (HISKP)

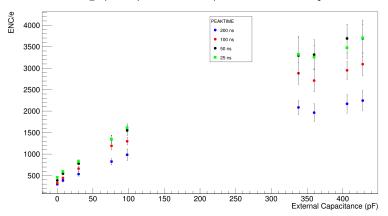
February 15, 2021


Table: Measurement Log

VMM ID	Comments
VMM 0	full-reference tests with 0, 8 and 30 pF cap.
VMM 1	full-ref. tests with 0, 8 and 30 pF cap.; for channels 62, 63: caps 30 - 428 pF also tested
VMM 2,3,4,5,7,9,10,11	ref. tests for gains 3, 6, 16 mV/fC, caps 0, 8, 30 pF

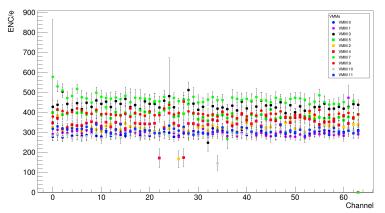
VMM1 Results, preliminary

VMM1 Results, preliminary



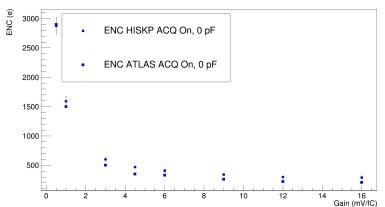
enc_acqon vs. channel for different capacitances for peaktime 200 and gain 16

Emorfili Terzimpasoglou (HISKP)

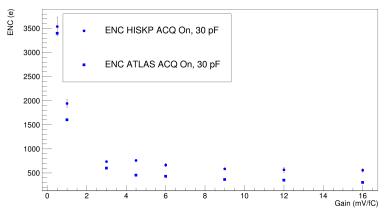

February 15, 2021

VMM1 Results, preliminary

enc_acqon vs. capacitance for different peaktimes for channel 62 and gain 16

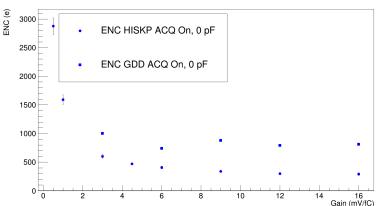

 \rightarrow Unaccounted for: 470 pF capacitor in protection circuit.

enc_acqon vs. channel for different VMMs for gain 16 and peaktime 200


Comparison with ATLAS and GDD, preliminary

ENC/e for different gains: Comparison with ATLAS Results

February 15, 2021


Comparison with ATLAS and GDD, preliminary

ENC/e for different gains: Comparison with ATLAS Results

Emorfili Terzimpasoglou (HISKP)

Comparison with ATLAS and GDD, preliminary

ENC/e for different gains: Comparison with GDD Results

February 15, 2021

To do:

Full cosmics measurement with VMMs installed on a standard triple-GEM detector.

3

Thank you. Questions?