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Overview

This talk will cover our work towards enabling GPU support in the 
Garfield codebase:

Motivation   ●
Brief Overview of GPU Architecture   ●

Performing the Conversion   ●
Consistency Checks   ●

Efficiency Gains   ●
Future Plans   ●

Disclaimer 1: We’ve approached this from the point of view of the code, NOT 
the physics. We’ve kept the code the same as the original where possible. We 
aspire to enhance Garfield++ capabilities for the benefit of the community.

Disclaimer 2: Our first aim is to enable GPU use in Garfield++ and show 
consistency with the known codebase. Subsequently, we will target 

specifically at further optimising performance.
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Motivation

Garfield is one of the ‘industry standards’ in the Gaseous Detectors field

It has a number of applications including Ionisation generation, Electric 
Fields and Electron Transport and Avalanching. For this case study we are 
using Gas Electron Multiplier (GEM) detectors

The main issue is that the generation and transport of large events within 
Garfield can take a long time (minutes)

In the past few months we have been looking at improving this time using 
paralellisation, specifically with GPUs
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Basics on GPUs
Graphics Processing Units (GPUs) are ubiquitous in home 
computing and power the vast majority of Machine 
Learning and AI applications

The general concept of them is providing a vast number of 
cores that individually are slower than the CPU but 
through, parallelisation provide large efficiency gains

For an application to take advantage of the gains 
offered by GPUs, it must:

Just contain calculations   ●
Have paralellisable workflow   ●

Minimise data movement   ●

Though the Garfield code base isn’t ideal for a 
GPU, the transport of large numbers of electrons 
has the potential to be done in parallel
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Overview of Garfield ‘Step’

Check pos is
Valid and find
Electric Fields

Add random time
Steps until collision

Process 
collision

Store updated 
electron info

Input initial
Electron pos

x1-
x100

x1-100
Repeat for 
each electron in 
stack

Remove dead
Electrons and 
Add new ones
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Considerations For GPU Code
CUDA code must be compiled with the NVIDIA compiler

CUDA/device code must be compiled using the the NVIDIA compiler. This made things 
difficult when trying to extend general C++ classes.

Dynamic Allocation on the GPU isn’t trivial
The typical STL classes are not available to the GPU and would be expensive to implement. 

This means extensive use of C-Style arrays.

Minimise memory copies
Ideally, all computation should be done in the GPU memory, not by transferring things 

back and forth to the CPU

Minimise Branching Code
‘if’ statements can be very costly in GPU coding so these have to be reduced if possible. 

This meant avoiding checks and only including things that were necessary

Geometry must be static
The code obviously needs to be thread-safe so the the geometry and associated setup cannot 

be changed during the processing
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Hardware/Software Used

Development was done on a basic server with:

Dual E5-2620 v4 (16 core total)   ●
64GB RAM   ●

This has two Tesla P100 cards (only 1 used at a time in study):
Released Jun 20th, 2016   ●

Pascal architecture   ●
3584 cores each   ●

16GB memory   ●
Memory bandwidth: 732.2 GB/s   ●

Base Clock: 1190 MHz   ●

CUDA 11.0 was installed with NVIDIA driver 450.51.05. The base system 
was Fedora but using a chroot to a CentOS 7 image
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GEM Model Used

For this study we used a standard THGEM:
1mm thick FR4 coated on both sides with a 17 μm layer of copper   ●

hexagonal pattern of cylindrical holes    ●
 ∅ =  400 μm    ●

pitch: 700 μm    ●

Using  Ar:CF4 (80%:20%) at various pressures to have different avalanche sizes.
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Converting – Initial Setup

The geometry and setup in Garfield is stored in several classes:
Sensor   ●

MediumMagBoltz   ●
ComponentFieldMap   ●

These couldn’t just be run on the GPU due to extensive use of std::vector 
so copies of the classes were developed that were then filled from the 
originals

We ensured we did as much pre-processing on the CPU first before 
transferring all data to the GPU

Medium Class Medium::CreateCPU
TransferObject MediumGPU

Build with G++ Build with NVCC
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Converting – Main Loops
The main electron processing loop would be performed in parallel across the GPU with one 
thread transporting one electron

The code was used as is with the only changes being that to deal with:
Shifting to c-style arrays   ●

Updating the info of an electron   ●
Storing any newly created particles   ●

Due to not having thread-safe, dynamically allocated arrays, we created a large array that 
had enough space for each thread to store the particle info:

0

1

2

3

Thread ID New e- array
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Converting – Stack Processing

At the end of each processing ‘step’ (i.e. each electron going through the main 
loop), the stack of electrons is processed. This involves removing terminated 
electrons and adding in newly generated ones

By necessity, this will involve ‘random’ memory access proportional to the 
number of particles in the stack

This was found to be a very significant cause of slow down for the GPU and much 
more efficient ways are possible

0 1 2 3 4 5 6 7 8 9

0 1 2

0 1 3 4 5 8 9

0 1 2

0 1 20 1 2

Old Stack

New Stack

Stack ready for
next iteration



Mark Slater, Konstantinos Nikolopoulos, 
RD51 Mini-Week

1218/02/2021

Consistency Checks - setup

The first goal was to make sure the GPU code produced the 
same results as the CPU code

To do this, both versions of the code were run in parallel – 
each step/iteration was processed by the GPU and CPU 
independently

We could then compare electron numbers and positions after 
each step as well as after the full generation

Particular cases that generated large showers were used as the 
test cases. The starting position and seeds were fixed to ensure 
the same shower was created each time
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Consistency Checks - RNG

The biggest problem with comparing CPU and GPU code was making sure the 
RNG was the same for both. By default, Garfield uses ROOT for it’s RNG source 
which wouldn’t work on the GPU

To get around this, we pre-generated a large number of random numbers with 
seeds equal to the electron position in the stack which also corresponded to the 
thread that tracked it

This accounted for 14.5GB of GPU memory but would not be needed in normal 
running as CUDA provides RNG generation itself

0

1

2

3

Thread/
Stack ID

Arrays of random numbers
with seed of the ID that will 
reference it
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Consistency Checks - Results

We get very good 
agreement in the stack 
sizes and end points for 
the events we looked at

For this event, there was 
a maximum difference of 
247(~1%) in stack size 
during transport

After transport, the 
difference in the end 
points was 48 (0.02%)
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Inconsistencies

After doing a lot of tracking of individual particles and positions, the GPU 
code was found to match the CPU code very closely

However, investigations showed occasional small differences at the level of 
10-6 that over subsequent iterations, sometimes created larger differences 
in the results due to the exponential nature of the avalanche process

Tracing the source of these showed there were unavoidable differences at 
the 10-8 level due to the different architectures and compilers. These errors 
were compounded due to the many hundreds of FP calcs being done in 
sequence

To try to remove this, we added the option to round off to a number of 
decimal places at various points in the code. This showed significant 
improvement but also indicated some very small differences were 
irreducible
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Efficiency Improvements

On average, there is a x20 speed 
up using the GPU even without 
optimisations

Both CPU and GPU take longer to 
transport when electrons are 
decreasing rather than increasing – 
more investigation is needed to find 
the cause
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Efficiency Improvements

Significant effect of 
processing (NOT 
transporting) the 
stack
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Efficiency Improvements

Studies were also done over a 
number of other large 
avalanche events

NOTE: this plot shows the 
GPU/CPU ratio against the 
Number of End Points which 
will be significantly larger than 
the per iteration stack size
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Future improvements

Increase GPU efficiency
Now we have showed consistency between the GPU and CPU code 

we plan to increase the efficiency as much as possible, e.g. by 
removing conditionals and debug info, copying for consistency 

checks and switching to floats. 

Switch between GPU/CPU use automatically
As you only get improvement for sufficiently large showers, the code 

should be able to switch to GPU use when it would give benefit

Allow multiple GPU use
There’s no technical reason why multiple GPUs can’t be used 

simultaneously for bigger efficiency gains
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Future improvements

Allow processing of multiple showers at once
By tagging electrons with an ‘event ID’ you could run many showers 

simultaneously on the GPU using the same geometry/setup

Automatic Code Generation
Many of the steps in converting the code (i.e. create class, shift to c-
style arrays, transfer data) could be automated as a separate build 

step ensuring there aren’t separate GPU and CPU versions of the code

Expansion to generic multi-threading
The GPU version of the code is, by necessity, thread-safe. It should 
therefore be relatively easy to switch to multi-threaded generation 

which would allow the utilisation of multi-core machines
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Summary

We have managed to get the Electron Transport parts of 
Garfield++ running on a GPU

The GPU and CPU transport has been found to be almost 
identical on smaller electron populations and consistent on 
larger populations to within the expected error due to 
different architectures, compilers, etc.

A significant speed up of up to 20x has already been found 
with many possible efficiency improvements left to be applied

This work could also fairly easily lead to providing full multi-
threaded support in Garfield++
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