
Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

118/02/2021

 Garfield++ Parallelisation using GPUs

RD51 Mini-Week, 18th February, 2021
Mark Slater, Konstantinos Nikolopoulos, Birmingham University

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

218/02/2021

Overview

This talk will cover our work towards enabling GPU support in the
Garfield codebase:

Motivation ●
Brief Overview of GPU Architecture ●

Performing the Conversion ●
Consistency Checks ●

Efficiency Gains ●
Future Plans ●

Disclaimer 1: We’ve approached this from the point of view of the code, NOT
the physics. We’ve kept the code the same as the original where possible. We
aspire to enhance Garfield++ capabilities for the benefit of the community.

Disclaimer 2: Our first aim is to enable GPU use in Garfield++ and show
consistency with the known codebase. Subsequently, we will target

specifically at further optimising performance.

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

318/02/2021

Motivation

Garfield is one of the ‘industry standards’ in the Gaseous Detectors field

It has a number of applications including Ionisation generation, Electric
Fields and Electron Transport and Avalanching. For this case study we are
using Gas Electron Multiplier (GEM) detectors

The main issue is that the generation and transport of large events within
Garfield can take a long time (minutes)

In the past few months we have been looking at improving this time using
paralellisation, specifically with GPUs

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

418/02/2021

Basics on GPUs
Graphics Processing Units (GPUs) are ubiquitous in home
computing and power the vast majority of Machine
Learning and AI applications

The general concept of them is providing a vast number of
cores that individually are slower than the CPU but
through, parallelisation provide large efficiency gains

For an application to take advantage of the gains
offered by GPUs, it must:

Just contain calculations ●
Have paralellisable workflow ●

Minimise data movement ●

Though the Garfield code base isn’t ideal for a
GPU, the transport of large numbers of electrons
has the potential to be done in parallel

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

518/02/2021

Overview of Garfield ‘Step’

Check pos is
Valid and find
Electric Fields

Add random time
Steps until collision

Process
collision

Store updated
electron info

Input initial
Electron pos

x1-
x100

x1-100
Repeat for
each electron in
stack

Remove dead
Electrons and
Add new ones

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

618/02/2021

Considerations For GPU Code
CUDA code must be compiled with the NVIDIA compiler

CUDA/device code must be compiled using the the NVIDIA compiler. This made things
difficult when trying to extend general C++ classes.

Dynamic Allocation on the GPU isn’t trivial
The typical STL classes are not available to the GPU and would be expensive to implement.

This means extensive use of C-Style arrays.

Minimise memory copies
Ideally, all computation should be done in the GPU memory, not by transferring things

back and forth to the CPU

Minimise Branching Code
‘if’ statements can be very costly in GPU coding so these have to be reduced if possible.

This meant avoiding checks and only including things that were necessary

Geometry must be static
The code obviously needs to be thread-safe so the the geometry and associated setup cannot

be changed during the processing

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

718/02/2021

Hardware/Software Used

Development was done on a basic server with:

Dual E5-2620 v4 (16 core total) ●
64GB RAM ●

This has two Tesla P100 cards (only 1 used at a time in study):
Released Jun 20th, 2016 ●

Pascal architecture ●
3584 cores each ●

16GB memory ●
Memory bandwidth: 732.2 GB/s ●

Base Clock: 1190 MHz ●

CUDA 11.0 was installed with NVIDIA driver 450.51.05. The base system
was Fedora but using a chroot to a CentOS 7 image

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

818/02/2021

GEM Model Used

For this study we used a standard THGEM:
1mm thick FR4 coated on both sides with a 17 μm layer of copper ●

hexagonal pattern of cylindrical holes ●
 ∅ = 400 μm ●

pitch: 700 μm ●

Using Ar:CF4 (80%:20%) at various pressures to have different avalanche sizes.

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

918/02/2021

Converting – Initial Setup

The geometry and setup in Garfield is stored in several classes:
Sensor ●

MediumMagBoltz ●
ComponentFieldMap ●

These couldn’t just be run on the GPU due to extensive use of std::vector
so copies of the classes were developed that were then filled from the
originals

We ensured we did as much pre-processing on the CPU first before
transferring all data to the GPU

Medium Class Medium::CreateCPU
TransferObject MediumGPU

Build with G++ Build with NVCC

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1018/02/2021

Converting – Main Loops
The main electron processing loop would be performed in parallel across the GPU with one
thread transporting one electron

The code was used as is with the only changes being that to deal with:
Shifting to c-style arrays ●

Updating the info of an electron ●
Storing any newly created particles ●

Due to not having thread-safe, dynamically allocated arrays, we created a large array that
had enough space for each thread to store the particle info:

0

1

2

3

Thread ID New e- array

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1118/02/2021

Converting – Stack Processing

At the end of each processing ‘step’ (i.e. each electron going through the main
loop), the stack of electrons is processed. This involves removing terminated
electrons and adding in newly generated ones

By necessity, this will involve ‘random’ memory access proportional to the
number of particles in the stack

This was found to be a very significant cause of slow down for the GPU and much
more efficient ways are possible

0 1 2 3 4 5 6 7 8 9

0 1 2

0 1 3 4 5 8 9

0 1 2

0 1 20 1 2

Old Stack

New Stack

Stack ready for
next iteration

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1218/02/2021

Consistency Checks - setup

The first goal was to make sure the GPU code produced the
same results as the CPU code

To do this, both versions of the code were run in parallel –
each step/iteration was processed by the GPU and CPU
independently

We could then compare electron numbers and positions after
each step as well as after the full generation

Particular cases that generated large showers were used as the
test cases. The starting position and seeds were fixed to ensure
the same shower was created each time

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1318/02/2021

Consistency Checks - RNG

The biggest problem with comparing CPU and GPU code was making sure the
RNG was the same for both. By default, Garfield uses ROOT for it’s RNG source
which wouldn’t work on the GPU

To get around this, we pre-generated a large number of random numbers with
seeds equal to the electron position in the stack which also corresponded to the
thread that tracked it

This accounted for 14.5GB of GPU memory but would not be needed in normal
running as CUDA provides RNG generation itself

0

1

2

3

Thread/
Stack ID

Arrays of random numbers
with seed of the ID that will
reference it

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1418/02/2021

Consistency Checks - Results

We get very good
agreement in the stack
sizes and end points for
the events we looked at

For this event, there was
a maximum difference of
247(~1%) in stack size
during transport

After transport, the
difference in the end
points was 48 (0.02%)

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1518/02/2021

Inconsistencies

After doing a lot of tracking of individual particles and positions, the GPU
code was found to match the CPU code very closely

However, investigations showed occasional small differences at the level of
10-6 that over subsequent iterations, sometimes created larger differences
in the results due to the exponential nature of the avalanche process

Tracing the source of these showed there were unavoidable differences at
the 10-8 level due to the different architectures and compilers. These errors
were compounded due to the many hundreds of FP calcs being done in
sequence

To try to remove this, we added the option to round off to a number of
decimal places at various points in the code. This showed significant
improvement but also indicated some very small differences were
irreducible

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1618/02/2021

Efficiency Improvements

On average, there is a x20 speed
up using the GPU even without
optimisations

Both CPU and GPU take longer to
transport when electrons are
decreasing rather than increasing –
more investigation is needed to find
the cause

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1718/02/2021

Efficiency Improvements

Significant effect of
processing (NOT
transporting) the
stack

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1818/02/2021

Efficiency Improvements

Studies were also done over a
number of other large
avalanche events

NOTE: this plot shows the
GPU/CPU ratio against the
Number of End Points which
will be significantly larger than
the per iteration stack size

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

1918/02/2021

Future improvements

Increase GPU efficiency
Now we have showed consistency between the GPU and CPU code

we plan to increase the efficiency as much as possible, e.g. by
removing conditionals and debug info, copying for consistency

checks and switching to floats.

Switch between GPU/CPU use automatically
As you only get improvement for sufficiently large showers, the code

should be able to switch to GPU use when it would give benefit

Allow multiple GPU use
There’s no technical reason why multiple GPUs can’t be used

simultaneously for bigger efficiency gains

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

2018/02/2021

Future improvements

Allow processing of multiple showers at once
By tagging electrons with an ‘event ID’ you could run many showers

simultaneously on the GPU using the same geometry/setup

Automatic Code Generation
Many of the steps in converting the code (i.e. create class, shift to c-
style arrays, transfer data) could be automated as a separate build

step ensuring there aren’t separate GPU and CPU versions of the code

Expansion to generic multi-threading
The GPU version of the code is, by necessity, thread-safe. It should
therefore be relatively easy to switch to multi-threaded generation

which would allow the utilisation of multi-core machines

Mark Slater, Konstantinos Nikolopoulos,
RD51 Mini-Week

2118/02/2021

Summary

We have managed to get the Electron Transport parts of
Garfield++ running on a GPU

The GPU and CPU transport has been found to be almost
identical on smaller electron populations and consistent on
larger populations to within the expected error due to
different architectures, compilers, etc.

A significant speed up of up to 20x has already been found
with many possible efficiency improvements left to be applied

This work could also fairly easily lead to providing full multi-
threaded support in Garfield++

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

